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To reduce the impact of wildfires on the operation of power systems, a back-

propagation neural network (BPNN) model is used to evaluate the wildfire risk

distribution after feature selection. Data from 14 types of wildfire-related

features, including anthropogenic, geographical, and meteorological factors,

were collected from public data websites and local departments. The weight

ranking was calculated using filtering and wrapper methods to form five feature

subsets. These are used as the input sets of the BPNN model training, and

network parameters are optimized by genetic algorithm (GA). Finally, the

optimal feature subset is chosen to establish the optimal BPNN model. With

the optimal model, the prediction results are graded to draw a wildfire risk

distribution map. Situated in medium-, high-, and very-high-risk zones are

90.26% of new fire incidents, indicating the applicability of the proposed BPNN

model.
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Introduction

Electric power transmission lines often cross wildlands with complex terrain and high

vegetation coverage. However, due to natural and human activities, such regions are prone

to wildfires (Guo et al., 2018; Shi et al., 2018). As soon as these spread to transmission

corridors, high temperatures, ash, and flame greatly deteriorate the insulating strength of

air below and between transmission lines to induce tripping failures in the power system.

Unlike the short duration of lightning strikes, the sustained combustion duration of

wildfires makes it difficult to recover the insulation of transmission lines and prevents

automatic reclosing devices from working successfully (Fonseca et al., 2002; Wu et al.,

2012). Therefore, evaluating the occurrence probability of wildfires will help relevant

power departments implement differentiated insulation design and maintenance

measures for transmission lines.

Several methods have been proposed for evaluating or predicting the risk of wildfires

(Jazebi et al., 2020). The first method is using numerical weather prediction and fire
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hazard mapping system for pre-disaster planning. The second is

using some potential wildfire factors to derive regression models

to predict the probability of wildfires over a wide range. Another

is using complex machine-learning (ML) algorithms to train

historical wildfire data. Based on extreme learning machines, Hu

(2011) analyzed historical meteorological data and derived the

probability of wildfires by combining temperature, humidity, and

wind speed. In addition to conventional meteorological data such

as precipitation, Jia (2018) suggested that the rainfall not only

affects the current probability of wildfires but also for periods

after rainfall. In his model, the precipitation interval is considered

to calculate combustion indicators. While these studies

emphasize the importance of climatic factors on wildfire

occurrence, they do not consider anthropogenic and

topographic factors, or seasonal changes in vegetation. Zhang

et al. (2013) thus include topographic factors in a binary logistic

regression model to calculate the risk of wildfire occurrence.

Chen, Zhou, et al. (2021) take three types of wildfire-related

factor—human, topographic, and meteorological—into a naive

Bayes model. However, as there is a strong nonlinear relationship

between wildfire incidents and the wildfire-related features,

linear models cannot resolve the wildfire problem accurately.

Back-propagation neural networks (BPNNs), which nonlinearly

fulfill the intended targets through network training and weight

threshold updates, have been widely used in investment risk

assessment (Jiang et al., 2019), commercial economic index

prediction (B. Chen et al., 2020), and indoor temperature

prediction (Qi et al., 2015). They are also suitable for solving

the multi-factor coupling problem of wildfire risk assessment.

In this paper, the optimal subset of features for wildfire

occurrence assessment is selected by compositing a variety of

feature selection algorithms, and a BPNN model is established

with the optimal feature subset. The initial model parameters are

optimized by using genetic algorithms (GA). The established

model is then applied to assess the wildfire risk of the area under

study for verification.

Data collection and pre-processing
of wildfire-related features

Data collection

The study area is in the south of China. It was divided into

grids of 1 km*1 km for study. Previous research has indicated

that wildfire occurrence not only correlates to local

meteorological conditions but also is affected by physiography,

land cover, or socioeconomic features (Costafreda-Aumedes

et al., 2018). Our study collected and aggregated data from

14 wildfire-related features over three categories

(physiographical, meteorological, and anthropological). The

occurrence probability of wildfire was used to represent the

wildfire risk. All the data from the aggregated features were

sourced from public data websites or provided by local power

grids (Table 1.

There are several reasons for choosing these wildfire-related

features. First, the occurrence of wildfire events requires

comburent factors, which can be represented by land-usage

type (LT), vegetation type (VT), normalized difference

vegetation index (NDVI), and fuel load (FL). In addition, the

physiographic features of slope and aspect affect the likelihood of

wildfires burning and spreading. Furthermore, average annual

precipitation (AAP) and average annual temperature (AAT) not

only affect the lush growth of vegetation but also the moisture

content of vegetation and, thus, its flammability. According to a

survey, more than 90% of wildfire events are caused by

intentional and unintentional human activities, power line

failures, or machinery (FAO), 2007). We thus calculated

distance to roads (DR), distance to settlements (DS), gross

domestic product (GDP), and population density (PD) to

represent the intensity of human activity. In addition to

elevation (EL), which affects both human activity and

vegetation, historical fire-spot density (HFD) was selected to

comprehensively reflect the risk of wildfires in the grid. HFD is

obtained by calculating the fire-spots occurring over

2010–2015 and then interpolating into each grid.

The data for roads, settlements, and PD were downloaded

from the Resource and Environment Science and Data Center

website, and data for FL distribution were provided by the

National Meteorological Center. All dataset resolutions are

1 km*1 km. To maintain the data’s accuracy, the study area

was divided into a 1 km*1 km grid. The HFD of power grids

is obtained by using Kriging interpolation from a resolution of

2.5 km*2.5 km to 1 km*1 km.

Data pre-processing

Data of the aforementioned wildfire-related features were

divided into real type (GDP, EL, FL, AAP, AAT, SL, AS, PD, FD,

NDVI, DS, and DR) and enumerated type (VT and LT). Outlier

detection and blank value filling were first performed on the

data of all grids. After identifying the abnormal value of the

feature through the univariate scatter plot, Lagrangian

interpolation was used to replace the abnormal data and

blanks with the feature value of the surrounding grids. For

the real type features, standardized processing was used to

reduce the influence of different feature value ranges on the

model.

Xnew � X − μ

σ
, (1)

where σ and μ represent the variance and the average of the data

population, respectively.

The data of VT and LTwere graded by flammability (Tables 2

and 3. A higher grade means higher ease of causing a wildfire.
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Methodology

Feature selection algorithm

Redundant features would complicate the model and even

weaken its generalizability (Che et al., 2017). In this study, three

kinds of filtering algorithm and a wrapper algorithm are utilized

to evaluate the importance of wildfire-related features for

selecting the most suitable subset.

The evaluation criteria of the filters are specified by the

dataset itself without model training. Generally, filter

algorithms use the distance or the saliency score between

different features to study the importance of features.

Therefore, these algorithms can capture the commonality of

the feature set as the evaluation criteria and are independent

of the model algorithm (Ding et al., 2021). The wrapper would

provide an optimal-feature subset with the highest classification

accuracy for the model. The criteria are obtained from the

evaluation of the training model. Multiple feature subsets are

scored according to the accuracy of the trained models with the

test set. However, this method uses much storage and is more

time-consuming than repeated modelling.

Relief
The relief algorithm was first proposed in 1992 (Kira, 1992).

Its basic idea is to assign different weights to features according to

the correlation between each feature and the sample category.

First, a sample R is randomly selected from the training set. Its

nearest neighbor sample H in the same class and the nearest

neighbor sample M in the different class are then searched

separately. Thence, the distance between R, H, and M is

calculated.

For the features with real type,

dif f (x, y) � ∣∣∣∣x − y
∣∣∣∣. (2)

TABLE 1 Wildfire-related features and category.

Category Content Source

Physiography Slope (SL) (°) Resources and Environmental Sciences and Data Center

Aspect (AS) (°)

Elevation (EL) (m)

Land-usage type (LT) (/)

Vegetation type (VT) (/)

Normalized difference vegetation index (NDVI) (/)

Fuel load (FL) (t/km2) National Weather Center

Meteorology Average annual precipitation (AAP) (mm) Resources and Environmental Sciences and Data Center

Average annual temperature (AAT) (°C)

Anthropology Distance to roads (DR) (m) Resources and Environmental Sciences and Data Center

Distance to settlements (DS) (m)

Gross domestic product (GDP) (10000 yuan/km2)

Population density (PD) (people/km2)

Historical fire-spot density (HFD) (unit/(100 km2*year)) Power grids

TABLE 2 VT grades.

Description Grade

Paddy field, dry land, water area, unused land, urban-rural fringe, industrial and mining land, and residential land 1

Shrubs, low-cover grassland 2

Sparse woodland, middle-cover grassland 3

Woodland, high-cover grassland 4

TABLE 3 LT grades.

Description Grade

Desert, swamp, cultivated plants 1

Meadow, grassland, alpine vegetation 2

Broad-leaved forest, shrub 3

Coniferous forest, coniferous and broad-leaved mixed forest 4
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For the features with enumerated type,

dif f (x, y) � { 0 if x � y,
1 if x ≠ y.

(3)

The relief score of features i is calculated by

ω*
i � ∑(dif f (xn, xRMn )

m
− dif f (xn, xRHn )

m
), (4)

where m is the number of samplings.

Mutual information (MI)
MI is a measure of the interdependence between features

(Huang et al., 2007), which can be calculated by Equation (5).

Generally, a higher MI value indicates more interdependence

between features.

I(X;Y) � ∑
x∈X

∑
y∈Y

p(x, y)log p(x, y)
p(x)p(y), (5)

where p(x) and p(y) are the marginal distributions of variables x

and y, respectively. P(x, y) is the joint distribution of (x, y).

Pearson correlation coefficient (PCC)
The linear correlation between features can be expressed by

their PCC (P. Chen, Li, et al., 2021).

ρX,Y � cov(X,Y)
σxσy

� E[(X − μx)(Y − μy)]
σxσy

, (6)

where cov(X, Y) is the covariance of two features, and σx and σy
are the standard deviation.

For MI and PCC, these two algorithms can calculate the

degree of correlation between features. The label of the wildfire

occurrence becomes a feature when using MI and PCC. 1 means

fire in the grid and 0 means none. By calculating the

interdependence of 14 wildfire features with the label feature,

the calculation of the wildfire-related weight was achieved.

Unlike the filter algorithm, wrapper algorithms calculate the

weights of features through model training and testing. By

assessing the trained models’ performance, the feature subsets

are scored. However, due to the repeated training process,

wrapper algorithms are generally time-consuming.

Random forest (RF)
RF is an ensemble learning algorithm based on decision tree,

which can obtain the score during the training (Breiman, 2001).

1) About two-thirds of the total samples are randomly sampled

to form a training set, whereas the rest of the samples are an

out-of-the-bag set. After a decision tree model is established

by using the training set, the out-of-the-bag error errOB1 is

calculated for the decision tree.

2) Random noise is then added to sample features in out-of-the-

bag data to calculate the relevant out-of-the-bag error errOB2.

3) Finally, the features importance V is calculated by the

difference between errOB1 and errOB2.

V � ∑ errOOB1 − errOOB2
M

, (7)

where M is the number of decision trees. Adding noise to reduce

the accuracy of out-of-the-bag data means that this feature has a

great impact on the sample prediction results.

Error back-propagation neural network

The wildfire risk is evaluated by the BPNN algorithm, which is a

multi-layer feedforward network trained and judged by error back-

propagation (BP). In most cases, there are significant errors between

the output signal and the expected output. The BP algorithm

consists of two parts. One is signal-forward propagation and the

other is error-back propagation. The input sample is first introduced

from the input layer to the output layer. If the output differs from the

expected output, the error is then back-propagated to calculate the

loss function. By correcting the weights, the error is allocated to each

unit until the output results are consistent with actual results (Z. Hu,

2016). The steps for establishing a BPNN model are as follows:

1) Determine the structure. The BPNN consists of an input, a

hidden, and an output layer. The number of nodes in the

input layer is equal to the number of wildfire-related features.

By considering the characteristics of the sample set, the

number of hidden layer nodes is set as 15. The number of

the output layer is 1, to show the results. For the training set,

the value of output is 1, indicating the occurrence of wildfire,

whereas 0 represents the non-occurrence of wildfire.

2) Calculate output of the hidden layer. After the input signal is

transmitted to the hidden layer, the output value H of the

hidden layer is calculated by Eq. 8.

Hj � f⎛⎝∑n
i�1
wijxi − aj⎞⎠ j � 1, 2, · · ·, l, (8)

where xi represents the input of ith of the model, wij represents

the connection weight between input layer node i and hidden

layer node j, f is the hidden layer activation function, aj represents

the threshold of hidden layer node j, and l represents the number

of hidden layer nodes.

3) Calculate output of the output layer by Eq. 9.

O � ∑l
j�1
Hjwj − b, (9)

where Hj represents the output of jth hidden layer node, wj

represents the connection weight between the hidden layer nodes

j and the output layer node, and b represents the threshold of

output layer node j.
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4) Calculate error of output. The error means the difference

between the predictive result O and the actual output Y

(Eq. 10).

e � Y − O. (10)

5) Update the weight parameters and threshold parameters of

each layer based on the BP algorithm.

wij* � wij + ηHj(1 −Hj)x(i)wje, (11)
wj* � wj + ηHje, (12)

aj* � aj + ηHj(1 −Hj)x(i)wje, (13)
b* � b + e. (14)

6) Recalculate the error after updating the weights and

thresholds. If the error satisfies the requirements, the

updating will stop; if not, return to Step 2.

Genetic algorithm

The BPNN has a strong learning and generalization ability.

However, it has problems, such as many parameters being

optimized and a slow convergence speed. Learning according

to the gradient descent method can easily fall into the local

minimum value. GA has a good global search ability: it can

quickly search for all solutions without falling into the trap of

the rapid descent of local optimal solutions. It is also easy to

combine with other algorithms and is scalable. If the optimal

initial value of weights and thresholds is found at the beginning

of neural network training, the training time would be greatly

reduced. The probability of falling into the local optimum

phenomenon would also be reduced (Z. Hu, 2016). The GA

is realized as follows:

1) GA coding establishment and parameter setting. The optimal

individual is represented by a real code in which the strings

represent the connection weights and thresholds in the BPNN

model. As there are 15(n+1) of connection weights numbers

and 16 of threshold numbers, the length of the real code in the

GA algorithm is thus 15n +31. The GA parameters of the

model set the maximum genetic generation to 10, the

population size to 20, the crossover probability as 0.2, and

the mutation probability as 0.1

2) Fitness function calculation. The fitness value represents the

individual’s ability to adapt to the environment. It is the

absolute value of the difference between the actual and

expected outputs.

F � k|Y − O|, (15)

where k is the coefficient of the fitness function, Y is the actual

output of BPNN, and O is the predictive output.

3) Selection. The roulette method is used for selection; the

selection probability is,

f i �
k
Fi
, (16)

pi �
f i∑N
j�1f j

, (17)

where pi is the selection probability of individual i, Fi is the fitness

function value of individual I, and N is the number of individuals

in the population.

4) Crossover. In this process, the structures of two parent

individuals recombine into a new individual by the real

number crossover method (Eqs 18 and 19).

amj � amj(1 − b) + anjb, (18)
anj � anj(1 − b) + amjb, (19)

where amj and anj represent the jth gene of chromosomem and n,

respectively, and b is a random number between [0,1].

5) Mutation refers to the randommodification of a gene value of

an individual in the population. With mutation, GA can

maintain the diversity of the population and has local

random search ability.

aij �

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

aij + (aij − a max)pc(1 − g
Gmax

)r > 0.5,

aij + (a min − aij)pc(1 − g
G max

)r < 0.5,

(20)

where aij represents the jth position of the gene on chromosome

I, amax and amin represent the upper and lower bounds of gene

FIGURE 1
Weight results of feature selections.
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aij, respectively, c is a random number, g is the iteration number,

Gmax is the maximum evolution number, and r is a random

number between 0 and 1.

Results and discussion

Feature subset selection

To comprehensively evaluate the importance of wildfire-

related features, the results of the four feature selection

methods and their average value are shown in Figure 1. It can

be seen that, for the same type of wildfire-related feature, each

feature selection method has different evaluation results.

Nevertheless, regardless of either method, HFD has the

highest evaluation result. This is because wildfire occurrence

has certain inertia, and HFD can comprehensively reflect the

local living habits and ground environment. For the average

results of four methods, the five most important wildfire-related

features are HFD, VT, AAT, AAP, and EL.

Based on the results evaluated, five feature subsets are

formed, as shown in Table 4. The HFD, VT, and AAT are the

three most important features for fire and no-fire sample

classification. These features represent the anthropogenic,

geographical, and meteorological factors, respectively. The

HFD reflects the number of historical wildfires that

occurred near the study site. The more fires that occur near

this point in history, the higher the probability of future

wildfires. Second, the VT can lead the ignition and spread

of wildfires. The AAT intuitively shows the level of local

temperature. The higher the temperature, the more

luxuriant the vegetation growth, and the greater the

likelihood of wildfires.

There is a serious imbalance problem in the initial sample set:

the number of fire samples is only 27153, which is much less than

non-fire samples. Therefore, 27153 samples were extracted from

the non-fire sample set by under-sampling to form a new sample

set. The sample set was then divided into a training set with

50000 samples and a test set with 4306 samples. After that, the

BPNNmodels were established with different feature subsets and

the parameters were optimized by GA during the training

process.

Confusion matrix as a visualization tool in machine

learning is mainly used to compare classification results

and actual values. It reflects the performance of a model

and helps with subsequent adjustments. The confusion

matrix structure is shown in Table 5; evaluation indicators

can be calculated by Equations (21) to (23).

Accuracy: The proportion of correctly classified results in the

total samples.

ACC � TP + TN
TP + FP + TN + FN

. (21)

Precision: The proportion of correctly classified results in

predicted positive samples.

precision � TP
TP + FP

. (22)

Recall: The proportion of correctly classified results in actual

positive samples.

recall � TP
TP + FN

(23)

F-score: The combination the outputs of precision and recall.

F1 � 2TP
2TP + FP + FN

(24)

The accuracy of the model indicates the overall

performance of evaluation in either wildfire occurrence or

non-wildfire occurrence. Precision depends on the proportion

of samples that are rated as high wildfire risk that actually have

wildfire occurrence, whereas recall concerns how many

wildfire samples are predicted to be in the right category.

Generally, improving precision would reduce recall. Thus, the

F-score is proposed to balance the importance between

precision and recall. The results of accuracy, precision,

recall, and F-score for BPNN models with different feature

subsets are shown in Figure 2.

When there are two wildfire-related features, the recall is as

high as 84.02%, whereas the accuracy, precision, and F-score are

slightly smaller. Considering that the impact of wildfires on the

power grid may lead to large-scale power outages, the power

operation and maintenance department should invest as much as

possible into finding high-risk areas of wildfires. Therefore, when

Q/GDW 11643-2016 formulated the guidelines for the

distribution of wildfires, these two features (VT and HFD)

were used to evaluate the risk of wildfire (Q/GDW11643-

2016, 2016).

As the number of adopted features increases, the recall

remains basically the same, but other indexes increase

significantly. When the eight features of SL, LT, GDP, EL,

TABLE 4 Feature subsets.

Number of
features

Contents

2 VT and HFD

4 AAP, AAT, VT, and HFD

8 SL, LT, GDP, EL, AAP, AAT, VT, and HFD

11 AS, PD, HFD, DS, SL, LT, GDP, EL, AAP, AAT, and VT

14 FL, NDVI, DR, AS, PD, HFD, DS, SL, LT, GDP, EL, AAP,
AAT, and VT

Establishment and optimization of BPNN, model.
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AAP, AAT, VT, and HFD are used, all the evaluation indexes

are optimal. Therefore, using these eight characteristics of

wildfire to evaluate their risk not only takes into account the

accuracy of the evaluation but also reduces the input operation

and maintenance costs as much as possible.

Application of the wildfire risk assessment
model

By using the optimal BPNN model, the wildfire risks of all

grids in the target area are calculated through regression analysis.

The wildfire risk outputs for all grids are shown in Figure 3. The

average of the prediction value is 0.53. To clearly show the risk of

wildfire, the predicted output is proportionally divided into five

grades by the ratio 1:2:4:2:1, based on GB/T36743-2018 (Liu

et al., 2016; Zhou et al., 2020).

By assigning different colors to the grades, a wildfire risk

distribution map is drawn using ArcGIS software, based on the

latitude and longitude coordinates of grids, as shown in Figure 4.

It is evident that the risk level of wildfire is relatively low in the

northwest of the study area. Because this region is located in the

Yunnan–Guizhou Plateau and Hengduan Mountains, this has the

highest elevation of all regions. Its complex terrain and sparse

population mean a low probability of wildfire occurrence there.

Although the elevation of the Yangtze River and Pearl River Delta

region is low, the wildfire risk in this region is still low due to its

developed economy and high density of urban settlements and

population.

Areas with high wildfire risk levels are located in the middle

of study area, at the tri-junction of three provinces. The north-

TABLE 5 Confusion matrix.

Samples in the testing subset Predicted results

Prone to fire Prone to no-fire

Actual events Fire TP FN

No-fire FP TN

FIGURE 2
Performance of feature subsets.

FIGURE 3
Grades of prediction outputs.

FIGURE 4
GA-BPNN-based wildfire risk distribution.
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east of the study area also has a high wildfire risk because the

vegetation in these areas is lush, resulting in a large fuel storage.

In addition, the population density in this region is larger than

that of the Yunnan–Guizhou Plateau but is smaller than in the

Yangtze River and Pearl River Delta. Moderate population

density can not only provide sufficient fire sources but also

makes it difficult for fires to spread and develop, due to

frequent human activity.

To verify the effectiveness of the wildfire risk distribution

map, the wildfire spots in 2020 are superimposed on the map, as

shown in Figure 4. The statistical results are listed in Table 6.

About 52.37% of wildfire spots are distributed in the high-risk

and very-high-risk areas. It is noted that these two risk areas

account for only 30% of the total study area. If the medium risk

area is also considered, the accuracy increases to 90.26%, which

indicates the excellent performance of the proposed BPNN

model for wildfire risk assessment.

In order to further study the adaptability of the proposed

method, a BPNN model was re-established for only one

province—a small area located in the west of the whole targeted

region. In this small region, only 9773 fire spots were monitored

during 2010–2019. The BPNN model’s performance for this small

region is similar as for the larger region, with accuracy of 81.6%,

precision of 79.8%, re-call of 84.9%, and an F-score of 82.3%; the

wildfire risk distribution is mapped as Figure 5. More than 66.3% of

2020’s fire-spots are distributed inmedium- and higher-risk regions,

which shows that the proposed GA-BPNNmethod can also be used

to assess the wildfire risk in small-scale areas.

Conclusion

This study proposed a GA based-BPNN model to assess the risk

distribution of wildfire occurrence for the power grid. To optimize the

model, four different types of feature selection algorithmswere used to

rank important wildfire-related features. The features of VT andHFD

were most important in evaluating wildfire occurrence risk. Adding

more wildfire-related features would improve the performance of the

BPNN model. In particular, the optimal BPNN model was obtained

by using eight wildfire-related features: SL, HFD, LT, GDP, EL, AAP,

AAT, and VT. The optimal BPNN model has an accuracy of 83.7%,

precision of 83.3%, recall of 84.0%, and F-score of 83.7%. The

proposed model was used to draw a wildfire risk map. Of the

wildfire events in 2020, 90.27% were distributed in medium-,

high-, and very-high-risk zones. This map can be utilized for

differentiated wildfire prevention for departments related to the

power grid (Panagiotis, 2016).
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