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To aim at the problemof inaccurate prediction of the remaining useful life of the

lithium-ion battery, an improved grey wolf optimizer optimizes the deep

extreme learning machine (CGWO-DELM) data-driven forecasting method is

proposed. This method uses the grey wolf optimization algorithm based on an

adaptive normal cloud model to optimize the bias of the deep extreme learning

machine, the weight of the input layer, the selection of activation function, and

the number of hidden layer nodes. In this article, indirect health factors that can

characterize the degradation of battery performance are extracted from the

discharge process, and the correlation between them and capacity is analyzed

using the Pearson coefficient and Kendel coefficient. Then, the CGWO-DELM

prediction model is constructed to predict the capacitance of the lithium-ion

battery. The remaining useful life of lithium-ion batteries is indirectly predicted

with a 1.44 A·h failure threshold. The prediction results are compared with deep

extreme learningmachines, long-termmemory, other predictionmethods, and

the current public prediction methods. The results show that the CGWO-DELM

prediction method can more accurately predict the remaining useful life of

lithium-ion batteries.
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1 Introduction

The lithium-ion battery is a rechargeable battery, usually used in portable electronic

equipment and electric vehicles (Venugopal, 2019), and is widely used in the military and

aerospace fields. In the process of use, with the increase in charge and discharge times and

the temperature change, the performance of the lithium-ion battery will gradually

decrease, which further affects its safety and service life. There may even be safety

incidents such as fires and explosions. Long-term use may affect people’s life and property

safety. Therefore, it is of great significance to study the remaining functional life

prediction of lithium-ion batteries.
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At present, there are three main prediction methods for

lithium-ion battery remaining useful life (RUL): mechanism-

based model (Fang et al., 2021), semi-empirical model (Varini

et al., 2019), and data-driven model (Ali et al., 2022; Pugalenthi

et al., 2022). The mechanism-based prediction method is to

establish a degradation model by analyzing the internal

structure of the lithium-ion battery, which can be divided into

three categories: electrochemical model, equivalent circuit model,

and empirical model. The semi-empirical model has a small

amount of calculation and is suitable for general use scenarios.

The data-driven prediction method does not need to analyze the

internal structure of the lithium-ion battery. It constructs a

degradation model to predict the RUL of lithium-ion batteries

by analyzing the operational data of lithium-ion batteries

detected in real-time, including an artificial neural network

(Qin et al., 2019; Driscoll et al., 2022), support vector

machine (Feng et al., 2019) and other prediction methods.

Lithium-ion batteries are widely used in many fields. Hu et al.

(2020) identify and discuss upcoming challenges and future

research directions. The prediction of RUL for Li-ion batteries

has become a research hotspot, and the prediction of RUL for the

lithium-ion battery has become a research hotspot. In order to

reduce the noise of capacitance data, Zhang et al. (2015) used

wavelet analysis to reduce noise, improved the relevance vector

machine (RVM) by differential evolution, and proposed a new

prediction method. Pugalenthi et al. (2022) used the neural

network with adaptive Bayesian for solving the problem that

the optimization algorithm is easy to fall into optimum local

learning to predict the remaining useful life of the lithium-ion

battery. Lyu et al. (2022) simultaneously estimated the health

status and predicted the remaining useful life of lithium-ion

batteries through the optimized relevance vector machine

framework. To solve the problem that particle filter (PF)

cannot update particle weight and particle degradation in the

prediction stage, Zhang et al. (2020) used the F distribution

particle filter and kernel smoothing algorithm to predict the

remaining useful life of aircraft lithium-ion battery. For example,

Chen et al. (2021) presented a hybrid algorithm combining BLS

and RVM, which broadens the research direction of the hybrid

prediction method for lithium-ion battery life. To improve state

of health (SOH) estimation and RUL prediction, Li et al. (2020)

put forward a variant long short-term memory neural network.

By further extracting the health index of battery aging, the

improved extreme learning machine (ELM) is used to

complete the feature extraction and is more competitive than

other algorithms (Tang and Yuan, 2021). Hailin Feng et al. gave

improved Gaussian process regression for SOH and RUL

prediction of lithium-ion batteries (Feng and Shi, 2021).

Aiming at the problems of low long-term prediction accuracy,

unstable model output, and complicated selection of key

parameters, Yufan Ji et al. proposed an adaptive differential

evolution algorithm to optimize the prediction method of the

monotone echo state network (Ji et al., 2021). Zhang et al. (2018)

completed the prediction of the remaining lifetime of Li-ion

using a long and short-term memory cycle neural network to

assess the reliability of Li-ion batteries. To prevent surprises,

Jiang et al. (2021) used a multicore support vector machine to

optimize the parameters for predicting the cyclic aging of Li-ion

batteries. In order to enhance the prediction accuracy of the

remaining lifetime of Li-ion, Wang et al. (2022) designed a bi-

directional long and short-term memory model based on the

attention mechanism to accomplish the prediction of the

remaining lifetime of Li-ion. Rouhi Ardeshiri and Ma, (2021)

designed a gated cyclic unit-cyclic neural network to manage the

improvement and optimization of Li-ion batteries. Kim et al.

(2021) designed a novel practical life cycle prediction method

based on the entropy estimation of lithium-ion batteries, which

has an accuracy of at least 94%. To reduce the cost of cycle life

testing, Wang et al. (2022) used deep reinforcement learning to

predict the long-term degradation trend of lithium-ion batteries.

Li et al. (2019) proposed a new hybrid Elman-LSTMmethod that

combines an empirical model decomposition algorithm with

long and short-term memory and Elman neural networks for

remaining battery life prediction. Chen et al. (2022) designed a

Transformer-based neural network to accomplish the prediction

of the remaining life of lithium ions. To better improve the

generalisability of lithium-ion prediction algorithms, Kim et al.

(2021) proposed a deep learning-based method for predicting the

health of lithium-ion batteries.

The Grey wolf optimizer (GWO) (Mirjalili et al., 2014) is an

efficient group intelligence-like metaheuristic algorithm.

However, it has the disadvantage of slow convergence and

easily falls into local optimal solutions. The grey wolf

optimization algorithm based on the adaptive normal cloud

model (CGWO) (Zhang et al., 2021) can effectively solve

these problems. Extreme learning machine (ELM) (Samal and

Dash, 2021) is a very popular class of machine learning

algorithms. In the past decade or so, the theory and

FIGURE 1
The network structure of ELM.
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applications of ELM have been widely studied. From the

perspective of learning efficiency, extreme learning machines

have the advantages of few training parameters, fast learning

speed, and strong generalization capability. The combination of

ELM and deep learning produces a deep extreme learning

machine (DELM) (An et al., 2022), which significantly

improves learning speed and other aspects and can solve the

prediction problem more effectively. However, the selection of

hyperparameters of DELM affects its prediction effect, and the

improper selection of hyperparameters can lead to poor

prediction accuracy. Hence, this paper proposes a new

method for indirectly predicting the remaining useful life of

lithium-ion batteries by optimizing the hyperparameters of a

deep extreme learning machine using an improved grey wolf

optimization algorithm to predict the capacitance of lithium-ion

batteries. By comparing and analyzing the prediction results of

the proposed CGWO-DELM and SVR, BP, LSTM, and DELM, it

can be concluded that the proposed method can predict the

remaining useful life of lithium-ion batteries more accurately.

The main contributions of this paper are as follows.

(1) Optimized hyper-parameters of deep extreme learningmachine

using grey wolf optimizer based on cloud-normal model.

(2) Proposed new health factors.

(3) Predicted the remaining useful life of lithium-ion batteries

using the proposed method.

(4) Validated the performance of the proposed prediction

method.

(5) Compared with widely known prediction methods and

publicly available prediction results.

2 Model construction

2.1 Extreme learning machine

An extreme learning machine (ELM) is a new single hidden

layer feedforward neural network learning algorithm. The

parameters between the hidden layer and other layers are

randomly established without adjustment (Samal and Dash,

2021). ELM maintains good approximation capability, fast

training speed, less manual intervention, strong generalization

capability, etc.

The sample ensemble of model inputs and outputs is

hypothesized to be � {xi|1≤ i≤N} , and Y � {yi|1≤ i≤N}. N
is the total number of samples. xi expresses the i th training

sample for the input data. yi represents the i th output sample of

the output data. There are n neurons in the input layer, m

neurons in the hidden layer, and one neuron in the output

layer. X and Y are respectively expressed as

X �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
x11 x12 / x1N

x21 x22 / x2N

..

. ..
.

1 ..
.

xn1 xn2 / xnN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (1)

Y � [y11 y12 / y1N ] (2)

The hidden layer output of ELM is H � {hi|1≤ i≤m}. m is

the number of neurons in the hidden layer. In space, the

mapping relationship between the input layer and a hidden

layer of ELM is

H � g(α · X + b) (3)

FIGURE 2
Training process of DELM model.
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where g(·) is the activation function, α represents the input

weight of the input layer and the hidden layer, and b denotes the
bias of the hidden layer. The commonly used activation functions

are Sigmoid(x) � 1/(1 + e−x), Tanh(x) � (1 − e−2x)/(1 + e2x),
ReLU(x) � max(x, 0) and so on. Then α and b are denoted

respectively as

α �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
α11 α12 / α1n
α21 α22 / α2n
..
. ..

.
1 ..

.

αm1 αm2 / αmn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (4)

b � [b1, b2,/, bm]T (5)

Based on satisfying the error requirements, if the output of

ELM can gradually approach the output sample Y of the model,

the output of the hidden layer is calculated as

Hβ � Y (6)
where, H indicates the hidden layer output matrix, and its

calculation is shown in Eq. 7. β is the output weight matrix

between the hidden layer and the output layer, and its calculation

is represented in Eq. 8.

H � ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ g(α1x1 + b1) / g(αmx1 + bm)
..
.

1 ..
.

g(α1xN + b1) / g(αmxN + bm)
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (7)

β � [βT1 , βT2 ,/, βTm]T (8)

if the least square solution of min
β

‖Hβ − Y‖ is obtained, the

output weight matrix β is

β � H†Y (9)
where H† expresses a Moore-Penrose generalized matrix of H.

ELMminimizes the output error of the model by seeking the least

square solution of β. The training of the model is completed

when the least squares solution of β is obtained. The network

structure of ELM is given in Figure 1.

2.2 Deep extreme learning machine

In the face of large data samples, ELM cannot achieve

satisfactory results. Since the weights and biases in the whole

model are randomly generated, it may cause some neuron nodes

to fail, thus affecting the prediction effect of the model.

Therefore, Huang et al. combined deep learning with extreme

learning machines and introduced the concept of an automatic

encoder based on ELM (An et al., 2022). The extreme learning

machine of multi-layer structure is constructed, namely the deep

extreme learning machine (DELM).

DELM is a derivative algorithm of ELM, which is equivalent to

connecting multiple ELMs with equal dimensions. DELM adopts

the ELM automatic encoder in unsupervised learning mode to

train the parameters of the multi-layer neural networkmodel layer

by layer and incorporates the feature that ELM parameters do not

need fine tuning so that the learning speed is much faster.

DELM is established based on a multi-layer network

structure, which is divided into two parts: unsupervised

hierarchical feature representation and supervised feature

classification. This paper improves DELM for regression

prediction, involving “unsupervised hierarchical feature

representation.” “Unsupervised hierarchical feature

representation” is an automatic encoder based on ELM, which

is used to extract multi-layer sparse features of input data. Before

unsupervised feature learning, the original input data should be

transformed into ELM random feature space. It helps to extract

the hidden information in the training samples. Then, anN-layer

unsupervised learning network obtains sparse high-level features.

The output of the hidden layers of each DELM can be denoted as

H i � g(H i−1 · β) (10)

whereH i renders the output of layer i,H i−1 signifies the output of
layer i − 1, g(·) is the activation function of the hidden layer, β

expresses the output weight. Each deep extreme learning

machine layer is an independent module as a separate feature

extractor. Once the features of the previously hidden layer are

extracted, the weights or parameters of the current hidden layer

will be fixed without fine-tuning.

The automatic encoder uses the coded output and restores

the original input by minimizing the reconstruction error.

Mapping input data X to high dimensional representation.

Then, the data dimension is reduced through specific

mapping, and the features are extracted more effectively.

DELM does not need a reverse fine-tuning process, which

significantly reduces the reconstruction error and makes the

output close to the original input. After training at each layer,

the advanced features of the original data can be learned. The

training process of the DELM model is diagrammed in Figure 2.

FIGURE 3
The social rank of grey wolves.
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FIGURE 4
Mechanism of wolf tracking prey.

FIGURE 5
Distribution of typical cloud droplets.
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2.3 Grey wolf optimizer

Most grey wolves like to live in groups, with an average of

5–12 wolves in each group. They have a strict social hierarchy.

Grey Wolf Optimizer (GWO) is a swarm intelligence

optimization algorithm inspired by grey wolf hunting

activities (Mirjalili et al., 2014). This algorithm has the

advantages of strong convergence, fewer parameters, and easy

realization.

Three grey wolves with the best fitness in the wolves are

marked as α, β and δ, and the remaining grey wolves are marked

as ω. The first layer of the pyramid is a leader in a population

called α. The second layer is β, mainly responsible for assisting α

in making decisions. The third level is δ, which obeys the

decision-making orders of α and β. At the bottom of the

pyramid is ω, which is primarily responsible for the balance

of relationships within the population. The social classes in the

grey wolf population are high to low, which are α, β, δ and ω (as

shown in Figure 3).

The optimization process of GWO is mainly guided by the

three best solutions (α, β, δ) in each generation. The specific

optimization process of GWO includes social stratification,

tracking, enclosure, attacking prey, and searching for prey,

and the core part is hunting.

The grey wolf searches for prey and surrounds it, which is

expressed in Eq. 11 and Eq. 12. Eq. 11 is used to calculate the

distance between individuals and prey. Eq. 12 is the position

update formula of the grey wolf.

D � ∣∣∣∣C · Xp(t) − X(t)∣∣∣∣ (11)
X(t + 1) � Xp(t) − A · D (12)

where Xp is the position vector of the prey, X refers to the

position vector of the wolves, D expresses the distance, t denotes

the number of iterations. A and C are coefficient vectors. The

formula is as follows:

A � 2a · r1 − a (13)
C � 2r2 (14)

where a is the convergence factor and decreases linearly from 2 to

0 as the number of iterations increases. r1 as well as r2 are

random vectors with mode lengths of size within [0, 1].

Wolf α, β and δ guide other wolves to search for the target,

which uses the positions of the three to determine the location of

FIGURE 6
Process of CGWO-DELM.
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the prey. The other grey wolf individuals update their positions

according to the position of the optimal grey wolf individuals and

gradually approach the prey. The mechanism of wolves tracking

prey is shown in Figure 4.

In the process of simulating the grey wolf search, all search

positions are updated according to the position of the current

three optimal solutions. The mathematical model of grey wolf

individual tracking prey position is described as follows:⎧⎪⎨⎪⎩ Dα � |C1 · Xα(t) − X(t)|
Dβ �

∣∣∣∣C2 · Xβ(t) − X(t)∣∣∣∣
Dδ � |C3 · Xδ(t) − X(t)|

(15)

whereDα,Dβ, andDδ represent the distances between α, β, δ and

other individuals, respectively. Xα, Xβ and Xδ are the current

positions of α, β and δ separately. X(t) is the position of the

current grey wolf. Eq. 16 defines the step length and direction of

the individual ω in the wolves towards α, β and δ. Eq. 17 defines

the final location of ω.⎧⎪⎨⎪⎩ X1(t + 1) � Xα(t) − A1 · Dα

X2(t + 1) � Xβ(t) − A2 · Dβ

X3(t + 1) � Xδ(t) − A3·Dδ

(16)

X(t + 1) � 1
3
(X1(t + 1) + X2(t + 1) + X3(t + 1)) (17)

where X(t + 1) refers to the location of the next generation of the

updated grey wolf. When |A|> 1, the grey wolf moves away from

the prey. When |A|< 1, the grey wolf moves closer to the prey.

2.4 Grey wolf optimization algorithm
based on adaptive normal cloud model

The Grey wolf optimization algorithm based on the

adaptive normal cloud model (CGWO) uses Tent mapping

to generate the initial grey wolf population (Zhang et al., 2021).

The cloud model has three mathematical parameters of

expectation Ex, entropy En , and super entropy He, and the

increase of En will cause the expansion of cloud droplet range,

and the increase of He will cause the increase of cloud droplet

dispersion. The normal cloud droplet distribution is shown in

Figure 5.

A forward normal cloud generator is an algorithm for

generating cloud droplets that obey the normal distribution,

which can be defined in the following form:

[X1,X2,/,XNd] � Gnc(Ex, En,He,Nd) (18)

where Nd is the desired number of cloud drops to be generated.

The normal cloud model is introduced based on Tent

mapping for population initialization. The wolf group position

update mechanism is explored with the initial optimal position as

the expectation of the normal cloud model. The update formula

is expressed as

X(t) � Gnc(Xp(t), En,He,Nd) (19)

where Xp(t) expresses the location of the current optimal

individual. By adjusting En and He, the range and dispersion

of the position updated of the wolves can be controlled.

According to the foraging behavior of wolves, En and He can

be adjusted adaptively. The formula is as follows:

En � ω × (maxiter − t

maxiter
)τ (20)

He � En × 10−ξ (21)

where ω ∈ (0, 1), τ and ξ are positive integers. t expresses the

current iteration number. maxiter is the maximum iteration

number.

2.5 CGWO-DELM prediction method

The bias and input layer weights of extreme learning

machine-autoencoder (ELM-AE) are randomly generated

orthogonal matrices during the pre-training process.

Moreover, the bias and input layer weights are not updated

when the parameters are updated, which results in the prediction

TABLE 1 NASA battery experimental dataset information.

Group Number T/°C CV/V CC/A DC/A TT/%

1 B0005, B0006, B0007, B0018 24 2.7, 2.5, 2.2, 2.5 1.5 2 30

2 B0025, B0026, B0027, B0028 24 2.0, 2.2, 2.5, 2.7 1.5 4 30

3 B0029, B0030, B0031, B0032 43 2.0, 2.2, 2.5, 2.7 1.5 4 30

4 B0033, B0034, B0036 24 2.0, 2.2, 2.7 1.5 4(B33-34), 2(B36) 20

5 B0038, B0039, B0040 24, 44 2.2, 2.5, 2.7 1.5 1, 2, 4 20

6 B0041, B0042, B0043, B0044 4 2.0, 2.2, 2.5, 2.7 1.5 4, 1 30

7 B0045, B0046, B0047, B0048 4 2.0, 2.2, 2.5, 2.7 1.5 1 30

8 B0049, B0050, B0051, B0052 4 2.0, 2.2, 2.5, 2.7 1.5 2 –

9 B0053, B0054, B0055, B0056 4 2.0, 2.2, 2.5, 2.7 1.5 2 30
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effect of DELM being affected by the random bias and random

input layer weights of each ELM-AE.

In order to optimize the performance of DELM, the CGWO-

DELM prediction method is proposed for lithium-ion battery

RUL prediction using CGWO to optimize the bias of DELM, the

input layer weights, the selection of activation function, and the

number of hidden layer nodes. The flow of the proposed

algorithm is shown in Figure 6, and its main steps are as follows.

(1) Data pre-processing: The raw data is pre-processed, and the

processed data is divided into training and test sets.

(2) Model parameter setting: The population size is 30, and the

number of iterations is 100 in CGWO. The number of

hidden layers is 2, the number of hidden layers is 1–5, the

bias and input layer weights are 0–1, and the activation

functions are chosen from sig, sin, hardlim, tribas and radbas

in DELM.

(3) Fitness function setting: The mean square error (MSE)

between the actual and predicted capacity values is used

as the fitness function, i.e.,

MSE � 1
n
∑n
i�1
(ŷi − yi)2 (22)

where n expresses the number of samples, y represents actual

capacity values, and ŷ refers to predict capacity values.

(4) CGWO optimizes DELM: Tent mapping was used to

initialize the grey wolf population. After that, the fitness

value of each wolf is calculated, and the position of each

grey wolf is updated. The CGWO-DELM prediction

model is constructed by iterating continuously until

the maximum number of iterations is reached, the

FIGURE 7
Health factor curve. (A) Variation of capacitance with the number of cycles. (B) Variation of health factor M1 with the number of cycles. (C)
Variation of health factor M2 with the number of cycles. (D) Variation of health factor M3 with the number of cycles.

TABLE 2 Correlation analysis.

Model Pearson coefficient Kendall coefficient

M1 M2 M3 M1 M2 M3

B0005 0.9962 0.9712 0.9904 0.9652 0.9267 0.9522

B0006 0.9949 0.9840 0.9923 0.9793 0.9330 0.9796

B0007 0.9978 0.9689 0.9968 0.9582 0.9001 0.9565

B0018 0.9978 0.8831 0.9948 0.9665 0.7412 0.9572
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best parameters are output, and the best parameters

are used to construct the CGWO-DELM prediction

model.

(5) Remaining life prediction of lithium-ion batteries: The

trained model is validated with test data to complete the

RUL prediction for lithium-ion batteries.

3 Construction and analysis of health
factors

In the actual work of the battery, it is difficult to obtain the

direct parameters such as capacity and internal resistance, which

not only requires much money but also ensures the reliability of

the parameter extraction environment, which undoubtedly

increases the difficulty of the experiment. Therefore, indirect

data that can be directly observed and are not affected by the

environment are usually used for lithium-ion battery RUL

prediction.

This article uses data from NASA’s 18,650 battery aging

dataset. NASA conducted a total of nine aging cycles of lithium-

ion batteries. These data are available at: http://ti.arc.nasa.gov/

project/prognostic-data-repository. Each group consisted of

three or four lithium cobaltate batteries with a rated capacity

of 2 A·h. Each charge and discharge cycle included three parts:

charging, discharging, and impedance measurement. The

battery continuously conducts charge-discharge cycle test

experiments until it reaches the life failure threshold. Nine

sets of battery-specific experimental data are shown in Table 1,

including temperature (T), cut-off voltage (CV), charging

current (CC), discharge current (DC), and termination

threshold (TT).

It can be seen from the experimental data in Table 1 that

the first group meets the experimental conditions of the

conventional charge-discharge cycling test, which can obtain

better capacity degradation characteristics. The other groups

change the experimental conditions, such as temperature

or discharge current, which accelerates the aging experiment

and does not conform to the performance degradation trend

of lithium-ion batteries under normal conditions. Moreover,

the first group of experiments ended with the batteries

reaching end-of-life, while the other groups either had

decayed or were discharged, with some batteries having

particularly low discharge capacities, which had a greater

impact on the experiments. Therefore, this paper adopts the

representative first group of lithium-ion battery data set for

research.

Due to the influence of various factors in the use of lithium-

ion batteries, the voltage and current of lithium-ion batteries will

be affected to a certain extent. The use of these parameters as

health factors has certain limitations. Considering the feasibility

of the health factor and the working process of lithium-ion

batteries, this paper selects the time when the voltage is

reduced from 3.8 V to 3.5 V (M1). When the temperature

increases from 32°C to 36°C (M2), the voltage load is reduced

from 2.8 V to 2.5 V (M3) as the health factor, which predicts the

TABLE 3 Parameter setting of the algorithm.

Algorithms Parameters Value

CGWO-DELM Population size 30

Maximum number of iterations 100

Regularization coefficient 5

Hidden layers of ELM-AE 2

Range of hidden layer nodes [1, 5]

BP Number of hidden layer neurons 1

Maximum number of iterations 1,000

End threshold 0.001

Learning rate 0.05

DELM The number of hidden layers and nodes of ELM-AE [2, 3]

Activation function hardlim

Regularization coefficient 5

LSTM Number of hidden units 200

Equation solver adam

Frequency of training 300

Gradient threshold 1

Initial learning rate 0.005

SVR The range of the upper bound of the lagrange multiplier [0, 2]

Parameters of the insensitive loss function [0, 2]
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residual capacity of the battery. It can obtain the remaining useful

life of the lithium-ion battery. The curves of each health factor are

shown in Figure 7.

In statistics, covariance is usually used to reflect the

correlation between the two random variables. Pearson

correlation coefficient is a method to calculate the correlation.

It is assumed that there are two variables X and Y, and the

Pearson correlation coefficient between the two variables can be

calculated by the following formula:

ρX,Y � ∑XY − ∑X∑Y

N����������������������������⎛⎝∑X2 − (∑X)2
N
⎞⎠⎛⎝∑Y2 − (∑Y)2

N
⎞⎠√√ (23)

where N represents the number of variable values.

The Kendall coefficient is used in the order and interval

variables, which does not meet the normal assumption.

Because the capacitance and health factor data of lithium-

ion batteries do not meet the normal distribution, the

method is more suitable. The Kendall coefficient is

defined as:

τ � 2
n(n − 1)∑ni< jσ(xi − xj)σ(yi − yj) (24)

σ(x) �
⎧⎪⎨⎪⎩ 1, x> 0

0, x � 0
−1, x< 0

(25)

where τ is a Kendell coefficient with a range from -1 to 1.

Correlation analysis is shown in Table 2.

The values in Table 2 correspond to the correlation

coefficient between the health factor and the capacitance of

FIGURE 8
RUL prediction results of lithium-ion battery by CGWO-DELM and four other prediction methods (the first 60 cycles of data are used as the
training set). (A) Battery B0005. (B) Battery B0006. (C) Battery B0007. (D) Battery B0018.
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the fixed cell. If the correlation coefficient obtained is greater

than 0.9 and less than 1, then the data is strongly correlated. It

can be seen from the data in Table 2 that whether the Pearson

coefficient or the Kendell coefficient is used for analysis, the

capacitances of the four batteries are highly correlated with the

health factors extracted in this paper, which can be used as

health factors.

4 Case analysis

4.1 Preparation before the experiment

In order to test the superiority of the proposed method,

the 18,650 lithium cobaltate battery aging data set provided

by NASA is used for experimental verification and compared

with BP, DELM, LSTM, and SVR methods. Due to the partial

lack of B0018 battery data, this paper uses the first 60 cycles of

B0005, B0006, and B0007 batteries and the first 45 cycles of

B0018 batteries (the first 60 cycles of experimental batteries),

the first 80 cycles of B0005, B0006, B0007 batteries and

the first 60 cycles of B0018 batteries (the first 80 cycles of

experimental batteries) as the training set for model training,

and uses the remaining data as the test set for prediction.

Since the capacitance data of the B0007 battery does not

decrease to 70% (1.4 A·h) of the rated capacitance (Xu et al.,

2021), 1.44 A·h is used as the failure threshold for four lithium

batteries in this paper.

In order to comprehensively evaluate these five

prediction methods, root mean square error (RMSE),

mean absolute percentage error (MAPE), and mean

absolute error (MAE) were used as evaluation indexes.

TABLE 4 Comparison of prediction results (the first 60 cycles of data are used as the training set).

No. RULtrue Methods RULpredicted Absolute
error

No. RULtrue Methods RULpredicted Absolute
error

B0005 111 BP – – B0007 147 BP – –

DELM – – DELM – –

LSTM – – LSTM – –

SVR – – SVR 137 10

CGWO-
DELM

111 0 CGWO-
DELM

147 0

B0006 100 BP – – B0018 83 BP – –

DELM 126 26 DELM 120 37

LSTM – – LSTM – –

SVR 85 15 SVR 85 2

CGWO-
DELM

86 14 CGWO-
DELM

84 1

TABLE 5 Comparison of evaluation indexes (the first 60 cycles of data are used as the training set).

No. Methods RMSE
(A·h)

MAPE MAE (A·h) No. Methods RMSE
(A·h)

MAPE MAE (A·h)

B0005 BP 1.2968E−01 8.3497E−02 1.1586E−01 B0007 BP 1.8068E−01 1.0792E−01 1.6087E−01

DELM 1.4123E−01 9.1709E−02 1.2751E−01 DELM 3.1126E−02 1.8824E−02 2.8213E−02

LSTM 2.0456E−01 1.3154E−01 1.8245E−01 LSTM 1.8387E−01 1.1102E−01 1.6580E−01

SVR 1.1575E−01 7.5665E−02 1.0538E−01 SVR 3.2046E−02 1.9598E−02 2.9598E−02

CGWO-DELM 1.5178E−02 7.9899E−03 1.1596E−02 CGWO-DELM 8.4995E−03 2.6519E−03 4.1479E−03

B0006 BP 2.3920E−01 1.6200E−01 2.1232E−01 B0018 BP 1.2885E−01 8.0622E−02 1.1416E−01

DELM 1.0410E−01 6.7606E−02 8.7774E−02 DELM 5.9884E−02 3.8403E−02 5.4647E−02

LSTM 2.5154E−01 1.6883E−01 2.2079E−01 LSTM 2.0221E−01 1.2822E−01 1.8218E−01

SVR 3.2851E−02 1.9299E−02 2.5475E−02 SVR 8.8100E−03 4.5512E−03 6.8546E−03

CGWO-DELM 3.3631E−02 1.8620E−02 2.4606E−02 CGWO-DELM 5.7129E−03 2.9122E−03 4.3113E−03

The value in bold is the minimum value of the corresponding index of a battery.
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ŷ is the predicted value of lithium-ion battery capacitance,

y is the true value of lithium-ion battery capacitance, and n

is the number of predicted samples. The definition of RMSE

is as follows:

RMSE �
������������
1
n
∑n
i�1
(ŷi − yi)2√

(26)

MAPE is defined as

MAPE � 1
n
∑n
i�1

∣∣∣∣∣∣∣∣ŷi − yi

yi

∣∣∣∣∣∣∣∣ (27)

MAE is defined as

MAE � 1
n
∑n
i�1

∣∣∣∣ŷi − yi

∣∣∣∣ (28)

4.2 Algorithm implementation
environment and parameter settings

This paper implements all algorithms on a 64-bit Windows

10 computer using MATLAB R2018b. The performance of the

algorithm is compared to the mean value obtained by

50 independent runs. The parameter settings for the algorithm

used are shown in Table 3.

4.3 Prediction of battery first 60 cycles as
the training set

The prediction results of the first 60 cycles of the

experimental battery as the training set are shown in Figure 8.

The prediction results of CGWO-DELM and the other four

FIGURE 9
RUL prediction results of lithium-ion battery by CGWO-DELM and four other prediction methods (the first 80 cycles of data are used as the
training set). (A) Battery B0005. (B) Battery B0006. (C) Battery B0007. (D) Battery B0018.
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methods are shown in Table 4. The evaluation indexes are shown

in Table 5. “−” indicates that the prediction method does not

reach the failure threshold, and the predicted value and absolute

error of lithium-ion RUL cannot be calculated.

It can be seen from Table 4 that for the B0005 lithium-ion

battery, the absolute error of CGWO-DELM prediction is 0,

while other prediction methods do not reach the failure

threshold. For the B0006 lithium-ion battery, BP and LSTM

do not reach the failure threshold, and CGWO-DELM has the

smallest absolute error. For B0007 lithium-ion batteries, BP,

DELM, and LSTM do not reach the failure threshold,

the absolute error of CGWO-DELM prediction is 0, and the

absolute error of SVR prediction is 10. For the B0018 lithium-ion

battery, BP and LSTM do not reach the failure threshold, and the

absolute error predicted by CGWO-DELM is the smallest.

Table 5 shows that the MSE, MAPE, and MAE of CGWO-

DELM on B0005, B0007, and B0018 lithium-ion batteries are the

smallest, and the MAPE and MAE of CGWO-DELM on

B0006 lithium-ion batteries are the smallest. The MSE of SVR

on the B0006 lithium-ion battery was the smallest, 3.2851E−02,

followed by CGWO-DELM, 3.3631E-02. Therefore, the

prediction error of CGWO-DELM is smaller.

4.4 Prediction of battery first 80 cycles as
the training set

The prediction results of the first 80 cycles of the

experimental battery as the training set are shown in Figure 9.

The prediction results of CGWO-DELM and the other four

methods are shown in Table 6, and the evaluation indexes are

shown in Table 7. “−” indicates that the prediction method does

not reach the failure threshold, and the predicted value and

absolute error of lithium-ion RUL cannot be calculated.

Table 6 shows that for the B0005 lithium-ion battery, BP

and LSTM do not reach the failure threshold, the absolute

TABLE 6 Comparison of prediction results (the first 80 cycles of data are used as the training set).

No. RULtrue Methods RULpredicted Absolute
error

No. RULtrue Methods RULpredicted Absolute
error

B0005 111 BP – – B0007 147 BP – –

DELM 158 47 DELM – –

LSTM – – LSTM – –

SVR 138 27 SVR 155 8

CGWO-
DELM

112 1 CGWO-
DELM

148 1

B0006 100 BP 140 40 B0018 83 BP – −

DELM 103 3 DELM 105 22

LSTM – – LSTM – –

SVR 86 14 SVR 81 2

CGWO-
DELM

98 2 CGWO-
DELM

84 1

TABLE 7 Comparison of evaluation indexes (the first 80 cycles of data are used as the training set).

No. Methods RMSE
(A·h)

MAPE MAE (A·h) No. Methods RMSE
(A·h)

MAPE MAE (A·h)

B0005 BP 1.1115E-01 7.1348E-02 9.7099E-02 B0007 BP 9.5945E-02 5.6709E-02 8.3348E-02

DELM 9.2220E-02 6.1289E-02 8.3887E-02 DELM 6.1045E-02 3.7939E-02 5.6117E-02

LSTM 1.4433E-01 9.3148E-02 1.2686E-01 LSTM 8.9445E-02 5.1950E-02 7.6247E-02

SVR 7.1414E-02 4.8563E-02 6.6763E-02 SVR 1.0660E-02 4.6436E-03 6.9659E-03

CGWO-DELM 1.2088E-02 6.0552E-03 8.6660E-03 CGWO-DELM 9.8237E-03 3.0919E-03 4.7492E-03

B0006 BP 1.3405E-01 8.8242E-02 1.1255E-01 B0018 BP 1.0355E-01 6.8295E-02 9.6024E-02

DELM 8.0848E-02 5.1580E-02 6.5522E-02 DELM 5.8908E-02 4.0116E-02 5.6715E-02

LSTM 1.5007E-01 9.8981E-02 1.2635E-01 LSTM 2.5481E-01 1.7283E-01 2.4404E-01

SVR 3.9885E-02 2.2847E-02 2.8993E-02 SVR 1.3421E-02 8.3455E-03 1.1784E-02

CGWO-DELM 2.4349E-02 1.3005E-02 1.7337E-02 CGWO-DELM 4.9830E-03 2.6771E-03 3.8135E-03

The value in bold is the minimum value of the corresponding index of a battery.
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error predicted by CGWO-DELM is 1, and the absolute error

predicted by DELM and SVR is 47 and 27, respectively.

For the B0006 lithium-ion battery, LSTM did not reach

the failure threshold, and CGWO-DELM had the smallest

absolute error. For the B0007 lithium-ion battery, BP,

DELM, and LSTM do not reach the failure threshold. The

absolute error of CGWO-DELM prediction is 1, while that of

SVR prediction is 8. For the B0018 lithium-ion battery,

BP and LSTM do not reach the failure threshold, and

the absolute error predicted by CGWO-DELM is the

smallest.

It can be seen from Table 7 that theMSE,MAPE, andMAE of

CGWO-DELM on four lithium-ion batteries are the smallest.

Thus, the prediction results obtained by CGWO-DELM are more

accurate.

4.5 Comparison between CGWO-DELM
and other public prediction methods

In order to further verify the performance of the

proposed prediction method, CGWO-DELM is compared

with the existing literature. When the first 80 cycles of

the B0005, B0006, and B0007 battery and the first 60 cycles

of the B0018 battery are used as training sets, the

comparison results between CGWO-DELM and other

prediction methods (Li et al., 2019; Xu et al., 2021; Ding

et al., 2022; Gao et al., 2022; Huang et al., 2022) are shown

in Table 8.

CGWO-DELM outperforms other open prediction methods

in RMSE and MAE of all batteries under the same prediction

starting point. Therefore, the CGWO-DELM method can obtain

higher prediction accuracy.

5 Conclusion

Lithium-ion batteries are widely used in various problems,

such as electric vehicles, due to their superior performance. It is

essential to predict the remaining useful life of lithium-ion

batteries accurately. In order to solve the problem of

inaccurate prediction of the remaining useful life of lithium-

ion batteries, three new health factors are proposed, and the

correlation between the proposed health factors and the battery

capacity is verified using the Pearson coefficient and Kendall

coefficient. Besides, an improved grey wolf optimizer is proposed

to optimize the prediction method of the deep extreme learning

machine (CGWO-DELM), and the performance of CGWO-

DELM is verified using the NASA battery degradation dataset.

Finally, CGWO-DELM is compared with BP, DELM, SVR, and

LSTM prediction methods, and the excellent performance of

CGWO-DELM is verified by comparative analysis with publicly

available prediction data. The results show that the proposed

CGWO-DELM prediction method can provide higher prediction

accuracy for the remaining useful life of lithium-ion batteries.

In future work, this study will improve on the prediction

method proposed in this paper and investigate the data

processing to extract the external characteristic parameters

with strong correlation to achieve a more accurate online

prediction of the remaining service life of lithium-ion batteries.

Data availability statement

The data analyzed in this study is subject to the following

licenses/restrictions: NASA-supplied 18650 battery aging dataset.

Requests to access these datasets should be directed to YG,

gaoyuansheng2021@163.com.

TABLE 8 Comparison results between CGWO-DELM and other prediction methods.

No. Methods RMSE (A·h) MAE (A·h) No. Methods RMSE (A·h) MAE (A·h)

B0005 CGWO-DELM 1.2088E-02 8.6660E-03 B0006 CGWO-DELM 2.4349E-02 1.7337E-02

ABMS-CEEMDAN-LSTM 2.00E-02 1.66E-02 ABMS-CEEMDAN-LSTM 3.08E-02 2.40E-02

IALO-SVR 1.49E-02 9.7E-03 IBSA-LSSVM 6E-02 –

MPSO-ELM 2E-02 – BiLSTM 2.98E-02 2.13E-02

BiLSTM 0.0134 0.0110 1D CNN 0.0295 0.0195

1D CNN-LSTM 0.0154 0.0120 BiLSTM 0.0298 0.0213

1D CNN 0.0250 0.0232 SSA-ELM 0.0568 4.42

PSO-ELM 0.1355 10.19 ISSA-ELM 0.0211 1.50

SSA-ELM 0.0365 1.37 B0007 CGWO-DELM 9.8237E-03 4.7492E-03

ISSA-ELM 0.0171 1.34 ABMS-CEEMDAN-LSTM 1.76E-02 1.21E-02

B0018 CGWO-DELM 4.9830E-03 3.8135E-03 GA-ELM 6.90E-02 4.83E-02

IALO-SVR 3.44E-02 2.99E-02 ISSA-ELM 1.21E-02 7.8E-03

QPSO-SVM 3E-02 – SSA-ELM 0.0295 2.59

IBSA-LSSVM 2E-02 – ISSA-ELM 0.0121 0.78

The value in bold is the minimum value of the corresponding index of a battery.
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