
TYPE Original Research
PUBLISHED 19 October 2022
DOI 10.3389/fenrg.2022.1035797

OPEN ACCESS

EDITED BY

Jiankai Yu,
The University of Tennessee, Knoxville,
United States

REVIEWED BY

Yinan Cai,
Massachusetts Institute of Technology,
United States
Zhongchun Li,
Nuclear Power Institute of China (NPIC),
China

*CORRESPONDENCE

S. Xiao,
snrxs@nus.edu.sg

SPECIALTY SECTION

This article was submitted to Nuclear
Energy,
a section of the journal Frontiers in Energy
Research

RECEIVED 03 September 2022
ACCEPTED 30 September 2022
PUBLISHED 19 October 2022

CITATION

Than YR and Xiao S (2022), lp-CMFD

acceleration schemes in multi-energy

group 2D Monte Carlo transport.

Front. Energy Res. 10:1035797.

doi: 10.3389/fenrg.2022.1035797

COPYRIGHT

© 2022 Than and Xiao. This is an
open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that
the original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

lp-CMFD acceleration schemes
in multi-energy group 2D Monte
Carlo transport

Y. R. Than and S. Xiao*

Singapore Nuclear Research and Safety Initiative, National University of Singapore, Singapore,
Singapore

The linear prolongation flux update scheme is extended to both regular CMFD

acceleration, as well as partial CMFD acceleration in 2D multi energy group

Monte Carlo k-eigenvalue neutron transport problems. The acceleration

performance of these CMFD variants were investigated in simple 2D slab

geometries, first with a monoenergetic case and then with a three group

problem on the same geometry based on the monoenergetic cross sections.

Flux convergence was determined via an on-the-fly convergence diagnostics

developed by Ueki and Brown. It is found that on top of providing better

acceleration in general, the linear prolongation scheme is also able to

correct for instabilities in the CMFD scheme. Overall, the lp-pCMFD scheme

employing a maximum history length is found to have the best performance

across the cases presented.
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Introduction

In Monte Carlo (MC) calculations of the k-eigenvalue neutron transport problems,
fission source iteration may have slow convergence in cases with high dominance
ratios. Acceleration methods applied in MC calculations include the Coarse Mesh
Finite Difference (CMFD) acceleration scheme, which was originally developed for the
acceleration of deterministic neutron transport calculations. The CMFD acceleration
scheme employs a diffusion-based calculation on a coarse mesh grid, for which the
solution is used to update the transport flux. The use of coarse mesh is suitable efficient
diffusion calculation in exceedingly fine mesh calculations or where the fine mesh
geometry is complex. The effectiveness of the CMFD acceleration methods employed
in MC transport calculations has been demonstrated (Lee et al., 2010; Hunter, 2014;
Lee et al., 2014). CMFD variants include partial CMFD (pCMFD), where partial current
drift coefficients, as opposed to net currents, are utilised in the diffusion calculation.
pCMFD is also known to be unconditionally stable, unlike regular CMFD, though it has
shown to be a bit slower in deterministic transport calculations for problems with small
and intermediate optical thickness. Several works have also successfully incorporated
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FIGURE 1
Overall flowchart of a Monte-Carlo keff calculation with
CMFD-based acceleration.

FIGURE 2
Illustration of linear interpolation scheme in lp-CMFD.

the pCMFD scheme in place of regular CMFD in continuous
energy MC calculations (Yun and Cho, 2010; Jo and Cho, 2018a;
Jo and Cho, 2018b).

Another CMFD variant is the linear prolongation CMFD
(lp-CMFD) scheme, which is a method first proposed by
Wang and Xiao (2018). Where regular CMFD updates the
fine mesh flux in a coarse mesh basis after the diffusion
step, lp-CMFD uses a linear additive approach from bilinear

interpolation of the coarse mesh flux to update the fine mesh
scalar flux, thereby resulting in a smoother transport flux
update. Employing the linear prolongation in pCMFD results
in a lp-pCMFD scheme, which can also be considered. The lp-
CMFD scheme has been employed in deterministic transport
problems with various spatial discretisation schemes, which
demonstrated improved acceleration and stability (Chan and
Xiao, 2019a; Chan andXiao, 2019b; Chan andXiao, 2019c; Chan
and Xiao, 2020a; Chan and Xiao, 2020b). Following the results
in deterministic calculations, lp-CMFD and lp-pCMFD schemes
has also been employed in 1D slab MC transport calculations
(Chan and Xiao, 2021), as well as in a 2D homogenous
slab (Abdullatif and Wang, 2022; Than and Xiao, 2022), where
its effectiveness relative to regular CMFD is once again
demonstrated. Among the CMFD variants investigated in
the aforementioned works, the most efficient scheme can
vary depending on factors such as the total cross section
values.

In this work, we further build on Monte-Carlo simulations
of 2D geometries using lp-CMFD based acceleration schemes,
with multi energy group and non-homogenous domains. A
monoenergetic case will be first studied as a base line and then
a three energy group problem based on the monoenergetic case
will be investigated. Differences in the performance of each
acceleration scheme going from single tomulti-energy groupwill
be discussed.

Theory and methodology

The neutron flux ψ(r,Ω,E) is typically split into discrete
energy groups (as neutron flux ψg(r,Ω)) in neutron transport,
where r is the spatial coordinate, Ω is the direction of the neutron
velocity, E is the neutron energy and g is the energy group index.
The k-eigenvalue time-independent neutron transport equation
is thus split into a system of coupled transport equations for each
group:

Ω ⋅∇ψg (r,Ω) + σtg (r)ψg (r,Ω)

= 1
4π
∑
g′
σsg′g (r)ϕg′ (r) +

1
4π
∑
g′
χg
ν
k
σfg′ (r)ϕg′ (r)

(1)

whereϕg(r) = ∫ψg(r,Ω′)dΩ′ is the scalar flux. σtg , σsg′g and σfg′ are
the group discretised total, scattering and fission cross sections
respectively. ν is the average fission multiplicity. Xg is the fission
energy spectrum. keff is the multiplication factor.

CMFD acceleration schemes aim to solve a simpler diffusion
based equation that is obtained by first integrating Eq. 1 over Ω:

∇ ⋅ Jg (r) + σtg (r)ϕg (r)

= ∑
g′
σsg′g (r)ϕg′ (r) +∑

g′
χg
ν
k
σfg′ (r)ϕg′ (r)

(2)
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FIGURE 3
Illustration of the domain used in this work, consisting of two
square regions of the indicated dimensions with fissile region A
and non-fissile region B.

TABLE 1 Monoenergetic cross section values used in this work,
indicated in units cm−1.

Cross section Region A Region B

σt 5 5
νσf 0.5 0
σs 4.5 4.5

where J is the neutron current. Further integrating Eq. 2 over
each coarse mesh gives the CMFD equations:

∑
m′∈N(m)

Amm′

Vm
Jgmm′ + σtgmϕgm

=∑
g′
σsg′gmϕg′m +∑

g′
χg
ν
k
σf ′gmϕg′m

(3)

wherem is the coarsemesh cell indexwith volumeVm, withN(m)
being the cells neighbouring cell m. Jgmm’ is the group neutron
current from cell m to m′ while Amm’ adjoining surface area
between cells m andm′.

Subsequently, a diffusion equation is obtained via Fick’s law
with a nonlinear correction term D̂:

Jgmm′ = D̃gmm′ (ϕgm −ϕgm′) + D̂gmm′ (ϕgm +ϕgm′) (4)

where

D̃gmm′ =
2DgmDgm′

hmm′ (Dgm +Dgm′)
(5)

and

D̂gmm′ =
̄Jgmm′ − D̃gmm′ (ϕ̄gm − ϕ̄gm′)

ϕ̄gm + ϕ̄gm′
(6)

with Dgm =
1

3σtgm
. hmm′ refers to the distance from the center of

coarse mesh cell m to them/m′ surface and the overbars indicate
values calculated from the most recent MC fine mesh transport
flux.

pCMFDemploys partial currents J+ and J− instead of the total
current J, thus pCMFD equations equivalent to Eq. 4 will be

Jgmm′ = D̃gmm′ (ϕgm −ϕgm′) + D̂
+
gmm′ϕgm − D̂

−
gmm′ϕgm (7)

with

D̂+gmm′ =
̄J+gmm′ − D̃gmm′ (ϕ̄gm − ϕ̄gm′)

ϕ̄gm
(8)

and

D̂−gmm′ =
̄J−gmm′ − D̃gmm′ (ϕ̄gm′ − ϕ̄gm)

ϕ̄gm′
(9)

The overall flowchart of a CMFD-based acceleration is given in
Figure 1. After each Monte Carlo transport step, the flux and
currents are tallied in the coarsemesh to compute the coefficients
in the CMFD or pCMFD calculation. Following the CMFD or
pCMFD solution, the MC fine mesh is then updated in either
a coarse mesh or fine mesh basis. Updating the fine mesh flux
via the linear prolongation method gives rise to the “lp” variant
of the acceleration schemes (lp-CMFD and lp-pCMFD), which
provides the 4 acceleration scheme variants to be investigated
in this work. In regular or CMFD and pCMFD acceleration, the
neutron weights wn are updated according to

w̃n =
wnNppM(n)

Wn
(10)

where

Wn = ∑
n′:M(n′)=M(n)

wn′ (11)

to obtain themodifiedneutronweights w̃n.Np is the total neutron
count, M(n) refers to the coarse mesh cell index from with
neutron n originates while

pm =∑
g

χgνσfgϕmgVm

∑
m′
χgνσfgϕm′gVm′

(12)

is the neutron source fraction, where the scalar flux is updated
according to

ϕnewg,fine = ϕ
old
g,fine

Φnew
g,coarse

Φold
g,coarse

(13)

In lp-CMFD and lp-pCMFD schemes, the CMFD flux is
projected back on to the fine mesh flux according to the linear
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TABLE 2 Three group cross section values used in this work, indicated in units cm−1. Groups are labeled 1 to 3 in decreasing energy.

Cross section Region A Region B Cross section Region A Region B

σt1 5 5 σs11 0.9 0.45
σt2 5 5 σs12 3.6 4.05
σt3 5 5 σs22 0.9 0.45
νσf 1 0 0 σs23 3.6 4.05
νσf 2 0 0 σs33 4.5 4.5
νσf 3 0.5 0

approach described by Wang and Xiao (Wang and Xiao, 2018)
the weights are then updated on a fine mesh basis based on the
updated fine mesh flux. Instead of Eq. 13, the update of scalar
flux is achieved via

ϕnewg,fine = ϕ
old
g,fine +Δϕg,fine (14)

where

Δϕg,fine =
x
Δx
(δΦg,i+ 1

2
,j− 1

2
− δΦg,i− 1

2
,j− 1

2
)

+
xy

ΔxΔy
(δΦg,i+ 1

2
,j+ 1

2
− δΦg,i− 1

2
,j+ 1

2

+δΦg,i− 1
2
,j− 1

2
− δΦg,i+ 1

2
,j− 1

2
)

+
y
Δy
(δΦg,i− 1

2
,j+ 1

2
− δΦg,i− 1

2
,j− 1

2
) + δΦg,i+ 1

2
,j− 1

2

(15)

is the bilinear interpolation from the estimated corner node δΦ
flux corrections as described in Figure 2.

δΦ is the difference between the CMFD (or pCMFD)
solution and the pure Monte Carlo solution that is projected
into the coarse mesh. The half integer index values of δΦ are the
corner node flux corrections given by

δΦg,i+ 1
2
,j+ 1

2
= 1
4
[δΦg,i,j + δΦg,i+1,j + δΦg,i,j+1 + δΦg,i+1,j+1] (16)

The corner node flux corrections located at the boundary can be
calculated in similar fashion according to boundary conditions.
Following the fine mesh flux update, the neutron weights can
then by updated in the same fashion as in Eqs 10, 12 in a fine
mesh basis.

The initial MC iterations are considered to be inactive cycles,
as the algorithm is still trying to converge to the true solution.
The posterior relative entropy method (Ueki and Brown, 2005;
Ueki, 2009) is used to determine the criteria for which the
solution is sufficiently stable such that subsequent iterations may
be classified as active cycles, from which statistical data such
as variance and averages may be subsequently calculated. The
Shannon entropy H at each cycle is calculated as

H =∑
n
ωn log2 (ωn) (17)

where

ωn =
Wn

∑
n′
Wn′

(18)

FIGURE 4
Shannon entropy progression in single group simulations (top)
and multi group simulations (bottom) for each of the
acceleration schemes employed, averaged over 10 independent
simulations, for either a history length of 5 or maximum
(whichever performs better).

The posterior relative entropy (PRE) is defined as

Hpre (ω||ω°) = ∑
n
ω°n log2(

ω°n
1
2
(ω°n +ωn)

)

+∑
n
ωn log2(

ωn
1
2
(ω°n +ωn)

)

(19)

where ω°n are the ωn values at the start of cycle 1 (Ueki
and Brown, 2005). Hpre). One advantage of this method is
that additional simulations for a reference Shannon entropy
stationary convergence is not required.
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FIGURE 5
Posterior relative entropy progression in single group
simulations (top) and multi group simulations (bottom) for each
of the acceleration schemes employed, averaged over 10
independent simulations, for either a history length of 5 or
maximum (whichever performs better).

As illustrated in Figure 3, we use a simple toy model
following previous work in Ref. (Than and Xiao, 2022) with a
central fissile zone (A) surrounded by a non-fissile zone (B)
with vacuum boundary conditions. We study two cases based on
this geometry, a monoenergetic case with cross sections listed
in Table 1, as well as a three energy group case based on the
monoenergetic case with cross sections listed Table 2. There are
500 neutrons per fine mesh for the monoenergetic case and
200 neutrons per fine mesh for the three energy group case
in the fissile region A of the simulations, with a 48× 48 fine
mesh and a 24× 24 coarse mesh for the whole domain. The
MC neutron transport simulation codes are developed on the
MATLAB platform and executed in parallel using 10 cores on the
Intel Xeon W-2255 CPU @ 3.70GHz processor. 10 independent
simulations are performed for each of the acceleration schemes:
CMFD, pCMFD, lp-CMFD, lp-pCMFD with both a history
length of 5 as well as using the full history starting from the first
cycle.

Results and analysis

For each case, the keff values are recorded over 50 active cycles
with an average keff of 0.974 ± 0.004 for the monoenergetic case

FIGURE 6
Estimated keff progression in single group simulations (top) and
multi group simulations (bottom) for each of the acceleration
schemes employed for the first 20 cycles, averaged over 10
independent simulations, for either a history length of 5 or
maximum (whichever performs better).

and 0.744± 0.005 for the three energy group case.The keff is lower
in the multi group case as the energy group structure poses as
an additional barrier between the generated fission neutrons and
the next thermal fission reaction. The suitability of the posterior
relative entropy method as condition for the active cycle can
be seen from Figures 4, 6. The active cycle flux is sufficiently
converged in the sense that is suitable for recording statistical
data. Figures 4, 6 further enforce this point, as it can be seen that
the keff and entropy H values reach within fluctuation range of
the stationary value well before the active cycle is declared.

Even with just 10 independent simulations for each scheme,
the effectiveness of the CMFD-based acceleration methods is
clear. From Table 3 it can be seen that CMFD schemes cut
the number of inactive cycles by around half, though the
base CMFD scheme is unstable when considering long history
lengths for both the monoenergetic and multi group case. The
CMFD flux did not always converge to the correct solution,
thus causing the solution to diverge. This instability is corrected
with the implementation of linear prolongation flux update, as
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TABLE 3 Number of inactive cycles required in the single group simulations for each scheme averaged over 10 independent simulations for each
acceleration history length. The standard deviation is indicated in the parenthesis. (*) CMFDwithmaximumhistory length did not converge.

Acceleration scheme Last inactive cycle (history length 5) Last inactive cycle (history length all)

Unaccelerated 93.9± 13.0 93.9± 13.0
CMFD 54.3± 10.4 *
lp-CMFD 47.6± 10.6 38.5± 4.8
pCMFD 57.1± 10.1 47.2± 5.8
lp-pCMFD 51.5± 10.1 34.7± 1.25

TABLE 4 Number of inactive cycles required in themultigroup simulations for each scheme averaged over 10 independent simulations for each acceleration
history length. The standard deviation is indicated in the parenthesis. (*) CMFDwithmaximumhistory length did not converge.

Acceleration scheme Last inactive cycle (history length 5) Last inactive cycle (history length all)

Unaccelerated 83.7± 13.8 83.7± 13.8
CMFD 58.6± 8.6 *
lp-CMFD 55.8± 8.9 52.7± 8.5
PCMFD 63.8± 13.1 60.2± 8.5
lp-pCMFD 55.9± 6.36 53.1± 5.3

the lp-CMFD scheme consistently able to converge properly
and yield the expected acceleration. It is however noted that
the acceleration obtained in 1D MC transport calculations as
reported by Chan and Xiao (2021) was much greater in terms
of percentage decrease in inactive cycles required. It is clear that
the linear prolongation schemes outperform the regular coarse
mesh flux update in all cases investigated in this work. It is also
interesting to note that while pCFMD schemes perform about
equal or slightly worse than regular CMFD with lower history
length, extending the history length yields significantly better
results on top of being more stable as mentioned, though in all
cases pCMFD is still significantly outperformedby lp-CMFDand
lp-pCMFD. Having extended history lengths also resulted in a
lower variance in the number of inactive cycles required. For
the simple monoenergetic system investigated in this work, the
lp-pCMFD acceleration proves to be most efficient, followed by
the regular lp-CMFD scheme. For the multi energy group case,
lp-CMFD and lp-pCMFD produce similar results.

The shannon entropy progression presented in Figure 4
shows a similar picture. All CMFD-based schemes converge
much faster to the stationary value, while lp-CMFD based
schemes are even faster in the monoenergetic case. The speed of
shannon entropy convergence appears to be primarily influenced
by the flux update scheme employed rather the type of CMFD
solver used. The posterior relative entropy progression used for
on-the-fly convergence analysis presented in Figure 5 mirrors
the shannon entropy progression as expected for a diagnostic
metric.The keff progression is presented Figure 6.There are a few
differences in terms of the entropy of the three group problem.
First is the pCMFD case, where the shannon entropy converges
to the stationary value about as fast as the lp-pCMFD scheme, but
interestingly does not reflect an earlier convergence according
to the on-the-fly convergence analysis. In the three group case,

the lp-CMFD shannon entropy is able to reach its stationary
value the earliest, but as Figures 4, 5 show, the value shows
fluctuation at first, thus does not result in an earlier active cycle
according to the on-the-fly diagnostics. It is also noted inTable 4
that the improvement due to the linear prolongation scheme is
slightly more significant when applied to pCFMD versus regular
CMFD. In contrast to what Table 3 and Figure 4 suggest, the
unaccelerated calculation converges to the stationary keff just as
quickly as the accelerated calculations. It is however noted that
convergence in keff is not deemed to be sufficient for overall
stationary solution convergence.

Conclusion

In this work, lp-CMFD based acceleration schemes (Wang
and Xiao, 2018) are applied to monoenergetic and multi
group 2D MC neutron transport calculations with on-the-
fly convergence diagnostics (Ueki, 2009). Based on sets of 10
independent simulations, the acceleration given by the CMFD-
based schemes in 2D MC neutron transport calculations reduce
the inactive cycles required by around half, and is even more
efficient with the use of the linear prolongation scheme for
flux update. Further, the linear prolongation scheme is able to
correct the instability of the CMFD solver at long history lengths.
Overall, the linear prolongation-based schemes perform better
in both single and multi-group calculations, which lp-pCMFD
being the most efficient in single-group and both lp-CMFD
and lp-pCMFD yielding similar acceleration in the multi-group
simulations.

The shannon entropy of the accelerated schemes also
converge much faster than that of the unaccelerated. While the
keff values in the unaccelerated scheme do converge just as fast
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as in the accelerated calculations, the slower shannon entropy
conversion shows that the overall flux is still much slower to
converge without the CMFD-based acceleration schemes.
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