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The fine-mesh subgroup method (FSM) is proposed to treat the significant

resonance self-shielding effect both effectively and accurately. Similar to the

ultra-fine group method, the fine-mesh subgroup method adopts a fine group

structure on the resonance energy range to avoid the extra resonance

interference effect correction. To improve the efficiency, on the one hand,

the one-group micro-level optimization is adopted, so the subgroup fixed-

source equationswill be only calculated on a certain number of pre-determined

subgroup levels, and an interpolation process is employed to obtain the actual

subgroup flux. On the other hand, the slowing-down calculation is carried out

for group condensation for multigroup transport calculation. The main theory

and feasible improvements of the fine-mesh subgroup method are analyzed in

this paper. Several pin cell and lattice problems are applied to test the

performance of the fine-mesh subgroup method, and the particle swarm

optimization method is adopted to find the better group structure. The

numerical results indicate a good performance both for accuracy and

efficiency.
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1 Introduction

With the development of nuclear energy, the demand for accurate calculation of

reactor physics has become increasingly higher. Since the resonance self-shielding

calculation provides the effective material cross-sections for all processes of the core

simulation, handling the resonance effect accurately and effectively has been the research

hotspot in recent years. There are three main resonance treatment methods applied in

reactor physics, namely, the equivalence theory (Askew et al., 1966; Hebert et al., 1991),

ultra-fine group method (Ishiguro et al., 1971; Sugimura et al., 2007; Kim et al., 2011;

Zhang et al., 2020), and subgroup method (Nikolaev et al., 1971; Cullen, 1977; Hebert,

2009; Joo et al., 2009; Downar et al., 2016; Li et al., 2019). The equivalence method uses the

neutron’s first escape probability from absorption to develop the equivalence relation
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between the homogeneous and heterogeneous systems, and the

effective resonance cross-section is obtained by interpolating the

resonance integrals. The equivalence method is simple and

efficient but is difficult to apply to conditions such as

irregular geometry and complicated material compositions.

The ultra-fine group method is the most direct approach for

the resonance effect as it has hundreds of thousands of groups to

capture the severe fluctuation of cross-sections in the resonance

energy range. Since the resonance peaks would be reproduced

accurately enough by extremely detailed energy structure, this

method has the same level of accuracy as the Monte Carlo

method. However, the efficiency of the ultra-fine group

method is unacceptable as too many groups sharply increase

the calculation burden, so it is not suitable for use in large-scale

problems. The subgroup method is another widely used method

for resonance treatment. Different from the traditional group

structure divided by energy discretion, the subgroup structure is

determined by the level of the cross-section. The variations of

resonance peaks are described by subgroup parameters,

including subgroup levels and subgroup weights. The former

represents the magnitude of the cross-section level, and the latter

indicates the probability that a neutron locates in the

corresponding subgroup. In this method, the traditional

resonance group will be further divided into several

subgroups, and the calculation accuracy would be comparable

with that of ultra-fine groups. In addition, the subgroup method

has the ability to be coupled with any kind of transport solver

such as the method of characteristics (MOC), so that it can

handle complex geometry configurations. However, the

subgroup theory is derived on the basis that only one

resonant nuclide exists in the system. For conditions with the

resonance interference effect between different resonant

nuclides, the accuracy of the subgroup method would decrease

and extra correction is needed, such as the Bondarenko method

(Bondarenko, 1964) or the resonance interference factor (RIF)

method (Williams, 1983; Peng et al., 2013; Sohail et al., 2015).

However, the Bondarenko method has been proven to be

inaccurate, and the RIF method will cause a great increase in

calculation burden. In recent years, there are other new

resonance treatment methods proposed, such as the

embedded self-shielding method (Williams et al., 2012; Liu

et al., 2015; Zhang et al., 2015; Kim et al., 2019), pseudo

resonance isotope method (Liu et al., 2018; Zhang et al.,

2018), or pin-based slowing-down method (Choi et al., 2017),

which all have relatively high accuracy. However, the first

method treated the fuel rod as a whole system, so the

resonance effect inside the fuel pin is unknown, while the

latter two still need the ultra-fine group slowing-down

equations, which is time-consuming.

From the theory of the ultra-fine group and the subgroup

method, a compromise proposal could be found by coupling the

two methods’ advantages, so the fine-mesh subgroup method

(FSM) was proposed by the author (Li et al., 2020). In the

coupling assumption, as the energy group mesh is further

divided by the subgroup, the fine energy mesh could be much

coarser than the ultra-fine group method. Different from the

traditional subgroup method, the fine-mesh energy structure

could be considered so that the resonance interference effect

is avoided. To obtain the proper fine energy mesh, the SHEM-361

group structure (Hfaiedh et al., 2005; Hébert et al., 2008) is

adopted and modified. The resonance energy range has been

extended from 1.855 to 9,118 eV, and the energy group number

in this range is 289 and the total group number is 408. Compared

with the original SHEM-361 structure, the new 408 group

structure has a finer mesh between 1.855 and 100 eV, while

the energy structure of the other energy range remains the same.

To reduce the number of subgroup fixed-source equations, the

one-group micro-level optimization, which is modified based on

the macro-level grid optimization (Park et al., 2019), is adopted

and the 289 resonance groups are averaged to be one group and

each resonant nuclide only needs to solve fixed-source problems

for eight subgroup levels. Then, an interpolation of the

background cross-section would be carried out to reproduce

the original subgroup fluxes in actual subgroups in each

resonance group. Furthermore, as the fine-mesh structure

would inevitably lead to the increase in calculation burden for

the transport module, the group condensation procedure is

carried out in this work and the 47-group structure library of

the Helios-1.11 program (Stamm’ler, 2008), which has

16 resonance groups, is adopted. The 16 resonance groups’

cross-sections are calculated by collapsing the fine group,

while those of fast and thermal groups are provided by the

NJOY code (Macfarlane et al., 2016). The neutron slowing-

down equation is used in this work for group condensation,

which is handled group by group. The source item for the

slowing-down equation is obtained by only down-scattering

since the upper scattering effect and fission source could be

neglected for the resonance range.

In this work, more detailed analyses or the FSM are carried

out, especially for the procedure of making the fine-mesh group

structure and sensitivity analysis of selecting the interpolation

cross-section of one-group micro-level approximation for the

subgroup fixed source problem. In addition, there are also some

promisingly improvable aspects of the FSM. The 47-group

structure will still cause too much burden for the whole

calculation, and a coarser structure with fewer total group

numbers is necessary. The particle swarm optimization

method (PSO) (Kennedy et al., 1995) is a feasible approach

for this issue.

The remaining sections of this paper are arranged as follows.

Section 2 gives an introduction to the fine-mesh subgroup

method which is combined with the traditional subgroup

method and ultra-fine method first; then, the process of

choosing the group structure and finding the micro-level of

the subgroup fixed-source problem is discussed. Finally, the

feasible improvement in the group structure by PSO is

Frontiers in Energy Research frontiersin.org02

Li et al. 10.3389/fenrg.2022.1036063

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.1036063


introduced. Section 3 demonstrates the numerical verification of

the FSM compared with traditional methods and presents a

further discussion of possible improvements for the FSM.

Section 5 provides the summary of this paper.

2 Methodological model

2.1 Basic theory of the subgroup method

Instead of defining the group structure by energy range, the

subgroup method further divides the resonance group into

several subgroups by the magnitude of the cross section. In

this way, the variation of resonance peaks could be described

by subgroup parameters, namely, subgroup levels and subgroup

weights. According to the defining process, the subgroup level

represents the magnitude of the cross section, and the subgroup

weight indicates the width of the energy range of each

subgroup. The subgroup method uses the subgroup

parameters and subgroup flux to obtain the effective

resonance cross section, which is shown in Eq. 1.

σx,g �
∫ΔEi

dEσx,i E( )φi E( )
∫ΔEi

dEφi E( ) �
∑I
i

ΔEi
Eg
σx,g,iϕi

∑I
i

ΔEi
Eg
ϕi

�
∑I
i
ωiσx,g,iϕi

∑I
i
ωiϕi

. (1)

In Eq. 1, E represents the energy, σ represents the micro

cross-section, x represents the reaction type, g is the group index,

i is the subgroup index, ϕ represents the scalar flux for a

subgroup, ωi is subgroup weight for subgroup i, and σx,g,i
represents the subgroup level.

In the actual calculation process, the subgroup

parameters could be calculated according to the

relationships among the effective resonance cross-section,

the subgroup parameters, and the subgroup fluxes shown in

Eq. 1, and they could be stored in the multigroup library or

calculated on-the-fly. The subgroup parameters used in this

work are physical probability tables, and the methods for

calculating them are also a research hotspot, which could be

referenced by many papers (Joo et al., 2009; Zu et al., 2019;

He et al., 2020; Li et al., 2021), so in this work, this process

would not be illustrated in detail. Once the subgroup

parameters are obtained, the subgroup fixed-source

equation could be established, which is in the same

formation as the Boltzmann transport equation and could

be solved by a transport module such as MOC. As the

overwhelming majority of the fission neutrons have

energy above the upper limit of the resonance energy

range, the fission source could be neglected for the

subgroup fixed-source equations. Moreover, the upper

scattering phenomenon is also negligible. Therefore,

through the intermediate resonance approximation, the

source item for the subgroup could be described just as a

constant. In this case, the subgroup fixed-source equation is

shown in Eq. 2.

Ω · ∇ϕg,i r,Ω( ) + Σt,g,i r( )ϕg,i r,Ω( )
� 1
4π

1 − λg( )Σs,g,iϕg,i r( ) + λΣp,g[ ]. (2)

In Eq. 2, Σt,g,i and Σs,g,i, respectively, indicate the macro

subgroup total and scattering cross-section for group g and

subgroup i. λ is the intermediate resonance approximation

factor, and Σp is the macro potential cross-section. For the

resonant nuclides, items for Eq. 2 are calculated according to

the subgroup parameters. For the non-resonant nuclides, since

their absorption and resonance scattering effects are small, Σt,g,i

and Σs,g,i could be both replaced by λΣp. Through the

aforementioned approximations, the subgroup transport

equation could be easily solved by any type of transport

program to obtain the subgroup flux, so the final effective

resonance cross section could be obtained by Eq. 1.

2.2 Fine-mesh subgroup method

The basic idea of the FSM is to establish a finer mesh of the

resonance range so that the implementation of the subgroup

method no longer needs to consider the subsequent resonance

interference correction calculation. To relieve the increasing

calculation burden of the subgroup fixed-source equation

brought by the fine mesh, the one-group micro-level

approximation is adopted. Subsequently, the slowing-down

equation for the fine-mesh resonance energy structure is

solved to condense the effective resonance cross-section to a

broader group structure, which is finally applied to the

multigroup transport equation calculation. This section will

focus on two main topics, namely, the determination process

of the fine-mesh structure and the sensitivity of the subgroup

calculation with one-group micro-level optimization.

2.2.1 Analysis of the fine-group structure
Since the conventional subgroup method only considers one

resonant nuclide in the deduction process, the overlapping

phenomenon for resonance peaks of different resonant

nuclides could not be described accurately. Conventionally, by

adopting a finer multigroup structure, the resonance peak inside

a coarse resonance group could be impaired and make the results

more precise. Therefore, if the subgroup method is carried out

based on a fine enough energy structure, the calculation accuracy

would be assumed to be the same level as that of the ultra-fine

group method. However, selecting the fine group structure is the

key issue to handle.

Compared with the commonly used multigroup structure

such as WLUP-69 (Aldama, 2003) or HELIOS-47 structure

(Stamm’ler, 2008), there are also some finer meshes proposed

internationally, such as WLUP-172 (Aldama, 2003) and SHEM-
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281 (Hfaiedh, 2005). In Hébert et al. (2008), the energy range

between 22.5 and 11.4 keV is optimized based on the SHEM-281

group structure, and the finer SHEM-361 group structure is

proposed. The authors of this paper pointed out that by adopting

SHEM-361, the subgroup method would not need the extra

correction for the resonance interference effect, since the

resonance cross section inside each energy group is flat

enough for the subgroup method to handle. Then, the

DRAGON5 program further modified the SHEM-361

structure to the SHEM-295 structure to increase the

calculation efficiency but the accuracy is relatively sacrificed

(Canbakan et al., 2015). Meanwhile, DRAGON5 put forward

a 2-level scheme based on the subgroup method. In this method,

the subgroup method is carried out based on the SHEM-295

structure, and then, the interface current method is used to get

the fine-mesh flux to condense the group structure from 295 to

26 groups. Finally, the MOC is used for the 26-group structure

for eigenvalue calculation.

The fine-mesh subgroup method (FSM) of this paper is

proposed based on the aforementioned research, and the

SHEM-361 group structure is optimized in this work for the

fine-mesh calculation. For the optimized structure, the resonance

range is adjusted and the resonance group number is increased.

Different from the DRAGONwhich calculates the fine-mesh flux

for the whole group structure, the FSM only calculates the flux for

the fine-mesh resonance group by solving the neutron slowing-

down equation, and the group condensation is also only carried

out for resonance groups. Cross-sections for fast and thermal

groups of the coarse mesh are provided by the pre-produced

multigroup library.

The resonance range of the conventional multigroup

structure such as WLUP-69 is 4–9,118 eV, which is accurate

for typical UO2 problems. However, since actinide nuclides such

as 242Pu also have significant resonance peaks near the thermal

range, the lower limit of the resonance range in this work is

extended to 1.8554 eV, which is the same as that of the HELIOS-

47 group structure. Moreover, since resonance peaks of 238U play

the most important role in the resonance interference effect, the

fine mesh should make modifications, especially toward the

distribution of 238U resonance peaks. Table 1 displays the

energy points where the resonance peaks of typical actinide

nuclides are. It could be found that 238U has resonance peaks

nearly all over the resonance range, while other nuclides mainly

focus on the energy range below 100 eV. Therefore, the overlap

effect for smaller energy ranges is relatively more severe. In

Hfaiedh et al. (2005) and Hébert (2009), the resonance peaks of

common reactor component materials, such as 152Sm, 109Ag,
177Hf, and 155Gd, are also provided.

It could be found from Table 1 that most of the resonant

peaks of different resonant nuclides are around a relatively low

energy range. Figure 1 shows the resonance peaks of 235U, 238U,

and 239Pu near 6.7 eV. It is evident that 238U has a highly

significant resonance peak in this range, so the effective cross-

section would change sharply with the background cross-section.

Under this condition, the space self-shielding and energy self-

shielding effects would be very severe. However, the calculation

process of subgroup parameters of the physical probability table

does not consider the influence of background cross-section to

each subgroup, so extra deviation may be raised. To address this

issue, the energy between 1.8554 and 100.6 eV of the SHEM-361

structure is optimized in this work.

On the one hand, to get a precise effective cross-section

around significant resonance peaks, a further discrete of the

energy group between 22.5 and 100.6 eV is carried out. The

resonance peaks in this range are divided into multiple resonance

groups, and the key nuclide taken into consideration is 238U. In

this way, the deviation trend of the resonance cross-section with

background cross-section is weakened to be similar to that of the

un-resolved resonance range, so that only 2–3 subgroups would

be accurate enough to describe the self-shielding effect of the new

resonance group. On the other hand, the SHEM-361 structure

deploys a very meticulous discrete below 22.5 eV, and the

resonance calculation is not conducted in this range. Since the

lower limit of the resonance range is extended to 1.8554 eV in

TABLE 1 Distributions of main resonance peaks of typical actinide nuclides.

Nuclide Location of the resonance peak/eV

235U 2.0、2.8、3.6、4.8、5.4、6.4、7.1、8.8、9.3、11.7、12.4、14.0、16.1、16.7、19.3、21.1、23.42

238U 6.67、20.9、36.7、66.0、80.7、102.6、116.9、165.3、189.7、237.4、291.0、347.8、937.3、958.8、991.8、1140

238Pu 18.6

239Pu 7.8、10.9、11.9、14.3、14.7、17.7、22.3、65.9

240Pu 20.5、38.3、41.6、66.6、72.8、90.8、92.5、105.1、121.7、151.9、162.7、170.1、185.8、239.3、287.1、405.0、596.8、665.0

241Pu 4.3、8.6、13.4、14.8、17.9

242Pu 2.7、53.46

241Am 5.4、5.9
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this work, the SHEM-361 structure between 1.8554 and 22.5 eV

could be merged. In addition, for energy ranges around 2.7 and

6.7 eV where the resonance peaks are widely distributed, the

original fine structure is reserved to ensure the calculation

accuracy. Finally, compared with the SHEM-361 structure, the

newly optimized structure between 1.8554 and 100.6 eV is shown

in Table 2.

In general, the process of energy structure optimization

mainly follows two principles. First, the distribution of

resonance peaks should be described in detail. Second, the

group boundary should be set to be feasible for group

condensation to commonly used coarse group structures such

as WLUP-69 or HELIOS-47. By introducing the subgroup

calculation to the energy range of 1.8554–22.5 eV, the group

number of this range is reduced from 124 to 81. For energy

between 22.5 and 100.6 eV, further discreteness makes the group

number increase from 46 to 136. The resonance range of this

work is 1.8554–9,118 eV. The SHEM-361 structure has

242 groups in total in this range, while the optimized

structure has 289 groups. Meanwhile, the fast group and

thermal group still adopt the original SHEM-361 group, so

the total group number of the new structure is 408.

To enhance the efficiency of the multigroup transport

calculation, the resonance fine-mesh cross-section needs to be

condensed. According to Kim et al. (2011) and Li et al. (2020), for

the neutron slowing-down equation, the source item of the

resonance group could be simplified as the down-scattering

source. As the lethargy width of the FSM is not as narrow as

the ultra-fine group, the down-scattering source will be

calculated by the scattering matrix, and the slowing-down

equation of the FSM is shown in Eq. 3. Similar to the ultra-

fine slowing-down equation, the flux of Eq. 3 could be solved

group by group and the flux of the fast groups could be

considered as the asymptotic flux. Finally, the effective

multigroup resonance cross section is calculated by Eq. 4.

Ω · ∇φg +∑M
m

Σm,t,gφg � ∑M
m

∑g−1
g′
Σm,s,g′→gφg′, (3)

σx �
∑G
g
σx,gφg

∑G
g
φg

. (4)

2.2.2 Analysis of one-group micro-level
optimization

The subgroupmethod used in this work is the physical subgroup

approach, and the subgroup parameters are generated by preserving

resonance integrals. The subgroup parameters of this work are in the

form of the probability table, which is obtained by fitting the

resonance integrals for different background cross-sections. The

commonly used fitting methods include the Pade approximation

method and the least square method. However, during the calculation

process of subgroup parameters, there is a notable shortcoming in the

negative subgroup parameters that may occur for certain selections of

resonance integrals. The traditional multigroup library only has

10 background cross-sections for resonance integrals, which is not

enough to select the optimal combination that meets the accuracy

requirement. To avoid this situation, the multigroup library used for

the FSM is adapted to have 40 sets of background cross-sections from

10 bar to 1010 bar, which is shown in Table 3. In addition, the

resonance tables used in this work are homogeneous ones that are

generated by the NJOY-2016 code.

The subgroup group number used in this work is limited

from 2 to 5, and each resonance group is calculated starting from

two subgroups. If the relative error shown in Eq. 5 is too large for

all combinations of background cross-sections, the number of

subgroups will be added by one and the calculation procedure

will be repeated for the new subgroup number. If the subgroup

number is increased to the maximum, then the criterion will be

added by 0.1%.

TABLE 2 Optimized group structure for the energy range of 1.8554–100 eV.

Energy range/eV Nuclides with the significant resonance peak Group number

Original Optimized

1.8554–2.38 235U、243Cm、 6 2

2.38–3.93 235U、242Pu、153Eu、115In、177Hf、155Gd 14 14

3.93–6.43 235U、241Am、133Cs、147Pm、145Nd、109Ag、177Hf、167Er 22 9

6.43–8.31 235U、238U、239Pu、152Sm、176Hf、177Hf、178Hf 26 14

8.31–22.5 235U、238U、239Pu、240Pu、241Pu、131Xe、177Hf、157Gd 56 30

22.5–47.9 238U、240Pu、95Mo 20 60

47.9–78.9 238U、239Pu、240Pu、242Pu 20 60

78.9–100.6 238U、240Pu 6 16
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RE �

∑I
i

ωiσx,i
σb

σa,i+λ σs,i−σp,i( )+σb[ ]
∑I
i

ωi
σb

σa,i+λ σs,i−σp,i( )+σb[ ]
− σx σb( )

∣∣∣∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣∣∣∣

σx σb( ) × 100%. (5)

For conventional subgroup methods, the subgroup fixed-

source problems would be solved for all subgroups in all

resonance groups. However, it would result in a large amount

of computation once the number of the resonance group

increases. To avoid this phenomenon, the one-group micro-

level optimization is adopted in this work. All resonance groups

are averaged as one effective group by Eq. 6.

σx �
∑G
g
σxgRIg,∞Δug

∑G
g
RIg,∞Δug

. (6)

In Eq. 6, RIg,∞ is the infinite absorption resonance integral

and Δu is the lethargy width. The subgroup level of the effective

one group is calculated by sensitivity analysis, and the subgroup

fixed-source problem is carried out only for these subgroup

levels. The actual subgroup flux of each resonance group

could be obtained by interpolating ln(σt′,i), where

σt′,i � σt,i − (1 − λ)σs,i. However, according to the author’s

previous work (Li et al., 2020), to avoid numerical instability,

the actual interpolating process of the subgroup flux is carried out

by the subgroup level and escape cross-section defined by Eq. 7,

where R indicates the resonant nuclide, while L indicates all the

nuclides in the calculation system. For a typical single pin cell

divided by five equal rings, the variation trend of the escape cross

section with subgroup levels is shown in Figure 2.

σe,i,R � 1
NR

Σt′,i,Rϕi

1 − ϕi

−∑L
l

λlΣp,l
⎛⎝ ⎞⎠. (7)

TABLE 3 Background cross sections of resonance integral.

Background cross-section range/b Number Background cross-section/b

10~102 9 10、20、30、40、50、60、70、80、90

102~103 11 100、120、150、160、200、250、300、500、750、800、900

103~104 9 1,000、2,000、3,000、4,000、5,000、6,000、7,000、8,000、9,000

104~105 7 10,000、20,000、30,000、40,000、50,000、75,000、90,000

105~1010 4 105、106、107、1010

Total 40 \

FIGURE 1
Variation curve of the absorption cross-section for 235U, 238U,
and 239Pu around 6.7 eV.

FIGURE 2
Variation trend of the escape cross-section by the subgroup
level in different regions (Li et al., 2020)
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According to Figure 2, it could be found that the subgroup

level influences the escape cross-section at the surface area most.

Therefore, to analyze the interpolation accuracy for the subgroup

flux and find the best choice of interpolating subgroup levels, the

following procedure is carried out.

1) Between the subgroup level range of 1~105 b where the value

of the escape cross-section dramatically changes,

500 subgroup levels are selected by an equal proportion.

2) A series of single-cell problems are designed according to

Table 4. The base case is a fuel pin surrounded by light water,

which is shown in Figure 3. For simplification, the clad and

gas gap are neglected. The number density and geometry

parameters are referenced from the JAEA benchmark

(Yamamoto et al., 2002). For the base case, the fuel pin

radius is 0.4095 cm, the half pitch of the cell is 0.63 cm,

and the fuel is composed of 238U and 16O, of which the

number density is 0.0204×1024 cm−3 and 0.046×1024 cm−3,

respectively. The moderator is composed of light water

whose number density is 0.03315×1024 cm−3. The system

temperature is 300 K with the reflective boundary condition.

3) All the subgroup levels defined in step (1) are used in the

geometry defined in step (2), and the fuel pin is divided into 5,

10, and 15 rings, respectively. Then, the MOC transport

module (Song et al., 2019) is used to solve the subgroup

fixed source equation shown in Eq. 2 of these problems, so the

subgroup fluxes for different subgroup levels in different

regions are obtained.

4) Several subgroup levels are chosen between 1~105 b from step

(1), and then step (2) is repeated only for chosen subgroup

levels to calculate the subgroup flux. For other unchosen

subgroup levels, the subgroup fluxes are obtained by

interpolating among the chosen ones. In this work, the

number of chosen subgroup levels is 4–13, and the value

range of the subgroup levels for each condition is shown in

Table 5.

5) The interpolated subgroup fluxes of step (4) were compared with

those directly calculated by step (5), and the interpolating bias was

analyzed. The root-mean-square (RMS) deviation of all regions

and all subgroup levels is shown in Figure 4. Apparently, the

interpolating bias decreases sharply with the increase in the

interpolating number, and the RMS tends to remain stable

after eight interpolating subgroup levels. In this way, the

subgroup level used in the one-group subgroup-level fixed-

source equation is chosen as 10, 100, 200, 300, 500, 1,000,

2,000, and 10,000 b, respectively.

2.3 Feasible improvement of the FSM

The FSM still has some aspects for possible improvement,

and one of the most dominant parts is the group number of the

multigroup transport problems. As this process accounts for the most

calculation time, it is useful to reduce the final group number. Since

the FSM has 408 group meshes, any combination of energy points

could establish a new multigroup structure, and it is necessary to find

the best selection. In this paper, the particle swarm optimization

method (PSO) (Kennedy et al., 1995) is adopted for group structure

optimization.

The main theory of PSO is shown later (Kennedy et al., 1995;

Li et al., 2021). PSO defines a series of particles with different

positions and velocities and uses the fitness function to describe

TABLE 4 Design of the single-cell cases.

Case no. Description

1 Base case

2–8 Number density of H2O is gradually reduced to 0.01368×1024 cm−3

8–15 Number density of238U is gradually reduced to 0.01824×1024 cm−3

15–20 Radius of the fuel pin is gradually increased to 0.50 cm

FIGURE 3
Structural configuration of the single-cell case.
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the error between the aim value and the current value. There are

two parameters to describe the condition of a particle, namely,

the particle position X and the flying velocity V. The position of

the particle indicates the relevant parameters of the calculation

problems. In this work, the position coordinate of the particle could

represent the group energy boundary of the coarse group structure.

The particle would update the position generationally to get the

target. For the ith particle of the tth generation, the particle position is

Xi(t) � [x1/i(t), x2/i(t), . . .xD/i(t)], and the flying velocity of

the particle could be written as

Vi(t) � [v1/i(t), v2/i(t), . . . vD/i(t)]. The distance from the

particle to the destination is expressed by the fitness function

fi(t), so the computing purpose is to find the minimum value

of f. All particles would fly over the domain of definition and find

the best position independently. When the ith particle has searched

for t generations, it would have recorded t positions and the one

with the minimum f would be defined as the personal best value P,

which is expressed as Pi(t) � [p1/i(t), p2/i(t), . . .pD/i(t)]. The
particles would share with each other their personal best values and

positions, and the global best value G indicates the best position

among all personal best values, which is obtained by

G(t) � min[P1(t), P2(t), . . .PD(t)]. During the generations,

each particle would adjust its individual position and velocity

according to its own Pi(t) and the global best G(t), which could

be shown in Eq. 8–9.

vji t + 1( ) � wvji t( ) + c1r1 Pj
best,i t( ) − xj

i t( )[ ]
+ c2r2 Gj

best t( ) − xj
i t( )[ ], (8)

xj
i t + 1( ) � xj

i t( ) + vji t + 1( ). (9)

In Eq. 8–9, i is the particle index; j represents the dimension of

the particle; t is the generation index; w is the inertia weight; c is the

acceleration constant, which gives random values between 0 and 2;

and r is the random value between 0 and 1. In addition, the velocity

and position should be limited to the pre-determined value range.

Since the particle position is composed of a multidimensional

variable, each dimension represents an energy mesh in this work. In

this way, different particles indicate the different energy structures.

As the particle moves in a certain velocity, the position would be

changed and the energy structure is changed accordingly. After one

step ofmovement, the particles would communicate with each other

about each individual group structure and the error of eigenvalue

calculations. Afterward, all particles would move to the best position

particle with each certain velocity and the aforementioned process

would be repeated until the error reaches the requirement. In

addition, there are also some existing research studies relevant to

energy structure optimization based on PSO (Akbari et al., 2012; Yi

et al., 2013; Edgar et al., 2015), which could provide a useful

reference for this work. Overall, the process of searching for the

optimized group structure is shown as follows:

1) The particle position xj/i � Xmin + r(Xmax −Xmin) and

velocity vj/i � Vmin + r(V max − Vmin) are initialized, where r

is the random value from 0 to 1. The value of xj/i is the group

index of the 408 mesh, so the domain of definition of xj/i is [1,

408]. The velocity should also have top and bottom limitations

to avoid the non-sensical value, so in this work, we chose the

velocity between 1 and 5. Also, the number of particles is set to

1,000, and the maximum particle generation is limited to under

300. The dimension J of xi, which indicates the coarse group

number, is chosen from 10 to 30.

2) Since the particle coordinate value represents a series of group

boundaries, so the group condensation is carried out for each

particle. For total absorption and fission cross-section, the

condensation formula follows Eq. 4. For the scattering matrix,

the condensation rule is shown as in Eq. 10.

σ l,h′→h�

∑h2
g�h1

∑h2′
g′�h1′

σ l,g′→gφ
′
g

∑h2′
g′�h1′

φ′
g

. (10)

In Eq. 10, h’ and h are the group indexes of the coarse mesh

and g’ and g are those of the fine mesh. h1 and h2 are the upper

and lower limit of fine-mesh group index corresponding to the

group h of the coarse mesh, respectively. h1 and h2 are the upper

and lower limits of fine-mesh group index corresponding to the

group h of the coarse mesh, respectively. l is the Legendre order

number.

3) The effective multiplication factor keffwas calculated using the

coarse mesh cross-section obtained previously. The

calculation results were offered as the fitness function

TABLE 5 Subgroup-level values chosen for each interpolating condition.

Subgroup-level value range/b Subgroup-level number

0~102 1 1 1 1 1 2 3 3 3 4

102~103 1 2 2 3 4 4 4 4 4 4

103~104 1 1 2 2 2 2 2 3 4 4

104~105 1 1 1 1 1 1 1 1 1 1

Total 4 5 6 7 8 9 10 11 12 13
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fi(t) of each particle, and Pbest of all the previous generations

was obtained. Pbest would be shared among all the particles to

find theGbest. Then, the particle position x and velocity vwere

modified based on Pbest andGbest, which are shown in Eq. 8–9.

4) The Gbest of the current generation was checked for

convergence criterion. In this work, we define the

convergence criterion as under 50 pcm between the coarse

mesh and fine mesh. If the accuracy is not satisfied, then steps

(2) and (3) would be repeated until the optimized position is

obtained or the upper limit of the particle generation number

is reached.

3 Numerical verification

To analyze the accuracy of the resonance cross sections,

the FSM adopts the multigroup library format of the

HELIOS-1.11 code, of which the number of the fast,

resonance, and thermal group is 9, 16, and 22,

respectively. The fine mesh of the FSM has 289 resonance

groups from 1.8554 to 9,118 eV. A series of benchmarks

containing UO2, MOX, Gd-bearing problems, and control

rod problems are used to test the performance of the FSM,

and the reference value is provided by the continuous energy

Monte Carlo code MCNP5 (X-5 Monte Carlo Team, 2003).

The ultra-fine group method (UFG) and the traditional

subgroup method with the Bondarenko iteration method

(BIM) for the resonance interference effect are applied to

compare the calculation results of the FSM. The group

structure of the BIM is the HELIOS-47 structure, which is

the same as the second group mesh of the FSM. The UFG

method has 34,000 groups for the resonance range. After the

effective resonance cross-sections are obtained, the UFG

would condense the group structure to the HELIOS-47

structure to carry out the eigenvalue calculation. The

MCNP code has 100,000 particles for each problem, and

300 iterations excluding the first 50 are adopted to obtain the

reference results. The library type of all the methods in this

work is ENDF/VII.0. The MOC parameters of the FSM, BIM,

and UFG are set as three polar angles and 16 azimuthal

angles per octant, 0.01 cm ray spacing Tabuchi–Yamamoto

quadrature (Yamamoto et al., 2007) for single-cell problems,

and 0.03 for lattice problems. Moreover, the transport

correction method in this work is the inflow correction

method, which is referenced from Choi et al. (2015).

Given the limited space of this study, the transport

correct method will not be discussed in detail.

The contents of numerical verification are arranged as

follows: Section 3.1 gives a brief induction to the BIM and

UFG. Section 3.2 displays the calculation results of the single

cell and 17 × 17 lattice problems consisting of typical UO2. To

analyze the calculation capability for complex conditions, Section

3.3 and Section 3.4 show the results of the Gd-bearing problem

and problems with strong absorbers, respectively. Section 3.5

analyze the calclating efficiency. Finally, Section 3.6 gives the

further discussion of feasible improvement by PSO group

structure optimization.

3.1 Brief induction for the BIM and UFG

3.1.1 BIM
BIM is the classical approach for the resonance interference

effect. If there is more than one type of resonant nuclide, the BIM

will solve the subgroup transport equations using each resonant

nuclide.When handling the current resonant nuclide, the resonance

cross-sections of other resonant nuclides in Eq. 2 are still unclear.

Therefore, the BIM gives all the resonant nuclides an initial effective

resonance cross-section before the subgroup calculation. In this case,

when carrying out the subgroup transport calculation of the current

resonant nuclide, the other resonant nuclides will be regarded as

non-resonant nuclides, and the macro total cross section of Eq. 2 is

obtained by Eq. 11:

Σt,g,i � NRσt,g,i,R + ∑M
m�1

NRmσt,g,∞,Rm +∑L
l�1
Nlλlσp,l, (11)

where R indicates the current resonant nuclide, M indicates the

total number of non-resonant nuclides, and L is the total number

of all nuclides.

First, the initial effective resonance cross-section is used to

solve the subgroup transport equations to obtain the effective

resonance cross-section of the current resonant nuclide. Once

this process is completed for all resonant nuclides, the newly

obtained resonance cross- section will replace the initial effective

resonance cross-section and the aforementioned calculation

process will be carried out again until the iterating bias of the

effective resonance cross-section converges.

3.1.2 UFG
The UFG method applied in this section is referenced from

Kim et al. (2011) and Zhang et al. (2020). If the total number of all

nuclides in the calculation system is L, the slowing-down

equation for the resonance energy range is shown as follows:

Ω · ∇φ r, u,Ω( ) +∑L
l�1
Σt,l r, u( )φ r, u,Ω( )

� ∑L
l�1
∫u

u−Δl

Σs,l r, u′( )φ r, u′( )
1 − αl( ) eu′−udu′, (12)

where α is obtained by (A-1)2/(A+1)2; A is the atom mass; u is the

lethargy; and Δl = ln (1/α), which indicates the maximum lethargy

increase after one collision. The ultra-fine group number is 34,000 in

this work. For group g, the source item of Eq. 12 is shown as

Qg � ∑L
l�1
∑Nl

n�1
Pn,lΣs,g−n,lϕg−nΔuf, (13)
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where Pn,l is the probability for a neutron scatters over n ultra-

fine groups and finally locates in group g after a collision with

nuclide l. Δuf is the lethargy width.Nl is the maximum number of

ultra-fine groups covered by down-scattering. Kim et al. (2011)

and Zhang et al. (2020) give the recursive calculation method for

Pn,l, which is shown in Eq. 14.

Pn+1 � 1
Δuf 1 − α( ) 1 − e−Δuf( )2e−nΔuf

� e−Δuf
1

Δuf 1 − α( ) 1 − e−Δuf( )2e− n−1( )Δuf � e−ΔufPn. (14)

Therefore, according to Eq. 14, the scattering source could be

expressed as follows:

Qg � P1Σg−1ϕg−1 + (P2Σg−2ϕg−2 + P3Σg−3ϕg−3 +/

+PL−1Σg−L+1ϕg−L+1 + PLΣg−Lϕg−L
+PL+1Σg−L−1ϕg−L−1) − PL+1Σg−L−1ϕg−L−1. (15)

By comparing Eqs. 14, 15, the recursive expression for the

scattering source could be derived as

Qg � e−ΔufQg−1 + P1Σg−1ϕg−1 − e−ΔufPLΣg−L−1ϕg−L−1. (16)

In this work, the fission source and up-scattering effect are

neglected in the resonance energy range. In addition, the

scattering source for the first resonance group could be

calculated by asymptotic flux, which could be expressed as 1/E

for the pressurized water reactor. Therefore, the neutron flux of

the first ultra-fine resonance group can be obtained by solving a

fixed source equation. Subsequently, the flux of the first group

could be used to obtain the scattering source of the second group

by Eq. 16, and the same procedure will be repeated for all the

following groups until the flux of the last group is obtained. Since

the ultra-fine group structure is not suitable for eigenvalue

calculation, the group condensation process is adopted, which

is similar to the FSM. The final effective multigroup resonance

cross-section is also calculated by Eq. 4.

3.2 Typical UO2 problem

3.2.1 Single cell
The VERA benchmark (Godfrey et al., 2013) released by the

Ork Ridge National Laboratory is adopted in this section. The

geometry configurations of the single cell and 17 × 17 lattice are

shown in Figure 5. The detailed material and geometry

parameters can be found in the previous benchmark reference

and are not repeated in this work. The UO2 single cell and lattice

are both calculated for four cases, and the results are shown as

follows.

For single-cell problems, VERA 1A~1D cases are calculated.

The enrichment of these problems is 3.1 wt%, the fuel density

is 10.257 g cm−3, and the boron concentration is 1,300 ppm.

These four problems have different fuel temperature,

moderator temperature, and density, so it could be a test

for the FSM to treat the resonance effect under different

conditions. In addition, to test the performance of highly

enriched UO2 fuel simulations, two UO2 pin cell problems of

which the enrichment is 20 wt% and 75 wt% are also

analyzed in this section. The latter two highly enriched

fuels are referenced from the cold-stated UO2 problem of

Yamamoto et al. (2002), but the enrichment is adjusted to

20 and 75 wt%, respectively. It should be noted that the

highly enriched fuel is not commonly used for commercial

nuclear reactors, so this is only a calculating capability test

for the FSM. Table 6 gives the calculation results of keff. For

conventional VERA cases, it was found that the keff error of

the FSM is within ±50 pcm for all problems, while that of the

traditional BIM is more than 200 pcm. For highly enriched

FIGURE 4
Variation trend of RMS for the subgroup flux by the
interpolating number of subgroup levels.

FIGURE 5
Structural configuration of the VERA benchmark: (A) single
cell and (B) 1/4 lattice.

Frontiers in Energy Research frontiersin.org10

Li et al. 10.3389/fenrg.2022.1036063

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.1036063


problems, the error of keff increases to some extent for all

methods, while the FSM still has a relatively satisfactory

accuracy.

Taking the 1B case as an example, Figure 6 displays the

calculation results for pin-averaged absorption cross-section of
238U, and Figure 7 gives the results for absorption and fission

production of 235U. It was observed that the FSM and UFG could

keep the relative error within ±1% nearly for all groups, while the

variation of the BIM is not acceptable. The maximum error,

average, and root-mean-square relative error of cases 1B and 1C

are shown in Table 7.

For the high-enriched fuel problems, taking the 75 wt%

case as an example, Figure 8 displays the calculation results

for pin-averaged absorption cross-section of 238U, and

Figure 9 gives the results for absorption and fission

production of 235U. The FSM and UFG could keep the

relative error nearly within ±1.5% for all groups, while the

variation of the BIM is much larger. Due to the strong self-

shielding effect of the highly rich fuel, the error increased

slightly compared with the conventional fuel. The maximum

error, average, and root-mean-square relative error of cases

1B and 1C are shown in Table 8, of which the accuracy is still

acceptable.

3.2.2 17 × 17 lattice
In this section, VERA 2A~2D are selected to verify the

capability of the FSM to lattice problems. These lattices have

264 fuel pins, 24 guide tubes, and one instrumental tube, which

are shown in Figure 5. Taking 2B and 2C problems as examples,

the distribution of normalized pin power calculated by the FSM is

shown in Figures 10, 11, respectively. It could be observed that

the relative error of normalized pin power is less than 0.5% for

most fuel pins. The largest relative error of VERA 2B and 2C

problems is 0.67 and 0.65%, respectively, which indicates an

accurate performance for the FSM.

In addition, it could be observed that the maximum deviation

was always observed at the lower right corner. There are two main

reasons why the maximum deviation is always observed at the lower

right corner. First, the power value of the corner is always the smallest

one in the lattice, so the relative error may rise to some extent. The

second one is that for the original VERA benchmark, there is a very

small inter-assembly gap that exists between all assemblies containing

the core moderator, and the half-gap thickness is 0.04 cm Due to the

limit of the modeling capability, the transport module in this work

could not directly consider the inter-assembly gap. To make up for

this limit, the inter-assembly gap is homogenized to the outermost

cell of the lattice. This homogenization process may cause the

calculation bias to the outermost cell, so the maximum deviation

is always observed at the lower right corner. Since the relative error is

still small enough, this deviation is acceptable for lattice calculation.

The overall calculation results of pin power and effective

multiplication factor for VEAR 2A~2D are shown in Table 9. The

TABLE 6 Calculation results of keff for VERA single-cell problems.

Case Temperature/K Moderator density/(g·cm−3) Reference keff keff error/pcm

Fuel Moderator FSM UFG BIM

VERA 1A 565 565 0.743 1.18704 −46 −20 254

VERA 1B 600 600 0.661 1.18215 −26 2 292

VERA 1C 900 600 0.661 1.17172 29 56 228

VERA 1D 1200 600 0.661 1.16260 44 −55 257

20 wt% 300 300 1.000 1.63521 69 −82 324

75 wt% 300 300 1.000 1.76976 130 99 457

FIGURE 6
Relative deviation of the absorption cross-section for 238U for
the VERA 1B case.
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maximum, average, and root-mean-square relative error of

normalized pin power all meet the precision requirement. For

the effective multiplication factor, the maximum error is 74 pcm

for the 2B problem, which is still accurate. To sum up, the FSM

has excellent performance both for UO2 single-cell and lattice

problems.

3.3 Gd-bearing problem

To control the reactivity, burnable poison such as Gd2O3

could be added to the fuel pin. Gd isotopes have strong

absorption characteristics and significant resonance peaks,

so the Gd-bearing problem is a challenging issue for

resonance calculation. Figure 12 gives the geometry

configuration of the BWR 4 × 4 lattice (Hong et al.,

1998), VERA 2O, and 2P lattice. The BWR lattice has two

pins consisting of 3wt% UO2 and Gd2O3, and the others are

3wt% UO2. VERA 2O and 2P have 12 and 24 Gd-bearing fuel

pins, respectively, which are located in the region marked by

O andP in Figure 12. Since the flux in the Gd pin changes

FIGURE 7
Relative deviation of the cross-section for 235U for the VERA 1B case: (A) absorption; (B) fission production.

TABLE 7 Calculation results of the resonance cross section for VERA 1B and 1C cases.

Relative error value 235U absorption 235U fission production 238U absorption

VERA 1B VERA 1C VERA 1B VERA 1C VERA 1B VERA 1C

Maximum −0.87% 1.12% 1.00% 1.03% −1.19% 0.95%

Average −0.22% −0.10% 0.03% 0.05% −0.20% −0.17%

RMS 0.32% 0.37% 0.43% 0.46% 0.60% 0.53%

FIGURE 8
Relative deviation of the absorption cross-section for 238U for
the 75 wt% case.
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dramatically along the radius direction, the Gd pin is divided

by 10 equal-volume rings, while the UO2 pin is divided by

three rings. Moreover, each ring is further divided into eight

equal-volume sectors.

The calculation results of the 238U resonance absorption

cross-section of 238U for UO2 pin 1 and Gd-bearing pin 2 are

shown in Figure 13A. The largest relative error of pin 1 and pin

2 is 0.91% and −2.24%, respectively. Compared with the

FIGURE 9
Relative deviation of the cross-section for 235U for the 75 wt% case: (A) absorption; (B) fission production.

TABLE 8 Calculation results of the resonance cross section for 20 and 75wt% cases.

Relative error value 235U absorption 235U fission production 238U absorption

20 wt% 75 wt% 20 wt% 75 wt% 20 wt% 75 wt%

Maximum 1.03% 1.69% 1.15% 1.38% 2.15% 2.29%

Average −0.10% 0.18% −0.09% 0.07% 0.70% −0.22%

RMS 0.28% 0.46% 0.32% 0.37% 0.78% 0.89%

FIGURE 10
Calculation results of pin power of the VERA 2B lattice: (A) referenced normalized pin power; (B) absolute value of relative deviation/%.
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conventional UO2 pin, the calculation bias for the Gd-bearing

pin is increased to some extent. Figure 13B gives the resonance

absorption cross-section of 155Gd and 157Gd in pin 2, and

the largest error is −1.59% and 2.13%, respectively. The

calculation on the whole is shown in Table 10. The strong

resonance absorption of Gd isotopes makes the precision of

the Gd-bearing pin has a relatively larger error compared with

conventional problems, but is still acceptable on the whole. The

reference keff of 4 × 4 lattice is 1.08589, the calculation result is

1.08652, and the error is 63 pcm.

Figures 14, 15, respectively, show the calculation results of

the normalized pin power of VERA 2O and 2P. For most of the

regions, the absolute value of the relative error of pin power is

less than 0.5%. The error near the Gd-bearing pins would

FIGURE 11
Calculation results of pin power of VERA 2C lattice: (A) referenced normalized pin power; (B) absolute value of relative deviation/%.

TABLE 9 Calculation results for VERA lattice problems.

VERA 17 × 17 lattice Relative error of normalized pin power keff keff error/pcm

Maximum (%) Average (%) RMS (%) Reference FSM

2A 0.97 0.20 0.27 1.18218 1.18147 −71

2B 0.67 0.17 0.23 1.18336 1.18410 74

2C 0.65 0.17 0.22 1.17375 1.17331 −44

2D 0.69 0.17 0.23 1.16559 1.16496 −63

FIGURE 12
Structural configuration of the lattice with gadolinium pins: (A) BWR 4 × 4; (B) VERA 2O/2P.
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increase a little, but the largest error of 2O and 2P are still

acceptable, which are 1.43% and 1.91%, respectively. The

general calculation results of pin power and keff are shown

in Table 10, which indicates that FSM could handle the Gd-

bearing problems accurately.

3.4 Strong absorber problem

In addition to the Gd-bearing rod, the reactivity could also

be controlled by inserting strong absorbers into the guide

tubes, such as the Pyrex rod or control rod, which are shown in

FIGURE 13
Relative deviation of absorption cross section for the 4 × 4 lattice: (A) 238U; (B) 155Gd and 157Gd.

TABLE 10 Calculation results of the resonance cross-section of pins 1 and 2 of 4 × 4 lattice.

Absorption cross-section UO2 pin1 Gd-bearing pin2

235U (%) 238U 235U (%) 238U 155Gd 156Gd (%) 157Gd (%) 158Gd (%)

Maximum 1.15 0.91% 1.57 −2.24% −1.59% 1.24 2.13 1.08

Average 0.06 −0.02% 0.13 −0.21% −0.12% 0.24 0.06 0.03

RMS 0.35 0.32% 0.68 0.65% 0.57% 0.41 0.68 0.38

FIGURE 14
Calculation result of pin power of the VERA 2O lattice: (A) referenced normalized pin power; (B) absolute value of relative deviation/%.
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Figure 16. The strong absorber would dramatically influence

the neutron flux and raise challenges to the resonance

calculation. In this section, VERA 2F, 2G, and 2H

problems are selected to verify the capability of the FSM to

strong absorber problems. The geometry configuration of

these two problems is similar to Figure 5B, and the only

difference is the guide tubes that are inserted by Pyrex

rods, AIC control rods, and B4C control rods for 2F, 2G,

and 2H, respectively. The Pyrex or control rod is divided by

10 equal-volume rings, while the UO2 pin is divided by three

rings. Moreover, each ring is further divided into eight equal-

volume sectors.

Figures 17–19 display the calculation results of normalized

pin power of VERA 2F, 2G, and 2H, respectively. The

distribution of pin power tends to be flat in the lattice

center but increases evidently near the lattice surface area.

The fuel pin beside the guide tubes with a strong absorber has

the lowest pin power. For 2F and 2H, the FSM has satisfactory

calculation results for both two problems and the relative

error for most fuel pins is less than 0.5%. For 2G, the average

error increases to 0.74%. The largest relative error of 2F, 2G,

and 2H is 0.75, 1.47, and 1.07%, respectively. Since AIC has a

very strong absorption effect, the error of VERA 2G is

relatively larger than that of the others, but the precision

on the whole is still acceptable. The general calculation results

of pin power and keff are shown in Table 11, which indicates

that the FSM could handle the strong absorber problems

accurately.

3.5 Analysis of calculation efficiency

Compared with the conventional subgroup method, the

group structure of the FSM is optimized to fine mesh

according to the basic idea of the ultra-fine group method.

The two-level discrete with fine mesh and subgroup structure

makes the FSM capable of handling more complex resonance

interference effects accurately. In essence, the FSM is the

FIGURE 15
Calculation result of pin power of the VERA 2P lattice: (A) referenced normalized pin power; (B) absolute value of relative deviation/%.

FIGURE 16
Structural configuration of the rod with strong absorber: (A) Pyrex rod; (B) control rod.
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compromise between precision and efficiency. It has the same

level of accuracy as the UFG and addresses the limitations that

the conventional subgroup method does not have the

capability for complex problems. In general, the FSM

sacrifices part of the calculation efficiency reasonably to

achieve higher accuracy.

The calculation efficiency could be reflected by the number of

subgroup fixed-source equations and slowing-down equations.

Taking the fresh UO2 problem and its depletion condition as

examples, Table 12 shows the calculation burden for different

resonance treatment methods. It could be observed that the UFG

needs to solve the 34,000 ultra-fine group slowing-down equation

for all problems, so the calculation efficiency is the worst. The

BIM needs to solve the subgroup fixed-source equation of each

resonant nuclide. Iteratively, the total calculation burden

increases linearly by the number of resonant nuclides. The

FIGURE 17
Calculation results of pin power of the VERA 2F lattice: (A) referenced normalized pin power; (B) absolute value of relative deviation/%.

FIGURE 18
Calculation results of pin power of the VERA 2G lattice: (A) referenced normalized pin power; (B) absolute value of relative deviation/%.

FIGURE 19
Calculation results of pin power of VERA 2H lattice: (A) referenced normalized pin power; (B) absolute value of relative deviation/%.
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FSM adopts the one-group micro-level optimization, so the

burden of the subgroup fixed-source equation is far less than

that of BIM.Moreover, the FSM has 289 slowing-down equations

to solve, and it is independent of the problem condition.

Therefore, for the fresh UO2 problem, the total calculation

burden of the FSM is more than that of BIM. However, for

the depletion condition, since the number of resonant

nuclides increases, seven resonant nuclides are treated as

resonant nuclides. Under this condition, the calculation

burden of the FSM and BIM is almost the same. If the

resonant nuclide number continues to increase, the

efficiency of the FSM would be better while the accuracy is

also higher. The CPU information in this section is AMD

Ryzen7 4800H 2.90 GHz 1 CPU is used. For the fresh UO2

problem, the calculation time consumed by the FSM, BIM,

and UFG is 4.85 s, 2.76 s, and 347.5 s, respectively. For the

depletion condition, the calculation time consumed by the

FSM, BIM, and UFG is 7.67, 7.26, and 527.1 s, respectively On

the whole, compared with the conventional BIM and UFG

method, the FSM proposed in this work could handle the

resonance effect accurately and efficiently.

3.6 Further discussion of feasible
improvement

Based on the PSO theory introduced in Section 2.3, a new energy

structure with 19 groups in total is proposed. Compared with the

original FSM, the improved FSM has four fast groups, 11 resonance

groups, and four thermal groups. The fine resonance mesh would be

condensed to 11 groups, while the data of the fast and thermal regions

are provided by the NJOY code. Since the PSO is carried out before

the eigenvalue calculation, its results are stored in the multigroup

library as the input information. Therefore, although the PSO

method may suffer from the inefficiency problem, it is a “one-off”

work. Once it has been conducted, the optimized group structure

could be used for all problems without further burden.

To test the performance of the new structure, six problems

consisted of JAEA UO2 and MOX of three temperatures,

respectively. The calculation results of two versions of the

FSM are shown in Table 13.

From Table 13, the new FSM has an acceptable difference in

eigenvalue accuracy but has far fewer group numbers for

transport calculation, which would make a significant

improvement in efficiency. However, it should be noticed that

the fine-mesh structure of the FSM also accounts for plenty of

calculation burden. The PSO method could also be applied to

searching for the optimized fine structure with as few groups as

possible. In addition, it could be found that the UO2 problems in

Table 13 have more deviations than MOX cases. The errors of

MOX and UO2 cases mainly result from the following reasons:

First, the group condensation process inevitably enlarges the

deviation since the coarse group structure would make the self-

shielding effect not comprehensively considered. The group structure

selected may not be the proper one for all problems. Second, the

fitness function in this work only considered the accuracy of keff,

while the other important parameters, such as reaction rate and

neutron flux, are not taken into account. This thoughtlessness might

cause unexpected errors in practical application. Third, the fitness

function selected several typical problems as the calculation samples.

In other words, theGbest is found according to a finite number of fuel

conditions, so the extension to all conditions may cause deviations.

TABLE 11 Calculation results for VERA 2F, 2G, and 2H lattice problems.

VERA 17 × 17 lattice Relative error of normalized pin power keff keff error/pcm

Maximum (%) Average %) RMS (%) Reference FSM

2F: 24 Pyrex rods 0.75 0.30 0.36 0.97602 0.97557 -45

2G: 24 AIC rods 1.47 0.74 0.35 0.84769 0.84885 116

2H: 24 B4C rods 1.07 0.27 0.38 0.78822 0.78843 21

TABLE 12 Calculation burden for different resonance treatment methods.

Depletion
condition

FSM BIM (subgroup fixed-source
equation)

UFG (slowing-down
equation)

Subgroup fixed-source
equation

Slowing-down
equation

Total

Fresh UO2 16 289 305 106 34,000

60 GWd/t 56 289 345 346 34,000
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Therefore, further research is still needed for the amendment of the

new FSM based on PSO optimization.

4 Conclusion

The fine-mesh subgroup method (FSM) and its feasible

improvement are illustrated in this paper. The FSM adopts the

two-level discretion consisting of the fine mesh and the subgroup to

guarantee the accuracy of the resonance cross-section and the

resonance interference correction could be avoided. In addition,

the FSM uses the one-group micro-level optimization and the

subgroup fixed-source equations are only solved eight times for

each resonant nuclide. Afterward, the neutron slowing-down

equation is applied to get the spectrum for group condensation.

To find the proper group structure for the multigroup transport

calculation, the particle swarm optimization method (PSO) is used

and the 19-group structure is proposed. Similarly, PSO could also be

applied to find the optimized fine-mesh structure of the FSM and

further work is needed.
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