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Thework of forecasting solar power is becomingmore crucial with directives to

regulate the quality of the power and increase the system’s reliability as

photovoltaic (PV) sites are being integrated into the architecture of power

systems at an increasing rate. This study proposes a metaheuristic model for

short-term photovoltaic power forecasting that includes shuffled frog leaping

algorithm (SFLA), principal component analysis (PCA), and generalized

regression neural network (GRNN). In this model, GRNN is implemented to

analyze the input parameters after the dimension reduction process, and its

parameters get optimized with the help of the SFLA, which has the advantage of

fast convergence speed as well as searching ability, whereas PCA techniques

are implemented to diminish the dimension of meteorological conditions. This

hybrid model achieves day-ahead short-term forecasting, as shown in an

experimental case of a Bhadla Solar Park installed in Gujarat, India. The

accuracy of the proposed model obtained a mean absolute error (nMAE) of

2.3325, and a root mean square error (RMSE) of 129.425. Similarly, the error in

forecasting obtained by the proposed method results in nMAE = 2.977 and

RMSE = 160.92. The output results obtained surpassed all other hybrid models

used for comparison in this study.
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1 Introduction

Electricity, among various sources of energy, has a significant part in today’s world.

Energy consumption is predicted to rise as the world becomes more globalized and

modernized. Fossil fuels such as coal, gas, and diesel were various options for generating

electricity in the past. Despite the fact that these energy sources are capable of meeting the

electrical demand, their widespread use has resulted in the catastrophic depletion of fossil

fuels and environmental issues (Lara Fanego et al., 2012). Crude oil, coal, and oil and gas,

are expected to last 35, 107, and 37 years, respectively (Raza et al., 2016). The use of coal-

fired power plants to generate power has led to enormous pollution in terms of CO2
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emissions, which leads to global warming. In light of these

realities, various alternative sources of energy used to meet

energy needs have been intensively investigated. Renewable

energy sources (RESs) have piqued global attention as such

alternatives. Renewable power generation grew by 7% in 2020,

of which 60% of the contribution was made by wind and solar PV

technologies. Renewable sources accounted for about 29% of

global electricity generation for 2020. Figure 1 shows the current

scenario of the contribution made by various renewable energy

sources to power generation in the world. The decline in energy

demands induced by COVID-19 halted business growth and

transit; on the other hand, it also proved to be a major

contributor to this record. To achieve net zero emissions by

2050, more than 60% of generation by 2030 should be done by

renewable power, which will require a dramatic increase in their

installations. Though the net zero emission levels are to be

achieved by 2050, there is a development in the yearly

generation that averages 24% points throughout 2020 and

2030, culminating in 645 GW of net capacity additions in

2030 (IEA, 2018).

PV technologies are gaining popularity nowadays due to

their various features such as zero emission, zero fuel

consumption, low operating and maintenance costs, no

moving systems, silence, and ease of integrating with a grid.

The solar photovoltaic output has increased by 157 TWh

(24.2%), reaching 928 TWh in 2021 (IEA, 2018). It grew at

the second-fastest rate among other green technologies in

2021, after wind, although it is ahead of hydropower.

Photovoltaic electricity production attained an all-time high of

140 GW due to impending regulatory constraints in China, the

United States, and Vietnam. In most regions around the world,

rooftop solar has now become the best option for power

generation, which is projected to spur expansion in the

coming years. Figure 2 shows the installed solar capacity in

countries like China, India, Spain, Brazil, Mexico, and Chile

during the years 1996–2020. Figure 2 shows the PV installed

capacity of different countries year-wise. PV power generation is

influenced by certain factors which include weather conditions,

pressure and velocity of the wind, ambient temperature,

humidity, and solar irradiance (Kroposki, 2017). The power

generated through PV systems is affected by climatological

changes.

The power system’s reliability, stability, and planning are all

disrupted by a sudden change in solar power output. To avoid

such situations, precise and exact photovoltaic output forecasting

is needed, which also assures the power performance of the

model, stability, and quality. It has the potential to lessen the

grid’s impact on power uncertainty (Paulescu et al., 2013).

Figure 3 shows the percentage contribution of PV systems in

electrical power generation in different countries in a particular

year ranging from 2017 to 2021. In a study by Yang et al. (2014),

an artificial neural network (ANN) was implemented for PV

forecasting for a one-day-ahead term. Another approach for PV

power forecasting using back propagation ANN was constructed

on the basis of seasonal weather classification considering 24 h

(Eseye et al., 2018), where AI data are considered to be an input

parameter. Similarly, weather forecasting reports are employed in

PV power forecasting using ANN as was done by Asrari et al.

FIGURE 1
Contribution by renewable energy sources in total power generation.

Frontiers in Energy Research frontiersin.org02

Gupta and Singh 10.3389/fenrg.2022.1029449

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.1029449


(2017). The control of local supply and demand is shown by a

confidence interval result. The results showed a good match

between the target and the neighboring area using real-time

correlation data. To improve the prediction accuracy as well as

computational efficiency, a dendritic neuron network-based

model for forecasting PV power was developed by Kushwaha

and Pindoriya (2019). A wavelet transformation is introduced to

extract frequencies of input data results to achieve diversity and

accuracy in PV power forecasted results; a neural network

ensemble scheme is proposed by Raza et al. (2019). In this

scheme, five different feed-forward neural networks (FNNs)

are trained using the particle swarm optimization (PSO)

FIGURE 2
Installed solar PV capacity year wise (1996–2020).

FIGURE 3
Milestone for solar installed capacity by different countries year wise.
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technique. The results are combined using Trim aggregation. An

innovative prediction technique using an RNN model with echo

state networks was introduced by Rosato et al. (2019) for

forecasting the amount of generated PV power.

Although solar irradiance is tightly correlated with PV output,

several complicated meteorological conditions, such as temperature,

humidity, precipitation, and others, also have an impact

(Ramakrishna et al., 2019). Artificial intelligence techniques work

on the principle of the central intelligence nervous system, which can

be used to identify the patterns of recognition as well as machine

learning. Prediction of PV power output on an hourly basis done

using hybrid models based on similarly customized different

algorithms are proposed by Zhang et al. (2020). A short-term

forecast of power obtained from the residential PV system using

SVM based on a genetic algorithm (GA) is introduced in

Theocharides et al. (2020), where historical data are classified using

an SVM classifier and further optimized using GA. An improvement

in the regression coefficient of the PVmodel used for ultra-short-term

PV power forecasting is seen in the study by Pan et al. (2020), where

SVM is developed by preprocessing the data and optimizing its

parameters using ant colony optimization. The wavelet

transformation (WT), SVM, and PSO are combined for PV power

forecasting for a one-day-ahead term in a real microgrid PV system.

SVM maps meteorological variables from numerical weather

prediction (NWP), and ill-behaved data which are affected by

wavelets. An advanced statistical method self-organized map

(SOM) proposed by Chen et al. (2011) is trained for classifying

the data obtained by online meteorological services for a 24-hour-

ahead local weather type. Similarly, a hybrid model is proposed by

Zhu et al. (2016) where historically collected data are classified using

SOM with learning vector quantization (LVQ); SVR also trained the

FIGURE 4
Flow diagram of forecasting using PCA-SFLA-GRNN.

FIGURE 5
Stepwise process of PCA.
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datasets, and finally, the accurate model for PV power 1-day ahead

hourly forecasting is selected with the help of fuzzy inference.

A hybrid model was proposed for short-term day-ahead PV

power forecasting by Ge et al. (2020). The model achieves a high

precision in forecasting under strong uncertainties. The hybrid

model used seasonal auto-regressive integrated moving average

(SARIMA) and ANN model for short-term forecasting and

computation of PV power using the least squares method.

Researchers in a study by Lin et al. (2018) constructed a

framework for PV forecasting which has several stages. They

are data quality stage, data-driven ANN model development,

assessment of weather clustering (k-means clustering), linear

regressive correction technique for optimizing output, and

evaluation of the accuracy of the final performance. Similarly,

for short-term forecasting for generated PV power, a hybrid model

is developed using the improved technique of Grey relational

analysis (GRA), K-means clustering, and Elman neural network

(ENN) by Zhou et al. (2020). A novel hybrid method based on

maximum overlap discrete wavelet transform is introduced by

Haque et al. (2013), where SARIMA and random vector functional

link (RVFL) neural network was hybridized for PV power

forecasting. A fuzzy clustering of atmospheric turbidity, solar

irradiance, and relative humidity using improved fuzzy c-means

clustering (IFCM) technique was done by Jinpeng et al. (2022).

Radial basis function (RBF) and genetic algorithm programming

system (GAPS) were proposed for improving prediction accuracy.

The correlation between uncertainty in PV power and its

consumption by thermostatically loading is described by

Ramakrishna et al. (2019), where the first model developed uses

a regime-switching process to incorporate the variations in PV

power during cloudy, sunny, and partly cloudy conditions. A

Volterra model of second order shows the relationship between

temperature and solar power. The combination of these two models

leverages the joint probability of PV power forecasting. A

probabilistic ensemble method (PEM) where solar irradiation

forecast is used to cluster the data based on solar irradiance is

proposed for PV power forecasting by Pretto et al. (2022), where

PEM is validated by a real-case study that uses data for 3 years. The

RMSEmetric was improved in this case compared to themean value

ensemble. The proposed model was executed for ultra-short-term

prediction (Mei et al., 2018), where the model was divided into two

sub-models which deal with offline forecasting and online

FIGURE 6
Satellite view of solar PV sites installed in Gujarat (Site 1 and 2 Bhadla Solar Park, Gujarat, India).

TABLE 1 Eigenvalue of covariance matrix of five variables.

Main component Eigenvalue Contribution rate Cumulative rate

X1 1.97 42.52 43.48

X2 1.38 30.15 71.28

X3 1.15 26.98 87.36

X4 0.98 19.74 99.42

X5 0.12 2.32 100.00
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forecasting. A regression sub-model of PV output and a weather

classificationmodel are established using an offline module, whereas

real-time data are used by the online module to identify weather

types. In this study, a short-term day-ahead PV power forecasting

model is proposed using PCA-SFLA-GRNN. GRNN, a part of ANN

techniques, has strong non-linear mapping capability, error

tolerance, and robustness. Consequently, in this research, the

Shuffled Frog Leaping Algorithm (SFLA) technique automatically

determines the different parameter values of the GRNNmodel. This

work suggests a newhybridmodel to forecast PV output using a two-

step method of SFLA and GRNN, as shown in Figure 4. This

proposed model is based on the aforementioned literature analysis.

The key aims of this research, with an emphasis on short-

term PV output predictions for the day ahead, are:

1) To mitigate the dimension of the input data and avoid

overfitting, minimizing the co-linearity of input data.

Therefore, the PCA techniques are implemented to diminish

the dimension of meteorological conditions.

2) The proposed GRNN-SFLA model for short-term PV

forecasting over the next day. Where GRNN is

implemented to fit the complex non-linear relationship

between the PV input and output features, the GRNN

technique is optimized using SFLA. For validation, the case

study has been proposed for accuracy and robustness.

2 Input features for meteorological
factors

The energy used for PV output is entirely derived from solar

irradiance. Thus, it can be said that the PV output is directly

impacted by solar irradiance. The output of a PV plant may also

be affected by meteorological factors like ambient temperature,

wind speed, humidity, and atmospheric pressure. This may lead

to a burden during the training of datasets, and it also affects the

learning speed. However, it will minimize the sensitivity of

forecasting models. So, we have to assume that there are x

number of samples and each sample has y variables so that

we can create an x * y data matrix. The dataset of Bhadla Solar

Park is considered here for research purposes. It is located in the

Jodhpur district of Rajasthan, India, on the coordinates of

27.5396685°N and 71.9152528°E with an area of 5,700°ha. The

solar park consists of flat mounted PV panels. The temperature of

this area is between 46°C and 48°C. The total installed capacity of

the plant is 2,245 MW. A satellite view of Bhadla Solar Park is

shown in Figure 5. The flowchart of PCA used for diminishing

the dimensions of meteorological conditions is shown in

Figure 6.

3 Generalized regression neural
network based on shuffled frog
leaping algorithm

3.1 Shuffled frog leaping algorithm
technique

SFLA is a conceptually based algorithm that mimics the

onomatopoeic progression of a community of hungry frogs. This

algorithm’s design is conceptualized as a group of frogs that resides

in a morass comprising several stone blocks. The primary goal of all

the amphibians is to search for a rock having more quantity of food

as compared to the other rocks. To discover and reach that stage, the

frogs converse with one another while looking for ways to improve

one another’s positions (memes) in the swamp. SFLA is built on the

strategic planning of these frogs. To replicate this communications

strategy and enforce SFLA, two different logics are blended. These

logics are “deterministic” strategies and “random” strategies. The

deterministic method is associated with the frogs’ local improved

performance in the swamp. As a consequence, they can only interact

with frogs from the same meiotic division. This model comprises

three primary operators which are described below:

1) Classification stage: The primary objective is to acquire new

categories of frogs. These frog categories are sequences of

parallel frog cultures going to be used in the next step for local

communication. The frogs are arranged first on the basis of

their fitness for this intent. The frog with the best fitness must

be placed in first class. This frog is termed the best frog in the

swamp and the first member of the sorted set. Similarly, the

second frog will be included in the second class. The nth frog

will be included in the nth class, and a further (n+1)th frog will

be introduced in the first class, and so on.

2) Local search stage: During this phase, the operator in each

class allows the worst frog to interact with the best frog in an

attempt to transform its leaping move and guidance in terms

of improving its position. This procedure will be repeated

several times for every SFLA simulation iterative process

(epochs). As a result, the current worst frog of the class at

the related epoch communicates with the recent best frog in

that epoch to get nearer to the best rock in the swamp. (1) and

(2) are the formulae that clarify the principle of local search:

X � rand(X)p(Xm −Xn,old value), (1)
Xn,new value � Xn,old value +X, (2)

−Xmax ≤X≤ Xmax. (3)

TABLE 2 Proportion coefficient of the principal component.

Principal component X1 X2 X3 X4 X5

1 0.74 −0.78 −0.04 0.20 0.17

2 −0.22 −0.26 0.83 −0.41 0.53

3 −0.26 0.13 −0.10 0.82 0.73
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Here, we consider indicate the position/locations of the fittest

frog, the current default frog, and the generated frog, respectively.

X and Xmax indicate the leaping size step and the maximum

value step, respectively. The value rand (X) lies between 0 and 1,

representing a positive value.

The Xn,new value will be accepted if it has a better value in

comparison to Xn,old value, and through the optimization

process, the old default frog will be rejected. If the old

default frog is not rejected then the local search

phenomenon is to be repeated for the same frog, but in

this case, the global best frog (i.e., Xg) (Eq. 3) must be

used in place of the local best frog (Eq. 1). If this strategy

fails to produce Xw new with a higher fitness value, Xw, old

will be eliminated, and an arbitrary frog must be engendered

to precede the local information exchange in the correlating

class. The optimum values of frogs in the same class or local

frogs must be determined after each era to identify the local

best frog and worst frog in that class.

3) Shuffling process stage: Each iteration ends after the

epochs of local search have been completed for different classes.

In this phase, all the frogs are combined, forming a unified

population having zero bias. In the SFLA iterative process, these

three agents are reiterated again and again until the stopping

condition is reached (Ge et al., 2020). This stage must go into

considerable detail about the SFLA idea as well as its execution.

3.2 Generalized regression neural network

GRNN constitutes four layers. The layers are the input layer, the

pattern layer, the summation layer, and the output layer. Y

represents the corresponding incoming and outgoing vectors,

that is, Y = [Y1, Y2, Y3, . . . . . .Yn] and Z =

[Z1, Z2, Z3, . . . . . .Zn ] respectively.
The count of neurons in each layer is equal to the input

dimension of the training samples, and each neuron sends input

data directly to the pattern layer. The count of neurons in the

pattern layer is proportional to the number of training samples.

The transfer function termed as RBF is given by:

Ctransfer Function � exp((Y − Yt)T (Y − Yt)
2σ2

), (4)

where Ctransfer Function is the assumed transfer function and σ is

the spread parameters. The summation layers can be carried out

in two ways: 1) To determine the summation of the weighted

output of each neuron present in pattern layer mode, and 2) to

FIGURE 7
Graph between solar irradiation vs. hour.

FIGURE 8
Outcome of all models of PV forecasting during sunny
condition.
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determine the arithmetic sum of the output of neurons present in

the pattern layer.

3.3 Principal component analysis

It is a dimensionality reduction and feature extraction

method that follows the linear transformation principle. In

this technique, the correlated variables get converted into

mutually uncorrelated variables with the help of orthogonal

transformation. The primary constituents are calculated using

the covariance matrix’s eigenvector. The values obtained are less

than or equal to the original variables. A high correlation is

reflected among the input variables by the initial main

constituents, which accounts for the majority of

heterogeneity [98].

3.4 Process of proposed model

This study presents an improved model for PV output

forecasting based on PCA-GWO-GRNN, which can be

explained in five steps.

1) During Stage I: Preprocessing of data

2) During Stage II: Reduction in size. The PCA is used to

transform the meteorological input data into a

comprehensive method.

3) During Stage III: Sample selection. To distinguish between

similar days for GRNN training, the historic weather type and

temperature are being used as indicators.

4) During Stage IV: Optimization of all parameters such as

solar irradiance, wind speed, temperature, humidity, and

pressure.

5) During Stage V: Training and validation offline. Figure 5

depicts a step-by-step process of short-term PV output

predicting using PCA-SFLA-GRNN.

4 Case study

The validity and feasibility of the suggested model for day-

ahead short-term PV output forecasting are verified by this case

study [34], [35]. To that end, actual solar irradiance information

from the PV plant in Bhadla Solar Park, Gujarat, India, was

retrieved from 1st January 2021 to 31st December 2021 with a 15-

min interval from 7:30 to 17:30. To validate the validity and

primacy of the developed framework based on the PCA-SFLA-

GRNN, three forecasting models are used for PV output

FIGURE 9
Outcome of all models of PV forecasting during rainy
Conditions.

FIGURE 10
Working of GRNN.

TABLE 3 Comparison of accuracy.

Condition SFLA-GRNN PCA + LSTM PCA + PSO + BP Proposed model
PCA-SFLA-GRNN

nMAE RMSE nMAE RMSE nMAE RMSE nMAE RMSE

Sunny 2.42 110.54 2.56 94.28 1.54 85.48 1.02 34.45

Cloudy 4.08 205.12 4.22 184.64 3.88 248.40 2.98 179.25

Overcast 6.98 329.74 7.00 458.98 11.08 548.84 3.45 204.68

Rainy 5.01 216.96 2.46 101.54 2.98 148.24 1.88 99.32

Average 4.6225 215.59 4.06 209.86 4.87 257.74 2.3325 129.425

The bold values shows the average accuracy of various approaches named SFLA-GRNN, PCA + LSTM, PCA + PSO + BP used in literature and the average accuracy of the present method

that is PCA+GRNN+SFLA used in this article.
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predicting SFLA-GRNN, PCA-LSTM, and PCA-PSO-BP. The

four forecasting models’ results are compared and validated.

4.1 Forecasting accuracy evaluation index

In this article, upon obtaining the desired PV output

forecasting value, the forecasting accuracy is analyzed by using

nominal mean absolute error (nMAE) and root mean square

error (RMSE) (Mei et al., 2018), (Alblawi et al., 2022), as shown in

Eqs 5 and 6, respectively.

RMSE � 1
n
∑n

i�1[(xi − _xi)2] 1
2, (5)

MAE � 1
n
∑n

i�1|xi − _xi|. (6)

Here, n denotes the number of observations, the actual measured

data are given by xi, and _xi denotes predicted value at that instant.

FIGURE 11
Flowchart of proposed model using PCA-SFLA-GRNN.
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4.2 Data preprocessing

Table 1 shows the Eigen values of the covariance matrix

formed from these five input variables. In this section, solar

irradiance, ambient temperature, atmospheric pressure, wind

direction, wind velocity, relative humidity, and precipitation

are being used as input features while considering PV

attributes. The predicting model’s input factors are X1 − X5

and output is y. Let us assume X1: °c at the time offForecast, X2:

estimating atmospheric pressure, X3: represents humidity, and

X4: represents precipitation at the period of forecasting. The total

overall effective rate of the very first three main components is

85.75 percent, and the first three principal components are used

as input data in this study’s prediction models. Table 2 shows the

proportion coefficient of principal components based on the

PCA model described in Section 2.

The sample values of the first three principal component

analyses can be obtained as follows:

⎧⎪⎨⎪⎩
Z1 � 0.74X1 − 0.78X2 − 0.04X3 + 0.20X4 + 0.17X5.
Z2 � −0.22X1 − 0.26X2 + 0.83X3 − 0.41X4 + 0.53X5.
Z3 � −0.26X1 + 0.13X2 − 0.10X3 + 0.82X4 + 0.73X5.

(7)

The weighted summation is calculated on the basic

contribution rate of each attribute to produce a complete and

accurate meteorological factor (A.M.F):

A.M.F � 0.4226z1 + 0.3506z2 + 0.2468z3 (8)

The comprehensive meteorological factor and solar

irradiance at predicting moment, as well as 15 min during

forecasting time, are the input components for the proposed

system.

4.3 Result and discussion

The accuracy and supremacy of the PCA-GWO-GRNN

model are validated by forecasting the outcome of the PV

plant using GWO-GRNN, PCA-LSTM, PCA-PSO-BP, and the

proposed method from July 4 to 31 July 2021. Among them, the

four models use the same similar day selection method as

discussed in the following sections, and both input data point

and output data point are nearly the same. The neural network

and its proposed algorithm are developed with MATLAB

2020(b), and PCA is built with Statistical package. Figure 7

shows the solar irradiation per hour basis.

Figure 8 depicts the forecasting and actual PV output curves

on a sunny day. The projection plots of the different models are

all close to the original graph, and the suggested framework

produces the nearest outcome to the actual PV output.

On a hazy day, production cloud surface area and mobility

seem to be hard to predict in cloud cover in comparison to a

sunny day. The PV output dramatically changes between 12:00

(afternoon) and 17:00 (evening), and the four forecasting curves

and the actual curve have a huge variance. For periods with large

forecasting errors, the proposed model has forecasting curves

closer to the original graph, which can substantially reduce

forecasting errors.

Figure 9 depicts the PV production predicting and actual

curves on a wet day. During rainy days, PV production seems to

be more unreliable and erratic. All four methods’ predicting

findings diverge considerably from the actual curve. However,

the recommended model’s slope is closer to the real curve.

Table 3 demonstrates a comparison of precision for Figures

10, 11. According to Table 3, the recommended model’s average

nMAE is 2.33%, which is 2.02%, 1.38%, and 2.30% lower than the

FIGURE 12
Box chart of error in forecasting using different algorithms.

TABLE 4 Error in forecasting at different weather conditions.

Condition Durations SFLA-GRNN PCA + LSTM PCA + PSO + BP Proposed model
PCA-SFLA-GRNN

nMAE RMSE nMAE RMSE nMAE RMSE nMAE RMSE

Sunny 7 2.98 157.32 3.99 178.85 4.00 185.65 2.55 152.32

Cloudy 14 4.54 300.14 4.22 159.58 2.45 139.54 2.21 148.24

Overcast 2 7.00 372.28 8.08 497.21 11.89 600.35 3.94 202.94

Rainy 7 4.99 214.68 4.04 228.54 9.00 424.36 3.21 140.21

Average 30 4.87 261.10 5.08 266.04 7.08 337.47 2.977 160.92

The bold values shows the average of nMAE and RMSE error for this methods to show the superiority of the proposed method.
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GWO-GRNN, PCA-LSTM, and PCA-PSO-BP models,

respectively. The average RMSE is 129.425 kW, considerably

lower than that of the other proposed theories. The findings

demonstrate that the proposed model outperforms others in day-

ahead short-term photovoltaic output predicting.

Because of the large dispersion of a daily error in forecasting, the

error of different weather conditions for 1 month, that is, 30 days, is

shown in Table 4 to further analyze the performance.

According to the aforementioned analysis, the PCA-GWO-

GRNN model outperforms than the other three models in terms

of accuracy with respect to the different types of weather conditions.

Even though the forecasting error of PV output on an overcast day is

3.94%, which is significantly worse than the forecasting accuracy of

the other weather types, in general, the PCA-GWO-GRNN model

has lower nMAE and RMSE than the other threemodels. As a result,

the proposed model is more accurate.

The error obtained during PV power forecasting using

different algorithms is shown in a box chart form shown in

Figure 12.

5 Conclusion

The PCA-SFLA-GRNN model developed during this research

tackles the issue of a high number of input variables and high

variability in day-ahead short-term PV output prediction. The

relevant advancements are made through this article:

i) The minimization of the size of meteorological input features

is done here by PCA. It also extracted variables that comprise

over 85% of the source data.

ii) It can also reduce the dimensionality of the model input data

while maintaining quality and accuracy.

iii) The proposed hybrid algorithm BP-SFLA-GRNN is used to

forecast PV output power in this work. The simulation

outcomes show that the suggested technique outperforms

the previously presented framework and the traditional way

of developing GRNN.

iv) The analysis shows that the predicting model proposed in this

study fully exhumes the accurate data in the input attributes with

high stability and predicting precision that can provide efficient

strategies to day-ahead short-term forecasting of PV output

power and serve as a foundation for the optimal operation of the

energy management systems.
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