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With the increasing penetration of renewable energy in the power grid, which

makes power plant equipment is always in changing operating conditions. The

correlation between the main and auxiliary equipment of the unit is easy to lead

a potential fault, therefore, the safety and reliability of the auxiliary equipment of

thermal power units have become amore challenging issue in the case of large-

scale renewable energy. Adaptive condition monitoring of the auxiliary

equipment can reduce maintenance costs and improve reliability in the

thermal power units. Most existing studies perform poorly at extracting

features from distributed control systems data and make less use of time

series data. A novel adaptive condition monitoring framework and early fault

warning method based on long short-term memory and stack denoising auto-

encoder network has been proposed for auxiliary equipment of power plant

unit. The proposed framework has two main parts, which contain condition

monitoring and adaptive early fault warning. The Mahalanobis distance of a

reconstruction error is defined as the monitoring indicator to reflect the

condition of the equipment. The Chebyshev inequality determines an

adaptive threshold for early anomaly detection that applies to changeable

working conditions. The effectiveness of the proposed method was verified

by the actual case of the coal mill. The adaptive threshold method can obtain

the advance time of 42s and 108s, respectively.
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1 Introduction

The integration of large-scale renewable energy sources is

forcing more frequent changes in the operating conditions of

thermal unit auxiliary equipment to maintain grid stability.

Under the influence of variable operating conditions, the

correlation between the primary and auxiliary equipment

leads to an increase in the potential failure hazards of the

unit. Therefore, the safety and reliability of the auxiliary

equipment of thermal power units have become a more

challenging issue in the case of large-scale renewable energy.

An excellent early fault warning system can help operators detect

potential fault signals at the early stage of the fault to prevent

further fault development and ensure the safe and stable

operation of power plants. In addition, it can improve the

safety and reliability of auxiliary equipment significantly, and

decrease unpredicted faults and maintenance costs of thermal

power units (Agrawal et al., 2015). Consequently, intelligent

condition monitoring and early fault warning of thermal

power units have become a research hotspot.

Generally, the recent research on condition monitoring can

be divided into three types: model-based, statistics-based, and

data-based. The model-based approach focuses on building

mathematical models for anomaly detection based on relevant

principles. Agrawal et al. (Agrawal et al., 2015) reviewed various

anomaly detection techniques for coal mills in power units. Guo

et al. (Guo et al., 2014) developed an approach for condition

monitoring and fault detection of the Tube-ball mill in power

plant. Willersrud et al. (Willersrud et al., 2015) built an accurate

analytical model to design an adaptive observer to observe the

variation of parameters. However, many parameters in the

mechanism model are difficult to measure on the production

site, the model-based approach is complicated in practice. In

addition, the noise and harsh environment in real industrial

processes affect the reliability of the model. Therefore, the model-

based approach has poor anomaly detection performance and

possesses a limited range of applications. Widarsson et al.

(Widarsson and Dotzauer, 2008) used the Bayesian network

to analyze the balance of steam and fuel, and then the

probability of the heat boiler leakage was calculated to realize

the fault warning. Hajdarevic et al. (Hajdarevic et al., 2015) used a

probabilistic neural network to perform early fault warning in

thermal power plants. Kisi¢ et al. (Kisi¢ et al., 2012) adopted a

T2 multivariate control chart to analyze the condition of coal

grinding mills. The advantage of the statistics-based approach

reduces the level of human intervention. However, it requires a

large amount of fault data to complete anomaly monitoring. It is

challenging because failure data for industrial equipment in

operation is often difficult to obtain. With the development of

artificial intelligence, it has become feasible to mine hidden

features from operation data. The data-based approach built a

condition monitoring model based on historical data, which

makes it highly versatile and adaptable. Nikula et al. (Nikula

et al., 2016) presented a data-driven method for monitoring

boiler performance. Rostek et al. (Rostek et al., 2015) used

artificial neural networks (ANN) for the early detection of

abnormal conditions in fluidized bed boilers. Chen et al.

(Chen et al., 2018) provided a KNN-based approach to

condition monitoring and applied it to power plants. Hong

et al. (Hong et al., 2019) implemented support vector

regression (SVR) to monitor and diagnose of coal mill

conditions. Although the above methods that rely on a priori

knowledge can obtain good condition monitoring performance,

they all require normal and fault data simultaneously. Fault data

are scarce or even unavailable at the production site. Therefore,

the development of an intelligent condition monitoring method

using only normal data is significant for actual applications.

Historical data from the distributed control system (DCS) of the

thermal power units have recorded the health conditions of the

thermal power units, which can be used for condition

monitoring. In recent years, deep learning has gained

attention for its excellent feature extraction and nonlinear

representation capabilities, which make it easy to extract

useful features from devices (Lecun et al., 2015; Li et al.,

2021). A deep neural network has been widely applied in

regarding industrial health prognostic issue (Lei et al., 2018;

Zhao et al., 2019; Qin et al., 2021; Qin et al., 2022), which have

achieved great success in health prognostic field. Qin et al. (Qin

et al., 2022) proposed a slow-varying dynamics-assisted temporal

CapsNet (SD TemCapsNet) to simultaneously learn the slow-

varying dynamics and temporal dynamics from measurements

for accurate RUL estimation. Lei et al. (Lei et al., 2018) review

from data acquisition to RUL prediction that aims at predicting

the accurate failure time before a system failure happens. Qin

et al. (Qin et al., 2021) proposed a SoC estimation method by

exploiting temporal dynamics of measurements and transferring

consistent estimation ability among different temperatures. Deep

learning is designed to provide extract hierarchical

representations from input data by multi-layer nonlinear

transformations, which is applicable to thermal power plant

auxiliaries with highly nonlinear and associative relationships.

It is time-consuming and costly to monitor multiple variables

using multiple models. Thus, there is a need to find a condition

monitoring method that does not require a complex feature

extraction process and fault data. Different deep learning

networks, such as autoencoder (AE) (Zhao et al., 2018), deep

belief network (DBN) (Tamilselvan and Wang, 2013),

convolutional neural network (CNN) (Li et al., 2017),

denoising autoencoder (DAE) (Wang et al., 2018), stacked

denoising autoencoder (SDAE) (Lu et al., 2017; Li et al.,

2020), and sparse autoencoder (SAE) (Sun et al., 2016), have

been investigated for condition monitoring and anomaly

detection. Although the above methods can effectively achieve

nonlinear relationships among DCS data, their ability to extract

time-dependent relationships hidden in historical data is

insufficient in the current study. To address this problem, a
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condition monitoring framework based on the long short-term

memory (LSTM) approach has been proposed, which has shown

its effectiveness in solving various machine learning problems

involving time series data (Zhao et al., 2017; Lei et al., 2019;Wang

et al., 2019; Hong et al., 2020; Pang et al., 2020). The experimental

results of the above studies show that deep learning networks

outperform the existing intelligent approaches such as SVM,

ANN, and CNN (Lei et al., 2019). Pang et al. (Pang et al., 2020)

proposed a new spatio-temporal fusion method for fault

diagnosis of wind turbines. Zhao et al. (Zhao et al., 2017)

proposed a deep learning network based on raw data, which

combined CNN and bidirectional LSTM to monitor tool wear

conditions. Wang et al. (Wang et al., 2019) proposed degradation

assessment of rolling bearing based on convolutional neural

network and deep long-short term memory network. Hong

et al. (Hong et al., 2020) proposed a bed temperature

prediction of CFB boilers based on LSTM. The above

methods can effectively mine the nonlinear relationships

among multivariate data to achieve good performance of

condition monitoring, but the prerequisite requires feature

selection and labeling information.

Autoencoder is an unsupervised neural network model.

The process of obtaining implicit features from the input data

is called encoding, and reconstructing the original input data

with the new learned features is called decoding. The

monitoring data of thermal power units are time-series

related. The cumulative effect causes the performance

changes over a period of time, which can take advantage

of the excellent temporal data processing capability of LSTM.

Inspired by the above studies, the hidden layer neurons of AE

are replaced by LSTM neurons in this study. As a result, a

condition monitoring and early fault warning method for the

auxiliary equipment of thermal power units based on LSTM-

SDAE is proposed. A nonlinear correlation between multiple

variables and the time dependence of each variable can be

captured by the LSTM-SDAE model simultaneously. The

LSTM-SDAE network for condition monitoring proposed

in this research provides timely warnings before

abnormalities occur, which helps operators take preventive

measures to prevent potential failures.

The contribution of our study is that: 1) deep extraction of

time series features with the LSTM encoding and decoding

structure. 2) introducing an adaptive threshold solution to

adapt to the changeable working conditions of the equipment.

3) providing an unsupervised condition monitoring method that

uses only normal data to achieve early fault warning of power

plant equipment without label information.

The rest of the paper is organized as follows; a basic principle

of the proposed method is introduced in Chapter 2. In Chapter 3,

the improved SDAE is introduced, and the framework based on

LSTM-SDAE is proposed for condition monitoring. A case study

and verification results are shown in Chapter 4, and Chapter

5 elaborates on the conclusion.

2 Preliminaries

2.1 Auto-Encoder

AE is a symmetric network that uses unsupervised learning

algorithms and consists of an encoder and a decoder. AE is a

feedforward neural network to learn representative

characteristics directly from data (Rumelhart et al., 1986; Zhao

et al., 2019), the basic structure of AE is shown in Figure 1. The

AE can learn the intrinsic feature from raw data directly, without

the need to manually select the input variables. Encoding a high-

dimensional input into a low-dimensional hidden variable is

called the encoding process, while decoding the encoded input

into a high-dimensional one is called the decoding process. The

encoding and decoding processes are described as follows,

respectively:

h � σ(W1 · x + b1) (1)
z � σ(W2 · x + b2) (2)

Here the input, hidden representation, and output are defined as

x, h, and z, respectively. σ(·) is ReLU activation function. The

parameters of W1, W2, b1, and b2 are the weight matrix and the

offset matrices between the input layer and the hidden layer,

which are initialized randomly. The cost function is shown as:

J � 1
m
∑m
k�1

1
2
‖z − x‖2 + λ

2
‖W‖2 (3)

m, λ represent the sample numbers and the weight decay

coefficient. The first term is the reconstruction loss between the

FIGURE 1
The structure of Auto-Encoder.
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actual value and the reconstructed value. The second term is the

weight attenuation, which is used to indicate the strength of the

weight decay and prevent over-fitting (Hu et al., 2020).

The harsh operating environment of industrial sites tends to

produce random disturbances, sensor measurement errors, and

other uncertainties. DAE is a class of auto-encoders that accept

corrupted data as input and are trained to predict the original

undamaged data as output. Noise is added to the input training

data, and the auto-encoder learns more robust representations of

the input data, which forces it to have a better generalization

capability than AE (Vincent et al., 2010). The architecture of a

DAE is illustrated in Figure 2. They are reconstructing the real

original input from the data containing random noise. The actual

data x can be recovered from the data containing random noise~x,

which sets a small number of input layer nodes to zero with a low

probability by extracting the most important features. However,

the probability of introducing random noise in the input data

must be appropriate; otherwise, the original data will be

corrupted by the noise. The hidden layer output y is obtained

after the encoding process fe, and then the reconstructed value z is

obtained by the decoding process ge. The weights are trained

iteratively by the model so that the objective function L (x,z) is

minimized. In this study, DAE is the AE network that adds

Gaussian noise with a noise factor to the input data.

Shallow networks are limited in their ability to handle

complex problems. Owing to its excellent nonlinear mapping

capability to capture more intrinsic features, the SDAE network

has the ability to solve complex problems in industrial

production. The SDAE network is stacked by multiple DAEs

to form a deep learning framework. Each layer of autoencoder is

trained unsupervised to minimize the error between input and

reconstructed output, the hidden representation of the (n-1)th

DAE is obtained by the input of the nth DAE, and then the SDAE

network is stacked by decoding the nth DAE, (n-1)th DAE,. . .1st

DAE orderly (Vincent et al., 2010; Yang et al., 2019). During the

training process of each DAE, greedy layer-wise pre-training is

employed to conduct a deep framework without labeled

information.

2.2 Long short-term memory

LSTM is a variant of a recurrent neural network (RNN)

that can learn time-series dependencies by sharing

parameters of layer weights. The LSTM layer achieves long

and short-term memory control through the forgetting gate,

the updating gate, and the output gate (Hochreiter and

Schmidhuber, 1997). However, the introduction of the gate

structure makes it possible to capture long-term

dependencies and nonlinear dynamics between time

series data points, as shown in the LSTM architecture in

Figure 3.

A classical LSTM architecture usually consists of a cell and

three gates to control the flow of information within the

LSTM cell. The forward calculation formula of LSTM is

shown below:

it � σ(Wxixt +Whiht−1 + bi) (4)
ft � σ(Wxfxt +Whfht−1 + bf) (5)

ct � ftct−1 + it tanh(Wxcxt +Whcht−1 + bc) (6)
ot � σ(Wxoxt +Whoht−1 + bo) (7)

ht � ot tanh(ct) (8)
yt � tanh(Wyht + by) (9)

where, it, ft, ct, ot represents the input gate, the forgetting gate, the

cell state, and the output gate respectively,W and b represent the

corresponding weight coefficient matrix and bias term, σ is the

activation function (Greff et al., 2015). The sigmoid activation

function and the tanh activation function are formulated as

follows:

σ(x) � 1
1 + e−x

(10)

tanh(x) � ex − e−x

ex + e−x
(11)

FIGURE 2
The architecture of DAE.

FIGURE 3
The basic structure of the LSTM block.
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2.3 Adaptive threshold

When providing early warning on the operating status of

power generation equipment, it is necessary to determine

whether the monitoring indicator exceeds the alarm

threshold. The most common approach is to apply a fixed

threshold to the monitoring indicator. If it exceeds the

threshold, then a fault is detected. However, the fixed

threshold approach does not take into account the effects

of variable operating conditions, which can lead to missed or

false alarms. Therefore, a suitable threshold is a key factor for

early abnormality detection. In this study, a dynamic

threshold is proposed based on probability theory that can

be dynamically adjusted according to the changing operating

conditions of the unit to reduce the number of false alarms.

For any real number n > 0, the Chebyshev inequality is

presented as follows (Chakraborty and Elzarka, 2019):

Pr(|tk − u|≥ nσ)< 1
n2

(12)

According to interval estimation in statistics, for a wide class

of probability distributions, no more than 1
n2 of the distribution

values can be more than n standard deviations away from the

mean. And the bandwidth coefficient n is related to the error

detection rateα. Therefore, according to Eq. 12, the threshold

range at time N can be shown asTi ∈ [μi − nσ i, μi + nσ i], where n

is the bandwidth coefficient, andTi,μi, and σ iare the threshold,

moving mean, and moving standard deviation of the monitoring

indicators tk.

μNtk �
1
N

∑N
i�1
tki (13)

σNtk �

����������������
1

N − 1
∑N
i�1
(tki − μNtk )2

√√
(14)

Since we only focus on the cases where the monitored

value is greater than the threshold value, we consider the

upper thresholdμi + nσ ias the threshold Ti. For updating

purposes, means and variances are subsequently derived to

further reduce the amount of calculation and reduce the data

storage space (Feng and Han, 2013; Wu et al., 2017).

μNtk �
1
N
tkN + N − 1

N
μN−1
tk

(15)

σN
tk
�

��������������������������
N − 2
N − 1

(σN−1
tk

)2 + 1
N
(tkN − μN−1

tk
)2√

(16)

Only the mean value, the variance at time N-1, and the

monitoring indicator value at time N must be considered for

calculating the mean value according to Eqs. 15, 16. The

threshold can be dynamically adjusted on the basis of the

real-time mean and variance of the residual. Therefore, an

FIGURE 4
The LSTM-SDAE framework of condition monitoring and early fault warning.
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adaptive threshold value that is updated in real time can be

obtained according to Eq. 17. Here, n is chosen to be 2.

Ti
k � μi + nσ i (17)

3 The proposed framework

In order to realize the condition monitoring and early fault

warning of the equipment in a power plant, a framework based

on the LSTM-SDAE structure is presented in this study.

3.1 LSTM-SDAE structure

The LSTM-SADE framework with a sliding window size of

8 is illustrated in Figure 4. The details of the framework are

shown as follows.

The neurons in the hidden layer of AE were replaced by

LSTM units, and the time series data of the equipment during

normal operation were used as training data. LSTM-SDAE is an

SDAE that uses LSTM to extract time-series features from the

signal, combining the advantages of AE and LSTM. The LSTM-

SDAE training is divided into two parts: LSTM encoders and

LSTM decoders. The former encoding produces a hidden

representation of the input data, which serves as input to the

LSTM neuron for the next moment; the latter uses the hidden

representation and the value predicted in the previous step to

reconstruct the encoded time series. Subsequently, the

monitoring indicators are calculated using the Mahalanobis

distance (MD) of the reconstruction error obtained from the

FIGURE 5
The flow chart of condition monitoring and early fault warning.

TABLE 1 Variables description.

Variable names Notation Unit

Inlet primary air flow of coal mill Qair kg/s

Current of coal mill I A

Coal feed flow of coal mill Qc kg/s

Inlet primary air pressure of coal mill Pin kPa

Differential pressure of coal mill ΔP kPa

Inlet primary air temperature of coal mill Tin ℃

Outlet temperature of coal mill Tout ℃
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model output and the actual values of the model. Anomalies are

identified by comparing with adaptive thresholds based on the

Chebyshev inequality. Finally, the test data are used to verify the

feasibility of the proposed method.

3.2 Monitoring indicator

The reconstruction error (RE) which is calculated from the input

of the LSTM-SDAE network and its reconstruction value is defined

as a monitoring indicator. When an anomaly occurs, the monitoring

indicator calculated by the reconstruction errors will deviate from the

normal range. Most of the literature has usually used a similarity

metric based on the Euclidean distance to measure the degree of

deviation between the actual input and its reconstructed values (Jiao,

2018; Wang et al., 2018), which only considers the similarity of the

distance but ignores the similarity of distribution. Unlike the

Euclidean distance, MD not only excludes the correlation

interference between variables but also has scale-invariant, giving

univariate distance values for multivariate data to complete anomaly

detection in different domains (de la Hermosa González-Carrato,

2018). Building a univariate monitoring indicator is critical for

detecting anomalies easily and effectively (Lin and Chen, 2013;

Chen et al., 2020). Therefore, the MD of the reconstruction error

is chosen as the monitoring indicator in this paper.

The multivariate reconstruction errors of normal operating

dataENare expressed as the difference between the input

dataXNand the reconstructed valueZN. The formula is as

shown in Eq. 18:

EN � XN − ZN (18)

Themonitoring indicator tk of the k-th sample data in XN can

be obtained in Eq. 19:

tk �
��������������������(E(k)

N − u)Ts−1(E(k)
N − u)√

(19)

Where, E(k)
N represents the reconstruction error of the kth sample,

the mean of reconstruction errors and the inverse covariance

matrix of samples are denoted as u and s−1 respectively. All the
values of the monitoring indicators generate a set {tk}, where k =

1, 2. . ., m.

3.3 Early fault warning based on adaptive
threshold

The whole condition monitoring and early fault warning

procedure is shown in Figure 5. First, data processing is vital to

model training, including normalization and sliding windows.

The LSTM-SDAE model is then constructed to represent the

intrinsic features among the variables by training the LSTM-

SDAE network layer by layer. Next, MD is obtained from a

univariate monitoring indicator that represents the condition of

the equipment. After that, due to the frequently changing

working conditions and external disturbances in practice, a

dynamic threshold based on the Chebyshev inequality is

introduced to detect occurrences of early anomalies. Finally,

compared with other methods, the data were tested to verify

the feasibility and effectiveness of the proposed framework.

4 Case study

In fact, most equipment often goes through a series of

degradation states before failure occurs, and if the various

degradation states can be identified, further degradation and

failure can be effectively prevented. Before a failure finally occurs,

abnormal behavior in operation can be seen as an early signal of

an impending failure. The effectiveness of the proposed method

is demonstrated by a case study involving actual operational data

collected from a 330 MW coal-fired unit in China. According to

statistical data, the coal mill has the highest unplanned outage

rate among auxiliary equipment of thermal power units. The coal

mill is an essential component of coal-fired power plants, which

affecting economic performance and reliability. If the load

increases under flexible and variable operating conditions, the

output of blending coal cannot adapt to the change of load, which

will easily cause a blockage of the coal mill. Due to the blockage of

coal mill, the amount of pulverized coal entering the boiler will be

lower than the amount of coal supply, thus reducing the main

steam pressure and unit load, which will reduce the outlet

temperature of the coal mill, increase the differential pressure

of the coal mill, and increase the mill current.

In this study, a medium-speed coal mill is used to illustrate

the effectiveness of the proposed method in condition

monitoring and early fault warning of auxiliary equipment in

thermal power units. The dataset which including load-up, load-

down, and steady-state was collected from DCS under normal

operation. The sampling time is 6s, and a total of 10,600 sample

TABLE 2 LSTM-SDAE model and its layers.

Layer (type) Output shape Param #

input_1(Input Layer) [(None, 8, 7)] 0

lstm_1 (LSTM) (None, 8, 64) 18,432

lstm_2 (LSTM) (None, 8, 32) 12,416

lstm_3 (LSTM) (None, 8, 16) 3136

lstm_4 (LSTM) (None, 3) 240

repeat_vector_1 (None, 8, 3) 0

lstm_5 (LSTM) (None, 8, 16) 1280

lstm_6 (LSTM) (None, 8, 32) 6272

lstm_7 (LSTM) (None, 8, 64) 24,832

time_distributed_1 (TimeDist (None, 8, 7) 455
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points from 28-11-2015 to 02-12-2015 were obtained

subsequently. The LSTM-SDAE model was trained with

8800 normal operating samples, and its performance was

tested with 1800 samples. According to the operation log time

recorded by the operator, the coal mill was found to be an

abnormal blockage at the 1206th and 1382nd sample points.

Seven parameters including the coal mill current, the inlet

primary air flow, the coal feed flow, the inlet primary air

temperature, the inlet primary air pressure, the outlet

temperature of the coal mill, and the differential pressure

between the inlet and outlet of the coal mill were selected as

input variables in this research. The variables from DCS are

shown in Table 1.

4.1 Data processing

Data preprocessing is vital in the performance of the model.

Min-Max normalization is utilized on the training data to

transform all variables to between 0 and 1 to avoid large

prediction errors. Besides, the test data uses the same

maximum and minimum values as the training data to ensure

that both datasets are within the same scale. In addition, the input

data and output data need to be modified to a tensor with a three-

dimensional shape [nsample; ntimesteps; nfeatures], where nsample is

the number of samples in the batch (including training,

validation, and testing dataset sizes) and ntimesteps is the

number of time steps, nfeatures are the features of the samples.

By adopting moving window processing, the nonlinear

correlation between multivariate variables and the time-

dependent relationship between each variable can be extracted

simultaneously. The sliding window size chosen for this

study is 8.

4.2 Condition monitoring

The model is implemented in Python (Version 3.8,

Anaconda) with Keras and Tensorflow at the backend and

employs Adam as the optimizer. In this simulation, the

hardware parameters are as follows: the CPU is Intel(R)

i7 Core, the main frequency is 4.0 GHz, and the memory is

12 GB. Since the input data collected from DCS has multiple

dimensions, four hidden layers were used to build this network.

The layers, output shapes, and parameter numbers of this model

are listed in Table 2.

The selection of appropriate hyper-parameters plays a crucial

role in improving of model performance. All variables are

collected as input data to reduce the loss of operational state

information. Validation errors are used to select the model

architecture with the best performance by iterative

experiments. The optimal monitoring model based on LSTM-

SDAE was established with the parameters which are listed in

Table 3.

The mean squared error (MSE) of the optimal monitoring

model is within the industry’s allowable range, which can be used

for condition monitoring and anomaly detection.

Taking the differential pressure and the outlet temperature of

the coal mill as examples, the reconstructed results and the

relative errors of the observed and reconstructed values are

shown in Figure 6. The reconstructed values of these two

variables are morphologically similar to the observed values,

which indicates that the LSTM-SDAE model can deeply explore

the nonlinear relationships in the operating data and thus

effectively characterize the operating conditions of the coal

mill. Therefore, the proposed method is helpful for further

accurate and timely condition monitoring and early warning.

As shown in Figure 7, it is observed that the adaptive

threshold varies with the monitoring indicator under normal

conditions, neither exceeding the threshold nor showing false

positives. It is observable that the proposed method has good

generalizability and is in good agreement with the physical

principles of the coal mill. As can be seen in

Figures 6, 7, this is reliable for ensuring good condition

monitoring.

4.3 Early fault warning

Using the test data, the results of early fault warning are

presented in Figure 8. The monitoring curve with an adaptive

threshold of the coal mill blockage is shown in Figure 8A. To

TABLE 3 Optimal parameters of LSTM-SDAE model.

Structure parameters Hidden layer1 Hidden layer2 Hidden layer3 Hidden layer4

64 32 16 3

Learning parameters Batch size Noise factor Epochs lr

32 0.1 50 0.01
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show the early warning effect more intuitively, the monitoring

indicators are extracted from the 1000th sample to the 1400th

sample, and the results are shown in Figure 8B. If the coal mill

is severely blocked, the trend of the monitoring indicators will

shift and then cross the threshold value. At the 1023rd and

1316th sampling points, the monitoring indicator crossed the

threshold value, which indicates that an initial anomaly may

have occurred. According to the operating mechanism of the

coal mill, the main sign of coal mill blockage is the increasing

of the coal mill current, which is due to the decrease of the coal

feed flow, and the outlet temperature starts to decrease and the

differential pressure starts to increase meanwhile. Therefore,

the ratio of coal mill current to coal feed flow is increasing

theoretically. Using actual DCS operating data, the ratio of

mill current to coal feed flow is shown in Figure 9. The ratio

tends to increase, indicating an anomaly, and the warning

times for the 1206th and 1382nd samples were found to

coincide with the times of the operator’s recorded operating

log. In fact, the actual values of outlet temperature and

differential pressure did not reach their DCS alarm limits at

this instant, but a blockage warning was issued at this time.

The warning times before the critical blockage occurred were

nearly 18.3 min (183*6 s) and 6.6 min (66*6 s), respectively.

Monitoring indicators remained above the threshold for a

short time and returned to normal after adjustment by the field

operator. It is clear that an alarm can be issued before the

blockage starts. Consequently, the proposed scheme can give

an early warning of the coal mill blockage in time to avoid

further failure development. At the same time, it serves as a

reference basis for the site operator to take appropriate

measures for timely maintenance.

4.4 Discussion

4.4.1 Comparison of model accuracy
The models of LSTM-SAE (the same structure except for

noise factor) and the SDAE (the same structure except for hidden

cells) were used for comparison to illustrate the effect of time-

dependent manipulations on model accuracy. The comparison

results of the model performance are shown in Table 4, which

shows the proposed model can extract the internal characteristics

adequately among the high-dimensional time series data of the

coal mill. Themaximum relative error of each variable is less than

1.2%, which can accurately reflect the dynamic behavior of the

coal mill system.

In this study, mean squared error (MSE), root mean

square error (RMSE), and mean absolute error (MAE)

were used as performance evaluation criteria as shown in

Eqs. 20–22.

FIGURE 6
Reconstructed value and relative error: (A) reconstructed
value and relative error of differential pressure (B) reconstructed
value and relative error of outlet temperature.
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FIGURE 7
The monitoring indicator under normal condition.

FIGURE 8
The results of early fault warning based on LSTM-SDAE (A) early fault warning result (B) enlarged view from the 1000th to the 1400th sample
points.
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RMSE �
�������������
1
m
∑m
k�1

(Xk − Zk)2
√√

(20)

MAE � 1
m
∑m
k�1

|Xk − Zk| (21)

MSE � 1
m
∑m
k�1

(Xk − Zk)2 (22)

RMSE determines the variance between the original signal

Xk and the reconstructed signal Zk.m is the length of the data.

The smaller the RMSE, MAE, and MSE, higher the accuracy

of the constructed model is. The comparison results are

presented in Table 5. It can be seen that the LSTM-SDAE

model outperforms other methods, proving the effectiveness

of the proposed method.

From Table 5, it can be seen that the LSTM-SDAE model

performs better than the LSTM-SAE model and SDAE model,

which demonstrating the necessity of combining LSTM and

denoising operation to process the input data as described in the

previous chapter. The reason is that the LSTM-SDAE model can

make full use of the ability that LSTM is good at handling the

temporal dependence in multidimensional time-series data, which

makes it perform better than the LSTM-SAE and SDAE models.

4.4.2 Comparison of early warning
The comparison results of the early warning using adaptive and

fixed thresholds are shown in Figure 10, which show that the

warning times of the fixed threshold method are nearly 17.6 min

(176*6s) and 4.8 min (48*6s), respectively. Compared to the fixed

threshold, the method with an adaptive threshold can obtain 42 s

and 108 s of advance, respectively. Additionally, when the operating

conditions of the coal mill change frequently, a fixed threshold may

easily lead to misjudgment during abnormality detection. Owing to

drastic changes and disturbances in actual operation, an adaptive

threshold determined by the Chebyshev inequality is more suitable

FIGURE 9
The ratio of coal mill current to coal feed flow.

TABLE 4 Relative errors comparison of the three models.

Relative error (%) ΔP Tout I Qc Qair Pin Tin

SDAE 1.527 0.788 1.346 1.821 0.662 1.457 0.251

LSTM-SAE 1.063 0.621 0.918 1.342 0.608 0.789 0.172

LSTM-SDAE 0.539 0.466 0.849 1.117 0.603 0.397 0.102

TABLE 5 Accuracy comparison of the three models.

Model RMSE MAE MSE

SDAE 0.0852 0.0336 0.0086

LSTM-SAE 0.0576 0.0305 0.0069

LSTM-SDAE 0.0468 0.0287 0.0053
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for industrial sites. In summary, the results verify that the proposed

method can handle monitoring data with time-series characteristics

effectively, and can issue an early warning in advance, which is

conducive to predictive maintenance.

Compared to the traditional method with a fixed threshold,

the adaptive threshold method is more suitable for monitoring

conditions in multiple working conditions of thermal power

units. The comparison results show that the adaptive threshold

method outperformed the fixed threshold method in terms of

waning time, which strives for the time to take proper actions for

operators and avoid further deterioration of the anomaly.

5 Conclusion

Utilizing historical data without label information, an

unsupervised learning model based on LSTM-SDAE is proposed

for condition monitoring and early fault warning. The feasibility of

the proposed method is verified by an actual case study of coal mill

blockage. The main contributions are summarized as follows: 1)

The LSTM-SDAE model for intelligent condition monitoring is

proposed, which takes advantage of the excellent multidimensional

temporal data processing capability of LSTM and the ability of AE

to extract essential features from raw data. The results show that the

proposed LSTM-SDAE model has higher model reconstruction

accuracy with smaller RMSE, MAE, and MSE than other methods.

2) Due to the high proportion of renewable energy consumption,

the operating conditions of thermal power plants change

frequently. An adaptive threshold based on Chebyshev’s

inequality is proposed for anomaly detection and timely

warning. In the typical case of coal mill blockage, the

monitoring indicators have a clear rising trend before the actual

alarm occurs, and the adaptive threshold method can issue early

warnings of 18.3 min and 6.6 min, respectively. Meanwhile,

FIGURE 10
The early warning results adopting adaptive threshold and fixed threshold (A) early warning result (B) enlarged view from the 1000th to the
1400th sample points.
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compared with a fixed threshold, it can further achieve the warning

times of 42 s and 108 s in advance, respectively. The proposed

method has potential applications in other equipment condition

monitoring, and the results have certain reference significance in

the industrial field. In the future, the research will be used to

evaluate the operational status of other equipment to infer the

health of the entire unit.
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