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It is of great significance for the development of intermittent renewable energy

and the marketization of electricity to study an efficient and accurate algorithm

for solving the unit commitment problem with security constraints. Based on

the existing constrained ordinal optimization (COO) algorithm, an improved

ordinal optimization (OO) algorithm is proposed, which can be applied to solve

SCUC problems. In order to solve the roughmodel and the accurate model, the

discrete variable identification strategy and the effective safety constraint

reduction strategy are adopted, respectively. Compared with the traditional

object-oriented algorithm, the improved object-oriented algorithm not only

gives full play to the computational efficiency of the traditional object-oriented

algorithm but also further improves the compactness and reduces the

computational redundancy. IEEE 118 simulation results verify the correctness

and effectiveness of the algorithm.
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Introduction

Under the background of large-scale wind power integration, SCUC considering the

uncertainty of wind power has become not only the main basis for making a day-ahead

generation schedule but also an important basis for day-ahead power market decision-

making (Shi et al., 2016). On the one hand, SCUC is a large-scale mixed-integer planning

problem with constraints and nonlinearity in math (Zhang et al., 2013). On the other

hand, it is a typical non-deterministic polynomial hard problem in solving. With the scale

of a power grid being increasingly enlarged and more intermittent renewable energy

integration, the difficulty of solving SCUC problems has been increasing daily (Yang et al.,

2022a). Therefore, how to solve the SCUC problems with the uncertainty of wind power

quickly and effectively has become a research focus (Nan et al., 2018).

For solving the uncertain SCUC models, the recent mainstream method is based on

Benders decomposition (BD). With the help of BD, the SCUC model can be decomposed
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into two subproblems which are unit commitment and network

security constraint check. Then, the Lagrangian relaxation

method (Zhang et al., 2012), dynamic programming method

(Chen et al., 2015), branch and bound method (Hussin and

Hassan, 2014), and different kinds of intelligent optimization

algorithms (Lee and Lin, 2012; Chen et al., 2021; Li et al., 2021;

Ma et al., 2021; Yang et al., 2022b; Yang et al., 2022c; Wang et al.,

2022; Zhou et al., 2022; Zhu et al., 2022) can be used to solve each

subproblem. The first three methods have a strict mathematical

model, but the Lagrangian relaxation method is affected by the

sensitivity of the unit to the Lagrangian multiplier, and the

oscillation phenomenon is easy to occur in the iterative

process of the algorithm. The dynamic programming method

is easy to cause a “dimension disaster” problem; if the bound

estimation of the branch and bound method is wrong, it is no

different from an exhaustive search in extreme cases. The

intelligent optimization algorithm is used for uncertain

optimization problems with complex constraints, and an

iterative calculation is used to deal with constraint

subproblems in various scenarios, which requires a lot of

calculation time. In short, the solving efficiency has been

difficult to meet the needs of engineers (Lee and Lin, 2012).

In recent years, as one of the efficient methods which can

solve complicated optimization problems, the theory of OO (Jia,

2006) has attracted more and more attention. In Wu and

Shahidehpour (2014), this method was first introduced into

the field of solving uncertain SCUC problems. Considering

the situation of actual engineering, OO abandons any attempt

to find the optimal solutions but seeks for good enough solutions.

Compared with traditional BD, this method has successfully

increased the solving efficiency by nearly 30 times, which

proves the advantages of the OO theory in the field of solving

uncertain SCUC problems. From the existing research, OO has

been proved that it is a kind of efficient method to solve uncertain

SCUC problems. However, the traditional OO theory starts from

the solution space, reducing the scale of model feasible regions by

constructing several rough models, which makes the redundant

information of the model itself to be ignored and eliminated.

Therefore, in the aspect of solving efficiency, the OO theory still

has much need for improvement and advancement. It is mainly

shown in the following paragraph. In this study, an improved

adaptive Prony method is proposed to accurately describe the

changes in electrical parameters when power system faults occur.

The variable step size strategy is used to search the points of the

subsegment, and MSRFE is used as the criterion. The simulation

results on a given fault signal show that the improved Prony

algorithm has higher accuracy and efficiency than the traditional

method.

Step 1: although the SCUC model is solved by OO, a rough

model should be constructed at first, which could select the feasible

solution space of startup/shutdown states. Nonetheless, there are

many units in large-scale power systems. If the feasible solution of the

startup/shutdown states is selected for all units, the efficiency of the

rough model will be greatly affected. For the actual large-scale power

grid, the maximum load usually reaches more than 70% of the

installed capacity, which means that some units are in a normally

open circuit or shutdown state. Thus, there is no need to do state

combinations for all units (Gao et al., 2008) if the normally open or

stopped units could be first identified in the OO roughmodel, which

will effectively improve the solving efficiency of it.

Step 2: the computational complexity of network security

constraint checking and calculation is the largest calculation

amount in solving SCUC problems. In Wu and Shahidehpour

(2014), the strategy is to check all lines one by one in an accurate

OO-based model because the number of nodes and lines which need

to be checked will increase rapidly with the expansion of the grid

scale. Therefore, the calculation efficiency of OO will be seriously

affected by this strategy. In Mogo and Kamwa (2019), the research

illustrates that there is only a little part of numerous network security

constraints that could restrict the feasible regions. A fast identification

method for identifying invalid security constraints is proposed, which

successfully reduces the invalid security constraints by more than

85% without affecting the calculation accuracy of the model.

Introducing the identification method of invalid security

constraints into the COO-based exact model can effectively

reduce the redundancy of the exact model and improve the

computational efficiency.

In order to solve SCUC problems with wind power fast and

effectively, an improved stochastic COO method is proposed in

this study. The main contributions of this method are as follows.

A discrete variable identification strategy is proposed and

introduced into the rough model, which lays a foundation for

constructing a rough model based on COO. This improvement

reduces the scale of solution space of a rough model and

improves the compactness and solving efficiency of the rough

model.

The non-effective security constraint reduction strategy in Wu

and Shahidehpour (2014) is introduced into the accurate model,

which forms the basis of building the accurate OO-based model for

continuous variables. This improvement could greatly reduce the

number of security constraints in the OO-based model, which will

promote the efficiency of the solution effectively. The correctness and

effectiveness of the proposed method can be verified by numerical

experiments on an IEEE 118-bus system.

The structure of this study is shown in the following sections.

A mathematical model of SCUC is introduced in chapter 2. The

improved COO algorithm is shown in chapter 3. The numerical

test and simulation results are set in chapter 4. The conclusion is

in chapter 5.

Uncertain unit commitment model
considering security constraints

In the security-constrained unit commitment problem

considering wind power uncertainty, not only the
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constraints of system power balance, generator capacity, and

network security should be considered but also the risk

constraints of positive and negative rotation should be

considered. In this study, the opportunity constraint is

used to characterize the rotation risk constraint, and the

model is established with the objective function of

minimizing the total operating cost.

Objective function and conventional
constraints

The SCUC problem of the wind power-integrated power

system usually includes two parts (Gao et al., 2008): first,

considering the uncertainty of the wind power output and

second, to ensure the safe and stable operation of the system.

In that proposition, the total operation costs should be

minimized. The objective function of this model can be

abstracted as follows:

minFGt � ∑24
t�1
∑M
i�1
[UGitYit(PGit) + UGit(1 − UGit−1)SGit], (1)

where FGt is the total operation cost. PGit, t is time and i is the

number of units. UGit are the active power output and startup/

shutdown status. Yit(PGit) is the operation cost of unit, and Sit(τi)
is the startup/shutdown cost of the unit.

The operation cost of the unit and startup/shutdown cost of

the unit can be represented as follows:

Yit(PGit) � αi + βiPGit + γiP
2
Git, (2)

Sit(τi) � S0i + S1i(1 − eτi/ωi), (3)

where αi,βi,γiare the operation cost parameters of units and ϖi is

the parameter of the startup/shutdown cost.

The constraint condition of decision variables in an SCUC

model is the key to ensure the safe and reliable operation of the

system.

i) The system power balance constraint is defined as follows:

∑M
i�1
UGitPGit + PWt � PLt + PDt, (4)

where PDt is the active load of the system at time t. PLt is the

network active power loss at time t. PWt is the active output

power of the wind turbine at time t.

ii) The capacity constraints of generators can be expressed as

follows:

PGimin ≤PGit ≤PGimax, (5)

where PGimin and PGimax are the upper limit and lower limit of

active power generation of unit i at time interval t, respectively.

iii) Minimum up and down time constraints are defined as

follows:

∑24
t�1
|UGit − UGit−1|≤ ni, (6)

where ni is the maximum startup/shutdown times of unit i in a

scheduling cycle.

iv) Minimum startup/shutdown time constraints are as follows:

(UGit−1 − UGit)(Xon
Git − Ton

Git)≥ 0, (7)
(UGit − UGit−1)(Xoff

Git − Toff
Git )≥ 0, (8)

where Xon
Git and X

off
Git are the startup and shutdown time of unit i

at time interval t, respectively. Ton
Git and Toff

Git are the minimum

startup/shutdown time available.

v) Ramping up and down constraints are as follows:

−ΔPdown
Gi ≤PGi − PGit−1 ≤ΔPup

Gi , (9)

where ΔPup
Gi and ΔPdown

Gi are the maximum ramping up/down

limits of unit i in an hour, respectively.

vi) Network security constraints are defined as follows:

A · Pt ≤Bt, (10)
among which

A � (T × Kp

−T × Kp
), (11)

Bt � (PLmax + T × KD × Dt

PLmax − T × KD × Dt
), (12)

where Pt is the unit active output power matrix at time t. T is the

shift factor matrix. Kp is the node-generator correlation matrix.

KD is the bus-load correlation matrix, and Dt is the load matrix at

time t. PLmax is the transmission capacity of the line L.

Risk constraints of positive and negative
rotation

The chance-constrained method (Wang et al., 2012) is

adopted to appropriately add the uncertainty factors caused

by wind power to the SCUC model in this study.

Considering the random UC of wind power, if the

deterministic method is used to obtain the spinning reserve,

the influence of wind power uncertainty on the system cannot be

measured accurately (Wu et al., 2016; Roald et al., 2017).

Therefore, based on the opportunity constraint theory, an

index reflecting the system operation risk is constructed. The

deterministic constraint of a traditional rotating reserve is

transformed into the uncertainty constraint, considering the
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operation risk, and the UC model, considering the uncertainty of

wind power generation, is constructed.

System positive and negative rotation reserve risk indicators

should be established as follows.

Qdt � q{PWt

∣∣∣∣PWt < �PWt&RGp < �PWt − PWt + RLp}, (13)
Qut � q{PWt|PWt > �PWt&RGn <PWt − �PWt + R Ln}, (14)

where Qdt and Qut are the probability of positive and negative

rotation reserve of the system at time t. q(PW) is the probability

density function of wind power. �PWt is the average wind power

output at time t. RGp and RGn are provided by the positive and

negative rotation standby systems, respectively. RLp and RLn are

positive and negative spinning reserve demands for conventional

units, respectively.

Using the chance constraint theory in an uncertain

environment, the rotation reserve of wind power integration is

changed from the deterministic inequality constraint to the

uncertain inequality constraint. It is necessary to ensure that

the probability of shortage of the positive and negative spinning

reserve capacity is less than a certain risk threshold. Therefore,

(13) and (14) can be transformed as follows:

Qdt(RGp) � ∫PWt+RLp−RGp

−∞
q(PWt)dPWt ≤ λ, (15)

Qu(RGn) � ∫+∞

�PW+RGn−R Ln

q(PW)dPW ≤ λ. (16)

This study assumes that the probability of the short-term

wind speed follows normal distribution (Bian et al., 2018). The

derivation processes of relations (13–16) and the introduction of

the wind power uncertainty in the model are described in

Appendix. The effectiveness of using the chance-constrained

method to describe the uncertainty of wind power generation

in a power dispatching problem has been used for Yang et al.

(2013).

SCUC model solved by an improved
COO algorithm

Ordered optimization (OO) is compared with the

traditional optimization method; the OO method is not to

find the global optimal solution but to find the “good enough”

solution to meet the project requirements. The process called

target softening (Ho et al., 1992) has good efficiency and

compatibility and can be combined with other optimization

methods.

Since the SCUC model is a mixed-integer programming

problem with relatively independent decision variables, a

rough model and accurate model are, respectively, constructed

for the discrete decision variable UGit and continuous decision

variable PGit, which can be decoupled during the ordinal

comparison process.

The general framework of the improved
COO algorithm

The improvement is based on the existing COO algorithm,

which is as follows.

i) By adding discrete variable identification to the rough model,

the normally open/normally closed elements in the discrete space can

be identified. Then, the remaining elements are filtered by the rough

model to reduce the calculation dimension of the rough model and

improve the efficiency of the rough model.

ii) Adding non-effective security constraints to the accurate

model can reduce the network security constraints in the accurate

model and eliminate the invalid security constraints. It can

reduce the number of network security constraints that need

to be identified, thus reducing the complexity of solving.

The following three steps of implementing the algorithm are

as follows.

Step 1: a roughmodel is established, andN feasible solutions are

preselected from the unit startup/shutdown solution space according

to the normal distribution. The number of these N feasible solutions

is closely related to the size of the solution space and constitutes a

feature setΩ.When the size of the solution space is less than 108, N is

usually set to 1000.

Step 2: s solutions from Ω are selected, and specific rules are

used to form a set s that contains at least k solutions good enough

with a probability of α%. Blind selection (BP) (Lau and Ho, 1997)

is used to determine the selected collection s. Its mathematical

model is as follows.

P(|G ∩ S|≥ k) � ∑min(g,s)
j�k

∑s−j
i�0

Cj
gC

s−i−j
N−g

Cs−i
N

Ci
sq

s−i(1 − q)i ≥ η, (17)

where P(·) is the alignment probability. g is the size of feasible

solutions in set G. s is the number of solutions in the selected set

S. k represents the alignment level that is measured by counting

how many good enough solutions exist in the set S. η is the

probability criteria, representing that it contains at least k good

enough solutions in the selected set S. η is usually set as 0.95. q is

the probability that an observed feasible decision is truly feasible.

Step 3:an accurate model is created to obtain the continuous

PGit variable. Minimizing the total cost of ownership with

performance constraints considered is the goal of the model.

Then, according to the state of each unit, the operation cost and

output of each unit are calculated according to the selected

quantity s. Finally, the solutions of the selected set are sorted

to obtain the optimal solution.

The construction of the rough models

Discrete variable identification model
The feasible region space is reduced by using the rough

model to perform prescreening; this may reduce the
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computational complexity of an accurate model. Considering the

time scale of the late dispatch being short, in this period, there are

always some units that are normally open/stopped, owing to the

impact of the load level and the scale of the install generations.

Therefore, if the normally open/stopped units can be identified

before prescreening the rough model, the scale of the SCUC

solution space can be efficiently reduced so that it may increase

the calculation efficiency.

A quadratic optimization model for identifying normally open/

stopped units is first constructed in this study. Assuming the units of

the system are all open in the model and then considering the main

constraints which are related to the output of generators, the

minimum operating cost is considered as the optimization

objective; the mathematical model is shown as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

minFGt � ∑24
t�1

∑M
i�1
Yit(PGit)

s.t.∑M
i�1
PGit + PWt � PDt + R

A · Pt ≤Bt

0≤PGit ≤PGimax

−ΔPdown
Gi ≤PGit − PGit−1 ≤ΔPup

Gi .

(18)

According to the solution result of the model, for all time

period t = 1, 2, 3,...., T. If PGit satisfies PGit >PGimin, the unit i is a

normally open unit. If PGit satisfies PGit < δPGimin, the unit i is a

normally stopped unit, and δ is the identification parameter

which is set at 0.05.

The normally open/stop generators can be effectively

identified by the model, and the main reason is as follows.

The power generation rights, equal opportunity, and free

competition ideas are integrated into the design of the model,

which may give all units the opportunity of opening. Then, the

operation cost is used as the target to perform optimal

calculation. If the unit output power in the whole scheduling

period is in the low level, which means the units cannot obtain

the share of electricity by competition in the previous load level.

Therefore, they can be treated as normally stopped units. On the

contrary, if the unit output is higher than the minimum output in

the entire scheduling period, it can be considered that the units

can always get more power in the competition. Thus, they can be

considered as normally open units.

Although the optimization model with constraints belonging

to the quadratic optimization model and the solution is complex,

it only needs to be solved once. It is very effective in reducing the

dimensions of the solution space. Overall, adding that model into

the rough COO model can improve the overall computational

efficiency.

The construction of a COO-based rough model
In order to realize the decoupling process of discrete and

continuous variables in solution, according to the startup/

shutdown state of the constraints, the rough model is built

and the solution space of unit commitment is screened out.

These are power balance constraints, ramping up constraints,

and minimum up and down constraints. The mathematical

description is as follows.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑M
i�1
UGitPGimax + PWt ≥PDt + RDp,

∑M
i�1
UGitPGimin + PWt ≤PDt − RDn,

∑M
i�1
[UGitΔPup

Gi + PGimin(UGit − UGit−1)]≥ |PDt − PDt−1|,

∑M
i�1
[UGitΔPdown

Gi + PGimin(UGit − UGit−1)]≥ |PDt − PDt−1|,

∑24
t�1
|UGit − UGit−1|≤Ni.

(19)

The parameters in the aforementioned formula are

mentioned previously and will not be repeated here.

The solution of the rough model
The solving ideas of this study used a discrete variable to

identify the normally open/stopped units and to optimize those

in the model. After that, the COO-based rough model is used to

perform the prescreening for optimizing units, which may form

the solution space. The pseudo-code is shown as follows.

The discrete variable identification model is constructed and

solved; t=1; s=1; i=1; while i≤Mdo:

if t ∈ [1, 24], PGit >PGmin; then, optimization normally open

units;

else if t ∈ [1, 24], PGit < δPGmin; then, optimization normally

stopped units;

else add to the set of units that are not optimized, i=i+1;

end if

while s≤Ndo:

Randomly generating one-time unit startup/shutdown plan

that the constraint is not optimized. Formula (19) is the

constraint, and the branch and bound method is used to solve

the unit startup/shutdown state matrix of the following time;

s=s+1

end if

End algorithm

The construction of an accurate model

Non-effective security constraint reduction
A modern power system has a large scale and many nodes.

Therefore, the solution of a power flow equation and checking of

network security constraints are the two most time-consuming

steps in solving SCUC problems. However, research shows that

only a small part of network constraints is effective and can limit

the formation of feasible regions (Gao et al., 2008). Therefore, if

ineffective constraints can be identified quickly, the model will
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greatly enhance the compactness and reduce the difficulty of

solving.

In this study, the definition of non-effective security

constraints is that if a constraint is removed, the feasible

region of the model is the same as the previous one. The

constraint is a non-effective constraint. According to the

definition, the necessary and sufficient conditions for the

identification of non-effective security constraints, which are

the non-effective constraint and feasible regions, do not have

any intersection or the intersection is just a vertex of the

simple form. According to the sufficient and necessary

conditions mentioned previously, constructing the feasible

region optimization model after cutting security constraint

condition A{j}(PG1t, PG2t,/PGMt)T ≤B{j}
t is shown as follows.

Using Eq. 20, it can identify the non-effective security

constraints precisely. Due to the requirement of solving a

constrained optimization model, the calculation is much

more complex. Therefore, the constraints of Eq. 20 can be

relaxed to construct a sufficient rather than a

necessary condition for identifying ineffective security

constraints.

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Z2 � max∑M
i�1
ajiPGit,

s.t.0≤PGit ≤PGimax,

∑M
i�1
PGit + PWt � PDt + R.

(20)

Due to the fact that Z1 ≤Z2, it can be considered that

when Z2 ≤Bj,t, the constraint

A−{j}(PG1t, PG2t,/PGMt)T ≤B−{j}
t is a non-effective one. In

order to carry out further simplification of the calculation,

formula (20) is solved analytically. Thus, the abandoned

solution model can be proposed; the sufficient but not

necessary condition used the known parameters to

identify the non-effective constraints, which are shown as

follows.

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
∑k−1
i�1

�Pi ≤Dt − Pw,t ≤∑k
i�1

�Pi,

∑k−1
m�1

(aj,im − aj,ik)�Pim + aj,ik(PDt − PWt)≤Bj,t.

(21)

Accurate model construction
A model based on exact COO can accurately sort the

solutions in the selected set while ensuring that all solutions

satisfy the model constraints. Identifying and reducing

invalid security constraints is the foundation. An accurate

COO-based model is constructed based on the objective

function of the SCUC model and the constraints

associated with continuous variables PGit, which is shown

as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

minFGt � ∑24
t�1
∑M
i�1
Yit(PGit)

s.t,
A · Pt ≤Bt,
PGimin ≤PGit ≤PGimax,

∑M
i�1
UGitPGit + PWt � PDt.

(22)

The parameters in the aforementioned formula are

mentioned previously and will not be repeated here.

Numerical simulation

The numerical tests were conducted on a modified IEEE 118-

bus system consisting of 54 thermal generators, 91 demand sides,

and three wind farms. Wind farms with a rated power of

100 MW, 200 MW, and 250 MW are located at buses 144, 54,

and 95, respectively, and their active power curves are shown in

Figure 1A. The positive rotating standby of traditional units

accounts for 8% of the maximum load of the system, the negative

FIGURE 1
(A) The output power curve of wind farms and (B) Safety
constraints cut result chart.
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rotating standby accounts for 2% of the minimum load of the

system, and the risk index of the rotating standby is 0.01. The

network structure, generator parameters, and loads can be

obtained with reference to Chen et al. (2015). The numerical

test is realized on the computer by MATLAB 8.0 and the

optimizer CPLEX 12.5. First, the rough model is established

by MATLAB programming and then solved by CPLEX. The

MATPOWER toolbox is used to solve nonlinear programming

problems in exact models.

The opportunity-constrained method is used to obtain the

system rotational standby. The wind farm is shown in Table 1A.

In order to verify the validity of a discrete identification model, it

is used to identify unit commitment states, and the results are

compared with the final results that are based on traditional BD.

The results are shown in Table 1B.

By comparing the results, in 20 normally open units, the

discrete variable identification model has identified three; the

recognition rate is 15%. However, in the 31 normally stopped

units, the model identifies 20; the identification rate is 64.5%.

There are no identification errors that occurred during the whole

recognition process.

The comparison shows that the discrete variable recognition

model proposed in this study not only has the high rate of

identifying normally stopped units but also has high recognition

accuracy. When it is incorporated into the COO-based rough

model, the computational dimension of the rough model can be

reduced, and the solving efficiency can be improved.

In order to verify the validity of the proposed security

constraint reduction strategies, formula (22) is used to cut the

non-effective security constraints. The remaining security

constraints after cutting are shown in Figure 1B.

Figure 1B shows that the IEEE 118 system in each period has

372 security constraints, so there are 8928 security constraints in

24 h. Through the non-effective security constrained cut model,

there are 8090 non-effective security constraints that have been

cut in a total of 24 h. The cutting proportion reached above 90%.

The aforementioned results show that there is a large amount of

redundant information in the security constraints of the existing

SCUCmodel, and the non-effective security constraint reduction

strategy can effectively eliminate them.

From each time interval, the number of remaining security

constraints is between 15 and 38. The trend of variation is related

to the load change. The reason is that when the load is heavy, the

safety margin of the whole system will drop. Thus, there are more

lines that need to be checked, which may produce much more

effective security constraints. On the contrary, if the load is light,

the number of effective security constraints will reduce.

To verify the validity of the ineffective security constraints

introduced in the COO-based accurate model, each start/close

scenario for the selected set S is solved using the improved COO-

based accurate model and the traditional COO-based model. The

operating time is shown in Table 2B. It is necessary to point out

that the simulation is carried out on the basis of the improved

COO-based rough model proposed in this study.

TABLE 1A Spinning reserve of each wind farm (MW).

Reserve Wind farm
1

Wind farm
2

Wind farm
3

Spinning reserve
for the
system

Total reserve

Positive spinning reserve 10 19 24 480 533

Negative spinning reserve 10 19 24 44 97

TABLE 1B Result of discrete variable identification.

Unit number

Discrete variable identification
model

BD

Normally open units 11, 27, and 39 4, 5, 10, 11, 20, 27, 29, 35, 36, 39, 40, 43, and 45

Normally stopped units 1, 2, 3, 6, 8, 9, 13, 15, 17, 18, 31, and 32 1–3, 6–9, 12–19, 22–24, and 26

33, 38, 41, 42, 46, 49, 50, and 52 31–33, 38, 41, 42, 44, and 46–52

TABLE 2A Rough model performance.

Time
of identifying model(s)

Total time(s)

Before improvement — 153.18

After improvement 2.89 113.33

Frontiers in Energy Research frontiersin.org07

Zhang et al. 10.3389/fenrg.2022.1033099

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.1033099


It is necessary to point out that the simulation is carried out on the

basis of the improved COO-based rough model proposed in

Table 2A, which shows that the time to solve the rough model is

increased by 40 s after the discrete variable identification strategy is

added to the COO-based roughmodel. Although the discrete variable

recognition model requires 2.89 s, the whole dimension of the rough

model is decreased. Therefore, as a result, the solving efficiency of the

improved COO-based rough model has been improved.

Table 2B also shows the non-effective security constraint

reduction strategy in this study can effectively identify non-

effective security constraints. The whole calculation process takes

only 0.09 s, and the total time is reduced by nearly 42.43 s. It can be

seen that incorporating an ineffective security constraint reduction

strategy into an accurate COO-based model can effectively improve

the computational efficiency.

The correctness and validity of the whole
algorithm

In this study, the improved COO algorithm is used to solve the

SCUC model to verify the correctness and effectiveness of the

proposed method. The cost of the optimal solution and the

start–stop state of the conventional unit are shown in Table 3A.

To compare the validity and correctness of the proposed

methods, we use the following twomethods to solve SCUCproblems.

Method 1 is a sequential optimization algorithm of a

document (Lee and Lin, 2012).

Method 2 is a mixed-integer programming based on BD.

The calculation results and computation time of the three

methods are shown in Table 3B.

As shown in Table 3B, compared with the Benders

decomposition method, the COO method has obvious

advantages both in calculating the efficiency and accuracy.

Compared with the method in Wu and Shahidehpour (2014),

the improved COO algorithm reduces the total cost by about

0.45% but increases the computational efficiency by nearly 18.85%.

There are some reasons for the solving efficiency of the

improved COO algorithms being increased. The COO-based

rough model uses a discrete variable identification strategy,

which reduces the dimension of the solution. An ineffective

security constraint reduction strategy is introduced in the exact

model based on collaborative work, eliminating the ineffective

security constraints in the exact model. The aforementioned

improvements improve the compactness of the algorithm and

further improve the efficiency of the algorithm.

Summary

In order to reach the goal of solving the uncertain SCUC

problems with wind power fast and effectively. Based on the

traditional COO theory, this model introduces discrete variable

identification and ineffective security constraint reduction

strategies. This study proposes an improved stochastic COO

method. The simulation results based on standard examples

show some advantages of this method.

i) Although solving the discrete variable identification model

needs some time, it can reduce the dimension of rough model’s

solution space. Therefore, as a result, introducing the discrete

variable identification strategy can improve the calculation

efficiency of the COO-based rough model.

ii) The invalid security constraint reduction strategy can identify

more than 90% of invalid security constraints in the short term.

Introducing it into the precise model based on COO can effectively

reduce the computational redundancy and improve the

computational efficiency.

TABLE 3A Start–stop scheme.

Total cost = 1,461,876.48$

Unit Time (1–24 h)

10 111111111111111111111110

14 000000000000000111111111

16 111111111111111111111000

19 111111111111111111111000

21 111111111111111111111000

23 111111111111111111111000

25 111111111111111111111100

47 000000001111111111111111

1–3, 6, 8, 9, 13, 15, and 17 000000000000000000000000

18, 22, 24, 26, 31–33, 36, 38, and 39

41, 42, 46, 49, and 50–52

4, 5, 7, 11, 12, 20, 27–30, and 34–35 111111111111111111111111

37, 40, 43–45, 48, and 53–54

TABLE 3B Performance tables of each algorithm.

CPU running time(s) Total fee($)

Method 1 338.64 1,460,620.21

Method 2 2857.00 1,467,256.55

This study 274.79 1,461,876.48

TABLE 2B Accurate model performance.

Time
of identifying model(s)

Total time(s)

Before improvement — 203.89

After improvement 0.09 161.46
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iii) The improvement strategy in this study has improved the

compactness of the COO algorithm. Compared with the

traditional COO algorithm, the improved random COO

algorithm improves the solving efficiency greatly. At the same

time, compared with other methods, it has obvious advantages

both in accuracy and efficiency.

A discrete variable recognition strategy is proposed and

incorporated into the rough model, which is the foundation of

building a COO-based rough model. This improvement reduces

the scale of solution space of the rough model, which could

promote the compactness of the rough model and the

efficiency of the solution. The non-effective security constraint

reduction strategy [12] is introduced into the accurate model,

which is the base of building the accurate OO-based model for

continuous variables. This improvement could greatly reduce the

number of security constraints in the OO-based model, which will

promote the efficiency of the solution effectively. The correctness

and effectiveness of the proposed method in this study can be

tested from the numerical test on the IEEE 118-bus system.
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