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Constructing an equivalent circuit for the photovoltaic (PV) generating unit

converging the real operation is a difficult process because of unavailability of

some parameters. Many approaches have been conducted in this field;

however, they have some problems in computational time and are stuck in

local optima. Therefore, this study proposes a simple, robust, and efficient

methodology-incorporated capuchin search algorithm (CapSA) to construct

the equivalent circuit of the PV generating unit via identifying its parameters.

The CapSA is selected as it is simple and requires less computational time in

addition to exploration/exploitation balance that avoids local optima. The

process is formulated as an optimization problem, which aims at minimizing

the root mean square error (RMSE) between measured and simulated currents.

A single-diode model (SDM), double-diode model (DDM), and three-diode

model (TDM) of different PV cells and panels operating at either constant or

variable weather conditions are constructed. A comparison to different

programmed metaheuristic approaches is conducted. The best RMSE values

obtained by the proposed CapSA are 2.27804E-04, 1.3808E-04, and 1.5182E-

04 for SDM, DDM, and TDM of PVW 752 cell, respectively. For the KC200GT

panel, the proposed approach achieved the best fitness values of 3.4440E-04,

1.5617E-03, and 6.6008E-03 at 25°C, 50°C, and 75°C, respectively. The obtained

results confirmed the superiority and competence of the proposed CapSA in

constructing a reliable equivalent circuit for the PV cell/panel.
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1 Introduction

Recently, reliance on renewable energy sources (RESs) has

gained great attention to preserve the environment from

pollution and reduce global warming. Photovoltaic (PV) cells

represent the most widespread renewable energy sources in the

world. Although the initial cost of their establishment is high,

they have very low operating costs as they do not have any

mechanical parts. The PV cells are used to convert the solar

radiation into direct electrical energy. The PV generating units

are widely used in different applications, such as standalone,

microgrids, and large grids with other generating units

(Ibrahim et al., 2020; Jiao et al., 2020; Ginidi et al., 2021;

Sattar et al., 2021). The PV panels consist of many cells that

are connected to each other in series and parallel to obtain the

current and voltage required, and the performance of the solar

cell is affected by the change in temperature and the intensity of

solar radiation (Long et al., 2021). The PV solar cell modeling

has been carried out through the following steps: selecting the

type of equivalent circuit, describing the equations of the

selected model, and identifying the optimal parameters of

the equivalent circuit. To improve the performance of solar

cells, it is necessary to obtain the optimal values of the

parameters via analyzing the current–voltage curve and the

type of model used (Said et al., 2021). Different models have

been constructed for the PV cell, such as a single-diode model

(SDM), which requires the definition of five parameters,

double-diode model (DDM) with seven parameters to be

estimated, and three-diode model (TDM) that involves nine

parameters (Wang and Huang, 2018; Premkumar et al., 2021b).

The diode reverse saturation current has been considered as the

initial parameter employed in calculating the SDM (Şentürk,

2018). Many numerical methods have been conducted to

estimate the parameters of the solar cell equivalent circuit,

and the Lambert W function has been presented to compute

the parameters of the SDM (Ćalasan et al., 2020). Linear least

square was used to identify the PV panel parameters using two

steps (Reddy and Yammani, 2021). The Newton–Raphson’s

maximum likelihood approach has been used to construct the

PV cell SDM equivalent circuit via extracting the unknown

parameters (Ayang et al., 2019). An iterative approach with two

steps has been employed to calculate the SDM parameters using

the panel datasheet; the first step was determining the diode

ideality factor, and the second step was estimating the model

shunt resistance (Stornelli et al., 2019). Many optimization

approaches have been applied to extract the parameters of

the PV cells/modules, such as drone squadron optimization

incorporated with the Newton–Raphson approach, which has

been applied with six states of polycrystalline and

monocrystalline SDM and DDM; moreover, one state under

different operation condition has been investigated (Gnetchejo

et al., 2021). A hybrid approach of whale optimization (WO)

and particle swarm optimization (PSO) has been presented to

solve the problem of evaluating the unknown parameters for

both SDM and DDM for the PV panel (Sharma et al., 2021). A

stochastic fractal search optimization (SFSO) has been applied

to determine the SDM and DDM circuits’ parameters with

experimental data of the ESP-160 PPW PV panel (Rezk et al.,

2021). An improved grasshopper optimization algorithm

(GOA) with lévy flight has been used to obtain the

parameters of SDM and DDM for RTC and sharp ND-

R250A5 PV panels under different temperatures and solar

irradiances (Mokeddem, 2021). Different types of PV

modules with SDM, DDM, and TDM circuits have been

FIGURE 1
Equivalent circuits of the PV cell. (A) SDM, (B) DDM, and (C) TSM.
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analyzed at various operating conditions with the aid of an

artificial ecosystem optimizer (AEO) (Yousri et al., 2020). A

gradient-based optimizer (GBO) (Ismaeel et al., 2021),

enhanced GOA by metaphor free with ranking mechanisms

(Ahmadianfar et al., 2021), improved GOA with opposition

(Premkumar et al., 2021a), and enhanced GBO algorithm by

chaotic drifts (Premkumar et al., 2021b) have been applied to

identify the parameters of different PV cells/modules under

different operating conditions. A turbulent flow of water

optimizer (TFWO) has been used to estimate the PV

equivalent circuit parameters (Abdelminaam et al., 2021;

Said et al., 2021). Moreover, bald eagle search (BES) (Nicaire

et al., 2021), improved BES (Ramadan et al., 2021a), hybrid grey

wolf and cuckoo search (HGWOCS) (Long et al., 2020a),

artificial bee colony (ABC)-based teaching learning (Chen

et al., 2018), gorilla troop optimizer (Ginidi et al., 2021), and

the whale optimization algorithm-based refraction learning

(Long et al., 2020b) have been employed to construct the

SDM-based circuit of the PV panel. Furthermore, the JAYA

algorithm was enhanced via guided JAYA, chaotic JAYA, and

elite opposition JAYA and employed for estimating the

parameters of the PV panels (Wang and Huang, 2018; Yu

et al., 2019; Premkumar et al., 2021c). The TDM of the PV

system has been presented with the Newton–Raphson approach

and the LSHADE algorithm under different operation

conditions (Bertalero et al., 2021). The problem of

estimating optimal parameters of the PV unit equivalent

circuit was presented and solved via generalized normal

distribution optimization (GNDO) (Zhang et al., 2020),

modified jellyfish search optimizer (MJSO) (Abdel-Basset

et al., 2021), slime mould algorithm (SMA) (Mostafa et al.,

2020), forensic-based investigation algorithm (FBIA) (Shaheen

et al., 2021), and chaos game optimization algorithm (CGOA)

(Ramadan et al., 2021b). A comprehensive study comprising

28 approaches employed in extracting the PV parameters has

been presented in Yang et al. (2020), and a DDM-based circuit

of the PV panel has been constructed with the aid of adaptive

compass search (ACS) (Zeng et al., 2021). The equivalent circuit

of different PV panels has been modeled using an improved

equilibrium optimizer based on predictive output data by the

back propagation neural network (Wang et al., 2021). An

improved GBO with chaotic maps and self-adaptive

weighting has been used to estimate the optimal parameters

of the PV generating unit (Jiang et al., 2022). A hybrid

sine–cosine algorithm (SCA) with differential GBO was

introduced to estimate the PV parameters, whereas the

differential evolution (DE) and SCA are used to avoid being

stuck in local optima and get the global solution (Yu et al.,

2022). An approach of hunger games search optimizer (HGSO)

with mutation of Cauchy- and Gaussian-based improved

Newton–Raphson method has been applied to build and

analyze the TDM circuit of the PV panel (Premkumar et al.,

2022).

Most reported approaches suffer from some limitations, such

as falling in local optima, requiring large consumed time,

complicated construction and execution, and requiring many

controlling parameters defined by the user, and may cause

divergence from the global solution.

These gaps are covered in this work by proposing a novel

methodology-incorporated capuchin search algorithm (CapSA) to

identify the unknown parameters of the PV cells/panels equivalent

circuits. The CapSA is characterized by simplicity, acceptable

FIGURE 2
Flow chart of the proposed CapSA.
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computation time, and less controlling parameters, and these merits

encourage the authors to use the approach to guarantee reliable

equivalent circuit that matches to the actual operation. Moreover,

a balance between the exploration and exploitation phases of the

algorithm enables it to perform well and obtain efficient results.

The main contributions of this work can be summarized as

follows:

1) A new approach of CapSA is proposed to extract the optimal

parameters of the PV cells/panels equivalent circuits.

2) The proposed CapSA is applied to construct various SDM,

DDM, and TDM circuits of the PV system.

3) Comparison to MVO, LAPO, SCA, TSA, EO, and HSA is

conducted.

4) The robustness of the proposed CapSA is confirmed through

the fetched results.

The article is outlined as follows: Section 2 describes the

mathematical model of the PV module, Section 3 introduces the

problem formulation, Section 4 clarifies the main principles of

CapSA, Section 5 presents the simulation results, and conclusions

are given in Section 6.

2 Mathematic model of the
photovoltaic module

Three models of PV generating unit are examined: single,

double, and three diodes (SDM, DDM, and TDM). These

models are widely used to simulate the performance of the

solar cell and the panel, and the PV models can be described as

follows.

2.1 Single-diode model

In this model, the PV cell is simulated by a current source in

parallel with a diode and a shunt resistance, and all are connected

TABLE 1 Lower and upper bounds of different PV cells/panels.

Parameters R.T.C
France

PVW 752 PWP-201 STM6-40/36 STP6-120/36 KC200GT

Lb Ub Lb Ub Lb Ub Lb Ub Lb Ub Lb Ub

a1, a2, and a3 1 2 1 2 1 50 1 60 1 50 1 2

Rs 0 0.5 0 0.8 0 2 0 0.36 0 0.36 0 2

Rsh 0 100 0 1000 0 2000 0 1000 0 1500 0 500

Idr1, Idr2, and Idr3 0 1E-6 0 1E-6 0 50E-6 0 50E-6 0 50E-6 0 10E-6

Ig 0 1 0 0.5 0 2 0 2 0 8 0 16.4

TABLE 2 SDM optimal parameters of R.T.C France and PVW752 PV cells.

Type Alg a1 Rs Rsh Idr1 Ig RMSE Time(s)

R.T.C France CapSA 1.48119 0.03638 53.71853 3.230E-07 0.76078 9.86022E-04 546.60

MVO 1.99487 0.01452 99.80331 1.414E-05 0.76728 9.44402E-03 826.90

EO 1.71048 0.00000 1.14891 0.000E+00 0.83682 2.22861E-01 1440.4

LAPO 1.48119 0.03638 53.71852 3.230E-07 0.76078 9.86022E-04 1512.0

HAS 1.59440 0.03191 99.99443 9.180E-07 0.76083 2.28076E-03 3092.0

SCA 1.60901 0.00000 1.14943 0.000E+00 0.83667 2.22861E-01 724.70

TSA 1.46889 0.03730 52.91597 2.863E-07 0.76134 1.31104E-03 686.70

PVW752 CapSA 1.61567 0.66051 608.0099 3.779E-12 0.10007 2.27804E-04 591.10

MVO 1.99491 0.29549 95.5670 3.428E-10 0.10213 3.53887E-03 1045.6

EO 2.00000 0.00000 14.5886 0.000E+00 0.11376 2.53996E-02 1561.4

LAPO 1.61568 0.66052 608.8061 3.779E-12 0.10006 2.27820E-04 1569.3

HAS 1.73075 0.62114 806.4701 1.865E-11 0.09997 3.12100E-04 2731.1

SCA 1.30046 0.00000 14.5879 0.000E+00 0.11375 2.53996E-02 838.70

TSA 1.63336 0.64974 415.7086 4.902E-12 0.10052 3.54625E-04 830.40
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in series with a resistance, as shown in Figure 1 (a); the output

current of the cell can be described by the following equations

(Low and Soon, 2012; Fathy and Rezk, 2017):

I � Ig − Id − Ish, (1)

I � Ig − Id(exp(q(V + IRs)
akT

− 1)) − (V + IRs)
Rsh

(2)

where V, Ig, Id, Rsh, and Rs are the output voltage, light

generated current, diode reverse saturation current, shunt

resistance, and series resistance, respectively; a is the

ideality factor of the diode; q denotes the electron charge

(q = 1.60217646 × 10−19 C); k is the constant of Boltzmann

constant (k = 1.3806503 × 10−23 J/K); and T indicates the

temperature in Kelvin. The parameters to be identified in this

model are a, Rs, Rsh, Id, and Ig.

2.1.1 Double-diode model
The equivalent circuit of the DDM of the PV cell is shown

in Figure 1 (b). In this model, a second diode is used to

simulate the effects of recombination, whereas the first one

represents the current of diffusion. The output current can be

calculated as follows (Askarzadeh and Rezazadeh, 2013; Alam

et al., 2015):

I � Ig − Id1 − Id2 − Ish, (3)

TABLE 3 DDM optimal parameters of R.T.C France and PVW752 PV cells.

Type Alg a1 a2 Rs Rsh Idr1 Idr2 Ig RMSE Time(s)

R.T.C France CapSA 2.0000 1.4510 0.0367 55.4854 7.493E-07 2.260E-07 0.76078 9.8248E-04 605.30

MVO 2.0000 1.4784 0.0359 61.8300 6.237E-07 3.014E-07 0.76102 1.0951E-03 1046.1

EO 1.9993 1.4780 0.0364 54.0446 9.101E-08 3.109E-07 0.76077 9.8529E-04 1550.8

LAPO 1.4511 1.9999 0.0367 55.3546 2.263E-07 7.490E-07 0.76079 9.8276E-04 1488.4

HAS 1.5232 1.8152 0.0339 84.4493 4.446E-07 4.020E-07 0.76033 1.5898E-03 2733.0

SCA 1.0251 1.5307 0.0341 77.8213 0.000E+00 5.214E-07 0.76246 2.5492E-03 738.00

TSA 1.6398 1.5207 0.0347 54.9187 9.253E-11 4.728E-07 0.76168 1.3679E-03 761.80

PVW752 CapSA 2.00000 1.00000 0.74432 1000.00 1.897E-10 7.386E-19 0.09991 1.3808E-04 676.50

MVO 2.00000 1.15690 0.52099 471.723 3.798E-10 0.000E+00 0.10080 8.4986E-04 1011.1

EO 2.00000 1.08700 0.00000 14.5886 0.000E+00 0.000E+00 0.11376 2.5400E-02 1903.6

LAPO 1.99977 1.08526 0.73202 830.747 1.747E-10 1.665E-17 0.09996 1.5014E-04 1855.1

HAS 1.74489 1.64269 0.64484 549.211 3.058E-12 4.834E-12 0.10022 2.5862E-04 3043.2

SCA 1.63432 2.00000 0.00000 14.6064 0.000E+00 0.000E+00 0.11371 2.5400E-02 897.80

TSA 1.74182 1.33334 0.61685 489.247 2.142E-11 0.000E+00 0.10047 4.1928E-04 885.80

TABLE 4 TDM optimal parameters of R.T.C France and PVW752 PV cells.

Type Alg a1 a2 a3 Rs Rsh Idr1 Idr2 Idr3 Ig RMSE

R.T.C France CapSA 2.0000 1.4510 2.0000 0.0367 55.4854 5.30E-07 2.26E-07 2.19E-07 0.76078 9.8248E-04

MVO 1.0437 1.4661 1.9988 0.0365 61.2724 0 2.69E-07 4.63E-07 0.76055 1.0249E-03

EO 1.9999 1.4521 2.0000 0.0367 55.4253 0 2.29E-07 7.24E-07 0.76078 9.8249E-04

LAPO 1.9998 1.9993 1.4433 0.0368 56.0084 8.38E-07 8.34E-08 2.06E-07 0.76078 9.8274E-04

HAS 1.5715 1.9886 1.4977 0.0354 60.7847 3.08E-08 1.51E-07 3.60E-07 0.76063 1.1034E-03

SCA 1.4915 1.0000 1.5742 0.0339 83.1481 0 0 7.69E-07 0.76040 3.2370E-03

TSA 1.5836 2.0000 1.3410 0.0375 57.8322 3.17E-07 8.20E-07 3.94E-08 0.76039 1.1321E-03

PVW752 CapSA 1.0617 1.9996 2.0000 0.7318 1000.000 7.17E-18 1.80E-10 4.82E-12 0.0999 1.5182E-04

MVO 1.1439 2.0000 1.6729 0.5149 394.825 0 3.76E-10 0 0.1007 9.0585E-04

EO 1.2866 1.6385 1.5413 0.6528 678.934 0 5.28E-12 0 0.1000 2.3209E-04

LAPO 1.2463 1.1068 2.0000 0.6961 1000.000 1.74E-15 4.03E-23 1.67E-10 0.0999 1.9479E-04

HAS 1.9998 1.3751 1.9501 0.5421 999.690 5.92E-15 2.20E-16 2.32E-10 0.1001 6.2030E-04

SCA 1.4576 2.0000 1.9497 0.0000 14.579 0 0 0 0.1138 2.5400E-02

TSA 2.0000 1.5109 2.0000 0.6979 651.825 5.57E-14 7.13E-13 7.13E-13 0.0997 3.7605E-04
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I � Ig − Id1(exp (q(V + IRs)
a1kT

) − 1) − Id2(exp (q(V + IRs)
a2kT

)
− 1) − (V + IRs)

Rsh

(4)

where Id1 and Id2 are the diodes’ reverse saturation currents, and

a1 and a2 are the ideality factors of the diodes. The DDM has

seven parameters to be estimated, which are a1, a2, Rs, Rsh, Id1, Id2,

and Ig.

2.1.2 Three-diode model
The equivalent circuit of the TDM is shown in Figure 1 (c).

The third diode is used to simulate the leakage current. The

output current in such a model can be described as follows

(Yousri et al., 2020):

FIGURE 3
Measured and simulated curves obtained via CapSA for the R.T.C France PV cell. (A) SDM, (B) DDM, and (C) TDM.
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I � Ig − Id1 − Id2 − Id3 − Ish, (5)

I � Ig − Id1(exp(q(V + IRs)
a1kT

) − 1) − Id2(exp(q(V + IRs)
a2kT

)
− 1) − Id3(exp (q(V + IRs)

a3kT
) − 1) − (V + IRs)

Rsh
,

(6)
where Id3 and a3 are the third diode reverse saturation current

and its ideality factor. It is noticeable that Eq. 6 contains nine

parameters to be identified: a1, a2, a3, Rs, Rsh, Id1, Id2, Id3,

and Ig.

3 Problem formulation

Estimating the parameters of the PV equivalent circuit is

formulated as an optimization problem, and the considered

fitness function to be minimized is root mean square error

(RMSE) between the measured and simulated currents. The

undefined parameters represent the design variables in the

formulated optimization problem. The main target is constructing

a reliable circuit with confident I–V curves that converge to the

experimental data (Ram et al., 2017; Yu et al., 2018; El-Fergany,

2021). The fitness function can be written as follows:

FIGURE 4
Measured and simulated I–V and P–V curves of the PVM752 cell. (A) SDM, (B) DDM, and (C) TDM.
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RMSEPV �
�����������������
1
N
∑N

i�1 f PV(V , I, x)2
√

�
������������������
1
N
∑N

i�1 (Imeas − Isim )2
√

,

(7)
where fPV denotes the function of PV unit,N denotes the nuebr of

measured data, Imeas is the measured current, and Isim indicates

the simulated current.

3.1 Fitness function of the single-diode
model

The fitness function employed to construct the SDM-based

circuit of the PV system can be described as follows:

f SDM(V , I, x) � I − x5 + x4(exp(q(V + Ix2)
x1kT

− 1))
+ (V + Ix2)

x3
(8)

where x is a vector of design variables (a, Rs, Rsh, Id, and Ig).

3.2 Fitness function of the double-diode
model

In DDM, the considered fitness function is written as follows:

f DDM(V , I, x) � I − x7 + x5(exp(q(V + Ix3)
x1kT

) − 1)
+ x6(exp(q(V + Ix3)

x2kT
) − 1) + (V + Ix3)

x4
,

(9)
where x includes seven parameters: a1, a2, Rs, Rsh, Id1, Id2, and Ig.

3.3 Fitness function of the three-diode
model

In such a model, nine parameters (a1, a2, a3, Rs, Rsh, Id1, Id2,

Id3, and Ig) represent the design variables, and they are

introduced as x vector; the fitness function considered in such

model can be given as follows:

TABLE 5 Statistical parameters of the approaches applied to
PVM752 PV cell.

Type Alg Min Max Mean Std

SDM CapSA 2.2780E-04 2.2780E-04 2.2780E-04 8.1938E-18

MVO 3.5389E-03 2.5399E-02 1.9287E-02 9.1856E-03

EO 2.5399E-02 2.5399E-02 2.5399E-02 1.4691E-17

LAPO 2.2782E-04 2.6106E-04 2.2937E-04 6.0143E-06

HAS 3.1210E-04 3.8402E-01 7.8755E-02 9.5693E-02

SCA 2.5399E-02 2.5400E-02 2.5399E-02 1.9359E-07

TSA 3.5463E-04 2.5399E-02 3.3489E-03 7.5611E-03

DDM CapSA 1.3808E-04 7.9369E-04 2.2342E-04 1.1954E-04

MVO 8.4986E-04 2.5399E-02 1.2188E-02 9.6925E-03

EO 2.5399E-02 2.5399E-02 2.5399E-02 1.7644E-17

LAPO 1.5014E-04 2.7024E-03 3.6194E-04 4.6635E-04

HAS 2.5862E-04 7.6665E-01 2.3147E-01 1.8403E-01

SCA 2.5399E-02 2.5400E-02 2.5399E-02 1.6299E-07

TSA 4.1928E-04 6.6432E-03 8.7682E-04 1.0949E-03

TDM CapSA 1.5182E-04 7.3492E-04 2.2634E-04 1.2863E-04

MVO 9.0585E-04 2.5399E-02 1.2508E-02 8.6417E-03

EO 2.3209E-04 2.5399E-02 2.4561E-02 4.5949E-03

LAPO 1.9479E-04 2.5399E-02 1.1962E-02 1.2161E-02

HAS 6.2030E-04 1.8121E+00 6.5578E-01 4.4943E-01

SCA 2.5399E-02 2.5400E-02 2.5399E-02 1.2154E-07

TSA 3.7605E-04 1.2107E-02 1.4843E-03 2.5089E-03

FIGURE 5
Convergence curves of the fitness function obtained via
different optimizers. (A) R.T.C France cell and (B) PVW752 cell.
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f TDM(V , I, x) � I − x9 + x6(exp (q(V + Ix4)
x1kT

) − 1)
+ x7(exp (q(V + Ix4)

x2kT
) − 1)

+ x8(exp (q(V + Ix4)
x3kT

) − 1) + (V + Ix4)
x5

. (10)

4 Capuchin search algorithm

The capuchin search algorithm (CapSA) is a novel optimizer

that mimics the foraging behavior of the capuchins for searching

the food resources over the branches of trees and riverbanks

(Braik et al., 2021). During the foraging process, capuchins leap,

climb, and swing to search for food. They are social animals that

move in the forest as family, where they are live in groups with

adult female, male, and small apes. Capuchins’movements in the

forest to find the most abundant food location simulate the global

search optimization algorithms. In the foraging, they interact

with their leader and with each other by calling, barking, and

postures. CapSA can be modeled based on three mechanisms of

the motion, as follows.

4.1 Leaping motion

Capuchins move long distances over trees to find and

discover food resources; this is similar to the global search

mechanism. Here, movement of the capuchins between tress

looks like the projectile motion, which can be expressed by the

third law of motion, as follows:

xm � x0 + v0t + 1
2
at2, (11)

where xm, x0, v0, and t are the capuchin new location, initial

location, initial speed, and time, respectively. This equation can

be modified as follows:

xm � x0 + v20 sin (2θ0)/g (12)

where g denotes the gravitational acceleration and θ0 denotes

leaping angle.

4.1.1 Swinging motion
Capuchins wobble on branches of the trees in the foraging

process; this action simulates the pendulummotion. This motion

mimics the local search phase, and it can be described as follows:

FIGURE 6
Fitness value versus iteration number for (A) PWP-201, (B)
STM6-40/36, and (C) STP6-120/36 panels.
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x � L sin θ, (13)
where L is the length of tail and θ denotes the swing angle of

capuchin.

4.1.2 Climbing motion
The capuchins climb to the trees for searching the food

resources, and this motion mimics the local searching process in

the optimization approach. The climbing motion is described as

follows:

xm � x0 + v0t + 0.5(v − v0)t2. (14)

The initial locations of the capuchins can be calculated as

follows:

Xi � XLb + (XUb − XLb) × rand, (15)

where XLb is the lower limit of the control variable while XUb is

its upper limit and rand is a random number within [0, 1]. The

group of the capuchin has two types of the populations: the leader

or the alpha and the followers. Both of them search food resource,

denoted as F. Other capuchins may also join the leader in the

foraging behavior and pursue similar locomotion behavior. The

leader jumps between the branches to find the source food, and

this can be expressed as follows:

Xi � F + Pbf (vi)2 sin (2θj)
g

, i< n
2
; 0.1< ε≤ 0.2, (16)

where Pbf is the probability of the balance provided by the

capuchins tail, ε is a random number, and θj deotes the

capuchin’s jumbing angle, which is given as follows:

θj � 3
2
r, (17)

where r is a random value within [0, 1]. To achieve balance

between exploration and exploitation of the CapSA, an operator

(τ) represents the life time of the CapSA, and it can cause balance

between the global and local searching phases; this operator can

be calculated as follows:

τ � β0e
−β1( Iter

max Iter)β2

, (18)

where Iter denotes the current iteration while max Iter is the

maximum number of iterations; β0, β1, and β2 are random

numbers with values of 2, 21, and 2, respectively. The velocity

of the capuchin can be calculated as follows:

TABLE 6 SDM optimal parameters of PWP-201, STM6-40/36, and STP6-120/36 panels.

Type Alg a1 Rs Rsh Idr1 Ig RMSE Time(s)

PWP-201 CapSA 48.64290 1.20127 981.9822 3.482E-06 1.03051 2.42507E-03 517.50

MVO 48.54071 1.20430 946.9971 3.390E-06 1.03076 2.42669E-03 845.20

EO 48.69365 1.19999 1004.0137 3.529E-06 1.03037 2.42544E-03 1460.3

LAPO 48.64290 1.20127 981.9825 3.482E-06 1.03051 2.42507E-03 1595.9

HAS 48.91044 1.19273 934.4454 3.730E-06 1.03150 2.46479E-03 2702.7

SCA 50.00000 1.18974 1089.2080 4.934E-06 1.03615 4.78058E-03 745.70

TSA 48.91044 1.19273 934.4454 3.730E-06 1.03150 2.64948E-03 763.20

STM6-40/36 CapSA 53.12697 0.21794 543.7935 1.147E-06 1.66440 1.90610E-03 542.80

MVO 52.73569 0.22860 518.9537 1.032E-06 1.66498 1.92725E-03 868.60

EO 53.04984 0.21991 537.6140 1.123E-06 1.66455 1.90725E-03 1493.1

LAPO 53.12698 0.21794 543.7936 1.147E-06 1.66440 1.90610E-03 1464.3

HAS 53.53326 0.20951 607.2201 1.280E-06 1.66265 2.02727E-03 2691.2

SCA 60.00000 0.00000 1000.0000 5.859E-06 1.65983 4.58893E-03 731.40

TSA 51.61589 0.25873 491.9739 7.553E-07 1.66470 2.20758E-03 712.00

STP6-120/36 CapSA 45.36378 0.16541 799.9165 2.335E-06 7.47253 1.66006E-02 445.40

MVO 45.33650 0.16549 743.8446 2.314E-06 7.47340 1.66024E-02 698.30

EO 45.40730 0.16519 880.7132 2.369E-06 7.47144 1.66024E-02 1168.0

LAPO 45.36378 0.16541 799.9167 2.335E-06 7.47253 1.66006E-02 1190.0

HAS 45.80751 0.16286 927.7289 2.701E-06 7.47380 1.67470E-02 2160.4

SCA 47.08395 0.15794 384.7876 3.999E-06 7.48488 3.04560E-02 562.10

TSA 45.89616 0.16120 484.6761 2.785E-06 7.48577 1.76709E-02 568.80
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vi � ρXi + τa1(Xi
best − Xi)r1 + τa2(F − Xi)r2, (19)

whereXi
best represents the best location of the ith capuchin, a1 and a2

are two positive values that control the effects of F and Xi
best on the

velocity, r1 and r2 are random numbers in [0, 1], and ρ is an inertia

coefficient equal to 0.7. The alpha capuchin can jump on wide areas

to find food resources when the food on trees decreases. The leader

and the other capuchins’ motions can be represented as follows:

Xi � F + Pef Pbf (vi)2 sin (2θ)
g

, i< n /

2 ; 0.2< ε≤ 0.3 (20)

where Pef is the probability movement of the capuchins on the

ground. The motion of the alpha leader on the ground can be

expressed as follows:

Xi � Xi + vi , i< n /

2 ; 0.3< ε≤ 0.5 (21)

The swinging of the capuchins and alpha leader on the trees

branches searching the food in the local region can be expressed

as follows:

Xi � F + τPbf , i< n /

2 ; 0.5< ε≤ 0.75 (22)

Some capuchins and the alpha leader climb the trees and fall

several times to find the food as local search, and this can be

expressed as follows:

Xi
j � Fj + τPbf (vij − vij−1), i< n /

2 ; 0.75< ε≤ 1.0 (23)

Capuchins also move randomly to explore new areas, which

is known as the random relocation of the capuchins, and this can

be mathematically described as follows:

Xi � τ × [XLb + ε × (XUb − XLb)], i< n /

2 ; ε≤Pr , (24)

where Pr is a constant equal to 0.1. The behavior of the followers

update their locations with respect to their leader according to

the following equation.

Xi
j �

1
2
(XLi

j + Xi−1
j ) , n

2
≤ i≤ n, (25)

where XLijand Xi−1
j are the leader location and the previous

location of follower, respectively. The application of the capuchin

search algorithm to estimate the optimal parameters of the PV

panel equivalent circuit is depicted in Figure 2.

TABLE 7 DDM optimal parameters of PWP-201, STM6-40/36, and STP6-120/36 panels.

Type Alg a1 a2 Rs Rsh Idr1 Idr2 Ig RMSE Time
(s)

PWP-201 CapSA 48.6743 14.9924 1.2284 1084.581 3.476E-06 1.945E-20 1.0301 2.3306E-03 535.00

MVO 48.5111 23.7948 1.2044 933.4204 3.364E-06 0.000E+00 1.0308 2.4274E-03 731.90

EO 5.9281 48.6622 1.2008 988.9690 0.000E+00 3.500E-06 1.0305 2.4251E-03 1551.7

LAPO 33.7156 48.6429 1.2013 981.9840 8.136E-21 3.482E-06 1.0305 2.4251E-03 1567.5

HAS 49.4517 48.3887 1.1890 1331.118 3.257E-06 7.870E-07 1.0289 2.4766E-03 2806.5

SCA 19.0793 50.0000 1.1734 678.2340 0.000E+00 4.840E-06 1.0308 6.5520E-03 668.50

TSA 50.0000 50.0000 1.1585 1276.919 1.093E-06 3.821E-06 1.0297 2.7169E-03 665.30

STM6-40/36 CapSA 36.5339 60.0000 0.3600 603.186 8.196E-10 3.240E-06 1.66427 1.7309E-03 548.70

MVO 52.1984 33.6318 0.2429 486.471 8.898E-07 0.000E+00 1.66591 2.0292E-03 763.10

EO 50.7648 60.0000 0.2310 550.308 4.611E-07 1.296E-06 1.66437 1.8816E-03 1172.7

LAPO 43.5677 59.0559 0.2718 584.705 2.376E-08 2.556E-06 1.66395 1.8265E-03 1334.1

HAS 55.0330 54.2329 0.1731 621.230 1.054E-06 6.735E-07 1.66326 2.1265E-03 2612.5

SCA 30.5345 60.0000 0.0000 869.296 0.000E+00 5.853E-06 1.66218 4.5854E-03 670.40

TSA 54.5721 53.6560 0.2012 535.691 4.414E-11 1.319E-06 1.66552 2.0329E-03 640.00

STP6-120/36 CapSA 13.9294 45.4583 0.17061 1500.000 1.108E-22 2.357E-06 7.46837 1.6421E-02 536.40

MVO 1.0018 45.3100 0.16565 706.131 0.000E+00 2.293E-06 7.47406 1.6604E-02 747.20

EO 45.3676 50.0000 0.16539 807.981 2.338E-06 0.000E+00 7.47241 1.6601E-02 1232.4

LAPO 45.3638 47.6348 0.16541 799.910 2.335E-06 2.224E-13 7.47253 1.6601E-02 1384.0

HAS 44.8293 45.5172 0.16712 581.404 1.375E-06 7.255E-07 7.47586 1.6671E-02 2469.1

SCA 44.5922 49.8144 0.14131 858.482 0.000E+00 8.985E-06 7.50427 3.3653E-02 676.20

TSA 45.0246 47.2204 0.16746 438.324 2.019E-06 1.315E-07 7.49236 1.7966E-02 614.70
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5 Simulation and results

In this work, the CapSA approach is used to determine the

parameters of different PV models. The parameters are

identified for SDM, DDM, and TDM models of R.T.C

France, PVM752, PWP-201, STM6-40/36, and STP6-120/

36 operated at standard test conditions (STCs). On the other

hand, the DDM-based circuit of the KC200GT PV module is

constructed and investigated under different temperatures and

solar irradiances. The fetched results via the proposed CapSA

are compared to MVO, LAPO, SCA, TSA, EO, and HAS. The

considered algorithms are executed for 30 independent runs

with controlling parameters of 10,000 maximum iteration and a

population size of 50 (Pourmousa et al., 2019). The algorithm is

executed for 30 independent runs to minimize the effect of

random numbers considered in the algorithm. However, the

run with the minimum fitness value is selected as the optimal

result. The upper and lower bounds (Ub and Lb) of the

identified parameters for different PV cells/panels are

presented in Table 1. The measured data of I–V for the

considered PV cells/panels are shown in Supplementary

Table S1, where the number of samples for R.T.C France

is 26; PVM752 is 44; whereas the number of patterns for

PWP-201, STM6-40/36, and STP6-120/36 are 25, 20, and 24,

respectively. Finally, the number of measured patterns for

KC200GT is 15 samples.

5.1 Case 1: Photovoltaic cells

The proposed CapSA is employed to extract the unknown

parameters of SDM, DDM, and TDM for the R.T.C France PV cell

operated at 33°C and 1000W/m2 and the PVM752 GaAs thin film

cell at 25°C and 1000W/m2. The measured data of I–V and the cell

electric characteristics are given in Gao et al. (2018), Rezaee Jordehi

(20180, Yu et al. (2018), Yousri et al. (2020), and Lekouaghet et al.

(2021). Table 2 illustrates the optimum parameters and the RMSE

value of SDM obtained via the proposed CapSA in comparison to

other algorithms. The CapSA and LAPO approaches achieved the

lowest RMSE value of 9.86022E-04 for the R.T.C France PV cell,

whereas the minimum RMSE value of 2.27804E-04 for the

PVW752 cell is obtained by a CapSA optimizer. The optimal

parameters of DDM obtained via the proposed CapSA and others

are tabulated in Table 3, and the R.T.C France minimum RMSE

value of 9.8248E-04 is obtained by the proposed CapSA. Regarding

to the DDM of PVW752 cell, the proposed CapSA comes in the

TABLE 8 TDM optimal parameters of PWP-201, STM6-40/36, and STP6-120/36 panels.

Type Alg a1 a2 a3 Rs Rsh Idr1 Idr2 Idr3 Ig RMSE
(E)

PWP-201 CapSA 14.712 49.293 48.693 1.2362 1140.575 1.12E-20 2.38E-08 3.46E-06 1.0299 2.3240–3

MVO 47.963 1.044 48.864 1.2165 1021.078 2.17E-06 0 9.39E-07 1.0298 2.4871–3

EO 50.000 48.632 1.015 1.2016 978.899 0 3.47E-06 0 1.0305 2.4251–3

LAPO 48.417 48.423 49.943 1.2012 984.447 1.87E-06 9.15E-07 7.36E-07 1.0305 2.4268–3

HAS 49.980 18.061 48.407 1.2078 923.823 1.11E-11 1.83E-19 3.27E-06 1.0308 2.4307–3

SCA 29.045 50.000 4.668 1.1319 1145.159 0 4.84E-06 0 1.0210 7.2495–3

TSA 50.000 50.000 46.426 1.2040 860.209 1.22E-06 1.38E-06 8.92E-07 1.0309 2.5689–3

STM6-40/36 CapSA 60.000 60.000 36.534 0.3600 603.186 3.16E-06 8.02E-08 8.20E-10 1.66427 1.7309–3

MVO 29.052 2.400 58.674 0.0185 546.868 0 0 4.39E-06 1.66686 2.3882–3

EO 50.822 59.999 60.000 0.2213 567.083 4.50E-07 0 1.49E-06 1.66412 1.8908–3

LAPO 58.280 59.462 46.794 0.2569 558.817 3.41E-08 2.17E-06 9.70E-08 1.66430 1.8525–3

HAS 56.069 56.670 45.690 0.1576 662.019 8.88E-07 1.47E-06 1.21E-08 1.66306 2.3879–3

SCA 37.014 60.000 10.650 0.0000 1000.000 0 5.88E-06 0 1.65983 4.6561–3

TSA 60.000 52.686 60.000 0.1683 694.367 5.66E-07 6.96E-07 1.29E-06 1.66127 2.4674–3

STP6-
120/36

CapSA 45.2233 50.0000 13.8614 0.1751 1084.273 2.15E-06 8.10E-18 1.38E-22 7.47091 1.6269–2

MVO 45.5469 11.3142 1.0087 0.1647 1331.971 2.48E-06 0 0 7.46847 1.6645–2

EO 45.4482 45.3392 49.9963 0.1655 779.379 1.37E-07 2.18E-06 0 7.47279 1.6601–2

LAPO 50.0000 45.6912 45.3897 0.1653 885.115 3.51E-11 0 2.36E-06 7.47159 1.6605–2

HAS 43.7030 45.9861 49.7463 0.1683 962.726 8.54E-07 6.88E-07 9.86E-07 7.46713 1.6863–2

SCA 49.4655 34.3442 43.6289 0.1455 1075.710 8.08E-06 0 0 7.51257 3.1240–2

TSA 44.7453 50.0000 43.7672 0.1674 1500.000 4.05E-07 1.91E-06 7.91E-07 7.47311 1.7618–2
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first rank achieving the least RMSE value of 1.3808E-04, whereas

the LAPO comes in the second rank with RMSE of 1.5014E-04.

Regarding the computational time given in Table 2, the proposed

approach achieved the best consumed time of 546.60 s and

591.10 s during establishing the SDM circuit for R.T.C France

and PVW752 PV cells, respectively. TSA came second consuming

686.70 s and 830.0 s for both cells, respectively. On the other hand,

the HAS had the longest computational time of 686.70 s and

2731.1 s for the two mentioned cells. Moreover, the proposed

CapSA outperformed the others in term of computational time

during establishing the DDM-based circuit. Moreover, Table 4

presents the parameters of the TDM-based circuit constructed via

CapSA, MVO, LAPO, SCA, TSA, EO, and HAS. The results

presented in Table 4 clarified that the lowest RMSE value of

9.8248E-04 is obtained by the proposed CapSA, whereas the

worst RMSE value of 3.2370E-03 is obtained via SCA for the

R.T.C France PV cell. In case of constructing the TDM for the

PVW752 cell, the best obtained RMSE value is 1.5182E-04, which

is achieved by the proposed approach. The measured and

estimated I–V and P–V curves of SDM, DDM, and TDM for

R.T.C France and PVW752 PV cells obtained via the proposed

CapSA are given in Figure 3. The convergence curves of the fitness

functions obtained via the considered optimizers employed in

estimating the SDM parameters of R.T.C France and

PVW752 cells are presented in Figure 5. The CapSA achieved

the least consumed time to identify the PV parameters during the

FIGURE 7
Measured and simulated I–V and P–V curves of the PWP-201 PV panel. (A) SDM, (B) DDM, and (C) TDM.
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considered number of runs for SDMandDDMof R.T.C of 546.65s

and 605.3 s respectively, while SDM and DDM of PVM752 of

591.15 s and 676.3 s, the HAS approach is the longest one in the

term of computational time as it required 3092.0 s. The statistical

parameters including the minimum, maximum, mean, and

standard deviation (Std) are displayed in Table 5 for the

PVW752 cell. Regarding the fetched statistical results for the

PVM752 PV cell, the proposed CapSA succeeded in achieving

the least standard deviations of 8.1938E-18 in constructing the

SDM-based circuit. Moreover, it succeeded in achieving the best

minimum fitness values for all studied models. The obtained

results reveal that the proposed CapSA is the best approach in

estimating the optimal parameters of different models for the

R.T.C France and PVW752 cells compared to the others

considered approaches.

5.2 Case 2: Photovoltaic panel operation
at constant weather conditions

In order to confirm the validity of the proposed CapSA, it is

applied to identify the SDM, DDM, and TDM unknown

FIGURE 8
Measured and simulated I–V and P–V curves of the STM6-40/36 panel. (A) SDM, (B) DDM, and (C) TDM.
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parameters for different PV panels of Photowatt PWP-201,

STM6-40/36, and STP6-120/36 PV. The first one is operated at

45°C and 1000W/m2, the second one is considered at 51°C and

1000W/m2, and the last one is operated at 55°C and 1000W/m2.

The measured data of I–V for the considered PV panels and

electrical characteristics are given in Yu et al. (2019), Long et al.

(2020a), Nicaire et al– (2021), and Rezk et al. (2021). The RMSE

performance obtained via the considered optimizers during the

iterative process for SDM is shown in Figure 6. The fitness value

and the estimated parameters of SDM obtained via the

proposed CapSA in comparison with MVO, LAPO, SCA,

TSA, EO, and HSA are illustrated in Table 6. The minimum

obtained RMSE value is 2.42507E-03 by CapSA and LAPO for

the PWP-201 PV panel. The STM6-40/36 and STP6-120/

36 best RMSE values of 1.90610E-03 and 1.66006E-02 are

obtained via CapSA and LAPO, respectively, whereas the

worst values are 4.58893E-03 and 3.04560E-02 by SCA.

Moreover, Table 7 represents the optimal parameters of

DDM; the proposed CapSA achieved the best RMSE values

of 2.3306E-03, 1.7309E-03, and 1.6421E-02, whereas the worst

RMSE values obtained are 6.5520E-03, 4.5854E-03, and

3.3653E-02 via SCA for PWP-201, STM6-40/36, and STP6-

120/36, respectively. Furthermore, the optimal parameters of

TDM are presented in Table 8, and the best fitness value is

2.3240E-03 achieved by the proposed CapSA for the PWP-201

panel. In addition, it comes first during analyzing STM6-40/

FIGURE 9
Measured and simulated I–V and P–V curves of the STP6-120/36 panel. (A) SDM, (B) DDM, and (C) TDM.
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TABLE 9 Statistical parameters of the approaches applied to the STP6-120/36 panel.

Type Alg Min Max Mean Std

SDM CapSA 1.66006031E-02 1.66006031E-02 1.66006031E-02 1.73103476E-16

MVO 1.66024097E-02 1.71823029E-02 1.67079766E-02 1.31886096E-04

EO 1.66023515E-02 1.41312204E+00 1.09741140E-01 3.54298215E-01

LAPO 1.66006031E-02 1.66006070E-02 1.66006033E-02 7.01707815E-10

HAS 1.67469829E-02 2.89331002E-02 2.18795542E-02 3.29951938E-03

SCA 3.04559600E-02 1.41312204E+00 3.67790891E-01 4.90546728E-01

TSA 1.76708961E-02 1.35416081E-01 3.14966322E-02 2.22994547E-02

DDM CapSA 1.64210210E-02 1.66006031E-02 1.65946171E-02 3.27870560E-05

MVO 1.66042518E-02 2.30816302E-02 1.74244155E-02 1.33324090E-03

EO 1.66006223E-02 1.70743634E-02 1.66708141E-02 9.79025158E-05

LAPO 1.66006031E-02 2.75362809E-02 1.80116544E-02 2.94016381E-03

HAS 1.66706117E-02 2.83175694E-02 2.17853272E-02 3.46876352E-03

SCA 3.36525872E-02 1.41312204E+00 5.21312434E-01 5.58982812E-01

TSA 1.79655604E-02 8.29264560E-02 2.99743805E-02 1.11177170E-02

TDM CapSA 1.62686170E-02 1.66006031E-02 1.65770491E-02 6.83010194E-05

MVO 1.66446168E-02 2.66720095E-02 1.99220531E-02 3.20171626E-03

EO 1.66008254E-02 1.67434923E-02 1.66494190E-02 2.85390862E-05

LAPO 1.66046480E-02 2.88807595E-02 1.98685592E-02 4.05510059E-03

HAS 1.68626793E-02 2.62955042E-02 2.23920185E-02 3.12441618E-03

SCA 3.12403752E-02 1.41312204E+00 4.29131354E-01 4.62263903E-01

TSA 1.76176013E-02 3.17403058E-01 3.74931732E-02 5.30258003E-02

TABLE 10 Optimal parameters of DDM for the KC200GT PV panel at different temperatures.

Temp Alg a1 a2 Rs Rsh Idr1 Idr2 Ig RMSE

25 °C CapSA 1.26273 1.05910 0.26322 348.3808 4.117E-08 4.206E-10 8.2162 3.4440E-04

MVO 1.27003 1.95728 0.23996 265.0288 6.147E-08 1.354E-06 8.2417 2.3564E-02

EO 1.23485 1.99093 0.25587 499.8649 3.723E-08 0.000E+00 8.2050 4.9701E-03

LAPO 1.76495 1.21192 0.26052 331.1295 2.534E-08 2.575E-08 8.2189 1.0895E-03

HAS 1.37281 1.72957 0.19924 499.9444 2.083E-07 1.790E-06 8.2609 6.3185E-02

SCA 1.00000 1.73907 0.11678 347.1051 0.000E+00 1.000E-05 8.3055 1.0526E-01

TSA 1.22437 2.00000 0.25770 317.0538 3.158E-08 6.036E-14 8.2313 8.9497E-03

50 °C CapSA 1.21142 1.00000 0.26161 304.4519 6.282E-07 2.997E-10 8.3011 1.5617E-03

MVO 1.11396 1.63365 0.26920 312.8954 1.285E-07 6.877E-06 8.3033 3.4934E-03

EO 1.21338 1.99964 0.26033 338.6095 6.551E-07 2.059E-07 8.2973 2.0672E-03

LAPO 1.20860 1.56881 0.26138 303.5788 6.137E-07 9.209E-09 8.3012 1.5624E-03

HAS 1.38901 1.38327 0.21411 499.9674 4.687E-07 4.487E-06 8.3104 3.5727E-02

SCA 1.42544 1.31795 0.20809 147.0569 0.000E+00 2.403E-06 8.3676 8.2553E-02

TSA 2.00000 1.23275 0.25051 402.3368 3.290E-06 8.448E-07 8.2898 1.3263E-02

75 °C CapSA 1.23233 1.23233 0.25567 383.9171 2.601E-06 1.000E-05 8.3735 6.6008E-03

MVO 1.21299 1.46814 0.26009 338.9426 9.989E-06 1.865E-06 8.3771 7.3468E-03

EO 1.20996 1.30616 0.25617 390.0654 7.632E-06 6.025E-06 8.3733 6.6124E-03

LAPO 1.22437 1.28251 0.25574 381.8038 1.000E-05 2.857E-06 8.3737 6.6045E-03

HAS 1.19374 1.28760 0.25624 388.8589 4.988E-06 8.727E-06 8.3719 6.7135E-03

SCA 2.00000 1.19475 0.25724 235.9206 0.000E+00 8.317E-06 8.3954 3.2817E-02

TSA 1.21966 1.21823 0.25814 352.8420 7.178E-06 3.739E-06 8.3751 9.3873E-03
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36 and STP6-120/36 panels achieving fitness values of 1.7309E-

3 and 1.6269E-2, respectively. On the other hand, the SCA

came in the last rank with 7.2495E-3, 4.6561E-3, and 3.1240E-

2 for PWP-201, STM6-40/36, and STP6-120/36, respectively.

To confirm the efficiency and reliability of the proposed

CapSA, Figures 7–9 show the measured and simulated I–V

and P–V curves obtained via the proposed approach; the points

coincide with each other in the curves, and this confirms the

efficiency of the proposed CapSA. The statistical analyses in

such case are tabulated in Table 9, where the CapSA for STP6-

120/36 achieved the least mean value of 1.6600603E-02 and

standard of 1.73103476E-16 for SDM.

The proposed CapSA achieved great performance by getting

estimated curves that are closely matched to the experimental

ones; this affirms its competence in such cases.

5.3 Case 3: Photovoltaic panel operation
at variable weather conditions

The proposed CapSA is applied to construct the DDM of

the KC200GT PV panel operated at different weather

conditions. The electrical properties of the panel and the

measured data of I–V are presented in Arias García and

Pérez Abril (2020). The identified parameters and RMSE

values under different temperatures of 25°C, 50°C, and 75°C

and irradiance of 1000W/m2 are tabulated in Table 10. The

proposed CapSA achieved the best RMSE values of 3.4440E-

04, 1.5617E-03, and 6.6008E-03 during operation at 25°C,

50°C, and 75°C, respectively. The measured and simulated data of

I–V and P–V curves obtained by the proposed CapSA at different

temperatures and irradiance of 1000W/m2 are presented in

FIGURE 10
I–V and P–V curves of KC200GT at different temperatures.

FIGURE 11
Measured and simulated I–V and P–V curves of KC200GT at different irradiances.
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TABLE 11 Statistical parameters of the optimizers applied on KC200GT at different temperatures.

Temp Alg Min Max Mean Std

25 °C CapSA 3.444036E-04 6.568450E-04 3.758961E-04 6.540437E-05

MVO 2.356361E-02 1.133120E-01 7.416764E-02 3.016939E-02

EO 4.970076E-03 2.281323E-02 1.020033E-02 3.974617E-03

LAPO 1.089528E-03 5.709756E-02 8.494519E-03 1.099060E-02

HAS 6.318501E-02 9.628150E-02 8.525733E-02 7.387344E-03

SCA 1.052649E-01 1.936627E+00 4.277749E-01 5.132830E-01

TSA 8.949739E-03 2.304880E-01 7.388706E-02 4.653636E-02

50 °C CapSA 1.561721E-03 1.621982E-03 1.564958E-03 1.136903E-05

MVO 3.493384E-03 6.382028E-02 4.396100E-02 1.493156E-02

EO 2.067201E-03 3.600570E-01 1.697596E-02 6.480282E-02

LAPO 1.562391E-03 1.249924E-02 3.042621E-03 2.642205E-03

HAS 3.572709E-02 5.301741E-02 4.435417E-02 4.141684E-03

SCA 8.255257E-02 1.836699E+00 3.866787E-01 2.898690E-01

TSA 1.326310E-02 3.234687E-01 5.280451E-02 7.356309E-02

75 °C CapSA 6.600763E-03 6.641768E-03 6.602140E-03 7.484815E-06

MVO 7.346834E-03 5.503000E-02 2.683364E-02 1.564604E-02

EO 6.612390E-03 8.329508E-03 6.982191E-03 4.972071E-04

LAPO 6.604509E-03 7.556521E-03 6.704904E-03 2.377387E-04

HAS 6.713519E-03 1.335816E-02 8.526225E-03 1.653807E-03

SCA 3.281675E-02 5.000065E-01 3.510030E-01 1.857197E-01

TSA 9.387263E-03 5.421342E-02 2.197971E-02 1.016525E-02

TABLE 12 Statistical parameters of the optimizers applied on KC200GT at different irradiances.

Type Alg Min Max Mean Std

800W/m2 CapSA 3.135527E-04 4.986875E-04 3.387959E-04 3.229922E-05

MVO 2.764607E-02 8.004170E-02 6.443408E-02 1.689657E-02

EO 1.153687E-02 2.926776E-03 1.107292E-01 1.903401E-02

LAPO 2.909586E-03 8.743885E-04 9.815111E-03 2.506060E-03

HAS 6.468453E-02 5.417470E-02 7.271330E-02 5.045976E-03

SCA 1.353808E-01 7.391964E-02 1.500957E-01 1.722395E-02

TSA 5.588023E-02 1.474472E-02 1.125553E-01 1.980739E-02

600W/m2 CapSA 2.655815E-04 6.139179E-04 3.090731E-04 6.000390E-05

MVO 1.208970E-02 5.762172E-02 4.322857E-02 1.284707E-02

EO 3.486157E-03 5.576775E-02 1.451801E-02 1.883175E-02

LAPO 6.475980E-04 9.930363E-03 2.890841E-03 2.190327E-03

HAS 3.775617E-02 5.151757E-02 4.539985E-02 2.908935E-03

SCA 5.657250E-02 7.322014E-02 6.235295E-02 4.475244E-03

TSA 1.739688E-02 5.622447E-02 3.553514E-02 9.071938E-03

(Continued on following page)

Frontiers in Energy Research frontiersin.org18

Ali et al. 10.3389/fenrg.2022.1028816

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.1028816


Figure 10. Figure 11 illustrates the I–V and P–V curves of the

measured and simulated data obtained by the proposed CapSA at

25°C and different irradiances of 1000W/m2, 800W/m2, 600W/m2,

400W/m2, and 200W/m2. The simulated data are closely matched to

the measured points. Additionally, the statistical analysis under

different temperatures and irradiances are tabulated in Table 11

and Table 12, respectively.

6 Conclusion

This study proposed an efficient approach incorporating the

capuchin search algorithm (CapSA) to identify the unknown

parameters of SDM-, DDM-, and TDM-based circuits of

different PV cells and panels. The considered fitness function

is the root mean square error between the measured and

simulated currents. R.T.C France, PVM752, PWP-201, STM6-

40/36, STP6-120/36, and KC200GT are the cells and panels

considered in the analysis. Comparison to a multiverse

optimizer (MVO), lighting attachment procedure optimization

(LAPO), sine–cosine algorithm (SCA), tunicate swarm algorithm

(TSA), equilibrium optimizer (EO), and harmony search

algorithm (HSA) is conducted. The proposed approach

achieved several features as follow:

1) Regarding the SDM circuit, the proposed CapSA

outperformed all considered optimizers achieving the best

RMSE values of 9.86022E-04, 2.27804E-04, 2.42507E-03,

1.90610E-03, and 1.66006E-02 with the fastest

computational times of 546.6 s, 591.1 s, 517.5 s, 542.8 s,

and 445.4 s for the R.T.C France cell, PVW752 cell, PWP-

201 panel, STM6-40/36 panel, and STP6-120/36 panel,

respectively.

2) For DDM, the proposed CapSA achieved the best fitness values

of 9.8248E-04, 1.3808E-04, 2.3306E-03, 1.7309E-03, and

1.6421E-02 with the best computational times of 605.3 s,

676.5 s, 535.0 s, 548.7 s, and 536.4 s for the R.T.C France

cell, PVW752 cell, PWP-201 panel, STM6-40/36 panel, and

STP6-120/36 panel, respectively.

3) In the case of TDM, the proposed approach achieved RMSE

values of 9.8248E-04, 1.5182E-04, 2.3240E-03, 1.7309E-3, and

1.6269E-2 for the R.T.C France cell, PVW752 cell, PWP-201

panel, STM6-40/36 panel, and STP6-120/36 panel, respectively.

4) For the KC200GT panel, the CapSA outperformed the others

and achieved the best RMSE values of 3.4440E-04, 1.5617E-

03, and 6.6008E-03 at 25°C, 50°C, and 75°C, respectively.

The obtained results confirmed the competence and

preference of the proposed CapSA in establishing a reliable

equivalent circuit for the PV cell/panel operated at different

weather conditions. Establishing a dynamic model of the PV

panel is recommended in the future; moreover, enhancing the

CapSA approach via hybridization with novel approaches will be

considered in future studies.
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TABLE 12 (Continued) Statistical parameters of the optimizers applied on KC200GT at different irradiances.

Type Alg Min Max Mean Std

400W/m2 CapSA 1.787039E-04 2.240823E-04 1.850509E-04 1.131600E-05
MVO 6.837013E-03 5.114658E-02 2.698709E-02 1.186716E-02

EO 2.632530E-03 2.477385E-02 1.243201E-02 1.027185E-02

LAPO 3.015540E-04 2.419746E-02 2.610697E-03 4.550485E-03

HAS 1.238208E-02 2.587089E-02 2.269038E-02 2.717497E-03

SCA 2.532240E-02 7.150308E-01 5.454065E-02 1.248065E-01

TSA 8.522987E-03 2.511727E-02 1.975371E-02 4.106596E-03

200W/m2 CapSA 2.306877E-04 2.384415E-04 2.329307E-04 1.273499E-06

MVO 2.539602E-03 5.529677E-02 3.688713E-02 2.030515E-02

EO 3.759840E-04 5.483972E-03 2.434542E-03 2.352910E-03

LAPO 2.390938E-04 5.816649E-03 1.301924E-03 1.785978E-03

HAS 4.939335E-03 9.515761E-03 6.781784E-03 1.232729E-03

SCA 6.509237E-03 3.397564E-01 3.398551E-02 8.320434E-02

TSA 1.580553E-03 7.815697E-03 5.448930E-03 1.107577E-03

The obtained results proved that the proposed CapSA is efficient in extracting the optimal parameters of different models for the PV cell/panel, as it outperformed the other considered

approaches in all studied cases.

Frontiers in Energy Research frontiersin.org19

Ali et al. 10.3389/fenrg.2022.1028816

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.1028816


further inquiries can be directed to the corresponding

author.

Author contributions

Conceptualization, HA and AF; methodology, ME and

MA-D; software, ME and AA; validation, AF, ME, and AA;

formal analysis, HA; investigation, HA and ME; resources,

MA-D; data curation, AF and MA-D; writing—original draft

preparation, HA and ME; writing—review and editing, AF

and MA-D; visualization, AF; supervision, AA. All authors

have read and agreed to the published version of the

manuscript.

Funding

The authors acknowledge the support of

King Fahd University of Petroleum and Minerals, Saudi

Arabia.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors, and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fenrg.2022.

1028816/full#supplementary-material

References

Abdel-Basset, M., Mohamed, R., Chakrabortty, R. K., Ryan, M. J., and El-
Fergany, A. (2021). An improved artificial jellyfish search optimizer for
parameter identification of photovoltaic models. Energies 14, 1867. doi:10.
3390/en14071867

Abdelminaam, D. S., Said, M., and Houssein, E. H. (2021). Turbulent flow of
water-based optimization using new objective function for parameter
extraction of six photovoltaic models. IEEE Access 9, 35382–35398. doi:10.
1109/ACCESS.2021.3061529

Ahmadianfar, I., Gong, W., Heidari, A. A., Golilarz, N. A., Samadi-
Koucheksaraee, A., and Chen, H. (2021). Gradient-based optimization with
ranking mechanisms for parameter identification of photovoltaic systems.
Energy Rep. 7, 3979–3997. doi:10.1016/j.egyr.2021.06.064

Alam, D. F., Yousri, D. A., and Eteiba, M. B. (2015). Flower Pollination Algorithm
based solar PV parameter estimation. Energy Convers. Manag. 101, 410–422. doi:10.
1016/j.enconman.2015.05.074

Arias García, R. M., and Pérez Abril, I. (2020). Photovoltaic module model
determination by using the Tellegen’s theorem. Renew. Energy 152, 409–420. doi:10.
1016/j.renene.2020.01.048

Askarzadeh, A., and Rezazadeh, A. (2013). Artificial bee swarm optimization
algorithm for parameters identification of solar cell models. Appl. Energy 102,
943–949. doi:10.1016/j.apenergy.2012.09.052

Ayang, A., Wamkeue, R., Ouhrouche, M., Djongyang, N., Essiane Salomé, N.,
Pombe, J. K., et al. (2019). Maximum likelihood parameters estimation of single-
diode model of photovoltaic generator. Renew. Energy 130, 111–121. doi:10.1016/j.
renene.2018.06.039

Bertalero, G., Addebito, P., Bancario, C. C., and Cliente, C. A. L. (2021).
Parameters extraction of three diode photovoltaic models using boosted
LSHADE algorithm and Newton Raphson method. 224 120–136. doi:10.
1016/j.energy.2021.120136

Braik, M., Sheta, A., and Al-Hiary, H. (2021). A novel meta-heuristic
search algorithm for solving optimization problems: Capuchin search
algorithm. Neural comput. Appl. 33, 2515–2547. doi:10.1007/s00521-020-
05145-6

Ćalasan, M., Abdel Aleem, S. H. E., and Zobaa, A. F. (2020). On the root mean
square error (RMSE) calculation for parameter estimation of photovoltaic models:
A novel exact analytical solution based on Lambert W function. Energy Convers.
Manag. 210, 112716. doi:10.1016/j.enconman.2020.112716

Chen, X., Xu, B., Mei, C., Ding, Y., and Li, K. (2018). Teaching–learning–based
artificial bee colony for solar photovoltaic parameter estimation. Appl. Energy 212,
1578–1588. doi:10.1016/j.apenergy.2017.12.115

El-Fergany, A. A. (2021). Parameters identification of PV model using improved
slime mould optimizer and Lambert W-function. Energy Rep. 7, 875–887. doi:10.
1016/j.egyr.2021.01.093

Fathy, A., and Rezk, H. (2017). Parameter estimation of photovoltaic system using
imperialist competitive algorithm. Renew. Energy 111, 307–320. doi:10.1016/j.
renene.2017.04.014

Gao, X., Cui, Y., Hu, J., Xu, G., Wang, Z., Qu, J., et al. (2018). Parameter extraction
of solar cell models using improved shuffled complex evolution algorithm. Energy
Convers. Manag. 157, 460–479. doi:10.1016/j.enconman.2017.12.033

Ginidi, A., Ghoneim, S. M., Elsayed, A., El-Sehiemy, R., Shaheen, A., and El-
Fergany, A. (2021). Gorilla troops optimizer for electrically based single and
double-diode models of solar photovoltaic systems. Sustainability 13, 9459.
doi:10.3390/su13169459

Gnetchejo, P. J., Ndjakomo Essiane, S., Dadjé, A., and Ele, P. (2021). A
combination of Newton-Raphson method and heuristics algorithms for
parameter estimation in photovoltaic modules. Heliyon 7, e06673. doi:10.1016/j.
heliyon.2021.e06673

Ibrahim, I. A., Hossain, M. J., Duck, B. C., and Nadarajah, M. (2020). An
improved wind driven optimization algorithm for parameters identification of a
triple-diode photovoltaic cell model. Energy Convers. Manag. 213, 112872. doi:10.
1016/j.enconman.2020.112872

Ismaeel, A. A. K., Houssein, E. H., Oliva, D., and Said, M. (2021). Gradient-based
optimizer for parameter extraction in photovoltaic models. IEEE Access 9,
13403–13416. doi:10.1109/ACCESS.2021.3052153

Jiang, Y., Luo, Q., and Zhou, Y. (2022). Improved gradient-based optimizer for
parameters extraction of photovoltaic models. IET Renew. Power Gen. 16,
1602–1622. doi:10.1049/rpg2.12465

Jiao, S., Chong, G., Huang, C., Hu, H., Wang, M., Heidari, A. A., et al. (2020).
Orthogonally adapted Harris hawks optimization for parameter estimation of
photovoltaic models. Energy 203, 117804. doi:10.1016/j.energy.2020.117804

Lekouaghet, B., Boukabou, A., and Boubakir, C. (2021). Estimation of the
photovoltaic cells/modules parameters using an improved Rao-based chaotic
optimization technique. Energy Convers. Manag. 229, 113722. doi:10.1016/j.
enconman.2020.113722

Frontiers in Energy Research frontiersin.org20

Ali et al. 10.3389/fenrg.2022.1028816

https://www.frontiersin.org/articles/10.3389/fenrg.2022.1028816/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fenrg.2022.1028816/full#supplementary-material
https://doi.org/10.3390/en14071867
https://doi.org/10.3390/en14071867
https://doi.org/10.1109/ACCESS.2021.3061529
https://doi.org/10.1109/ACCESS.2021.3061529
https://doi.org/10.1016/j.egyr.2021.06.064
https://doi.org/10.1016/j.enconman.2015.05.074
https://doi.org/10.1016/j.enconman.2015.05.074
https://doi.org/10.1016/j.renene.2020.01.048
https://doi.org/10.1016/j.renene.2020.01.048
https://doi.org/10.1016/j.apenergy.2012.09.052
https://doi.org/10.1016/j.renene.2018.06.039
https://doi.org/10.1016/j.renene.2018.06.039
https://doi.org/10.1016/j.energy.2021.120136
https://doi.org/10.1016/j.energy.2021.120136
https://doi.org/10.1007/s00521-020-05145-6
https://doi.org/10.1007/s00521-020-05145-6
https://doi.org/10.1016/j.enconman.2020.112716
https://doi.org/10.1016/j.apenergy.2017.12.115
https://doi.org/10.1016/j.egyr.2021.01.093
https://doi.org/10.1016/j.egyr.2021.01.093
https://doi.org/10.1016/j.renene.2017.04.014
https://doi.org/10.1016/j.renene.2017.04.014
https://doi.org/10.1016/j.enconman.2017.12.033
https://doi.org/10.3390/su13169459
https://doi.org/10.1016/j.heliyon.2021.e06673
https://doi.org/10.1016/j.heliyon.2021.e06673
https://doi.org/10.1016/j.enconman.2020.112872
https://doi.org/10.1016/j.enconman.2020.112872
https://doi.org/10.1109/ACCESS.2021.3052153
https://doi.org/10.1049/rpg2.12465
https://doi.org/10.1016/j.energy.2020.117804
https://doi.org/10.1016/j.enconman.2020.113722
https://doi.org/10.1016/j.enconman.2020.113722
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.1028816


Long, W., Cai, S., Jiao, J., Xu, M., and Wu, T. (2020a). A new hybrid algorithm
based on grey wolf optimizer and cuckoo search for parameter extraction of solar
photovoltaic models. Energy Convers. Manag. 203, 112243. doi:10.1016/j.
enconman.2019.112243

Long, W., Wu, T., Jiao, J., Tang, M., and Xu, M. (2020b). Refraction-learning-
based whale optimization algorithm for high-dimensional problems and parameter
estimation of PV model. Eng. Appl. Artif. Intell. 89, 103457. doi:10.1016/j.engappai.
2019.103457

Long, W., Wu, T., Xu, M., Tang, M., and Cai, S. (2021). Parameters
identification of photovoltaic models by using an enhanced adaptive
butterfly optimization algorithm. Energy 229, 120750. doi:10.1016/j.energy.
2021.120750

Low, K. S., and Soon, J. J. (2012). Photovoltaic model identification using particle
swarm optimization with inverse barrier constraint. IEEE Trans. Power Electron. 27,
3975–3983. doi:10.1109/tpel.2012.2188818

Mokeddem, D. (2021). Parameter extraction of solar photovoltaic models using
enhanced levy flight based grasshopper optimization algorithm. J. Electr. Eng.
Technol. 16, 171–179. doi:10.1007/s42835-020-00589-1

Mostafa, M., Rezk, H., Aly, M., and Ahmed, E. M. (2020). A new strategy based
on slime mould algorithm to extract the optimal model parameters of solar PV
panel. Sustain. Energy Technol. Assessments 42, 100849. doi:10.1016/j.seta.2020.
100849

Nicaire, N. F., Steve, P. N., Salome, N. E., and Grégroire, A. O. (2021). Parameter
estimation of the photovoltaic system using bald eagle search (BES) algorithm. Int.
J. Photoenergy 2021, 1–20. doi:10.1155/2021/4343203

Pourmousa, N., Ebrahimi, S. M., Malekzadeh, M., and Alizadeh, M. (2019).
Parameter estimation of photovoltaic cells using improved Lozi map based chaotic
optimization Algorithm. Sol. Energy 180, 180–191. doi:10.1016/j.solener.2019.
01.026

Premkumar, M., Jangir, P., Elavarasan, R. M., and Sowmya, R. (2021a).
Opposition decided gradient-based optimizer with balance analysis and diversity
maintenance for parameter identification of solar photovoltaic models. J. Ambient.
Intell. Humaniz. Comput. doi:10.1007/s12652-021-03564-4

Premkumar, M., Jangir, P., Jebaseelan, S. D. T. S., Elavarasan, R. M., Chen, H.,
Kumar, C., et al. (2022). Constraint estimation in three-diode solar photovoltaic
model using Gaussian and Cauchy mutation-based hunger games search optimizer
and enhanced Newton–Raphson method. IET Renew. Power Gen. 16, 1733–1772.
doi:10.1049/rpg2.12475

Premkumar, M., Jangir, P., Ramakrishnan, C., Nalinipriya, G., Alhelou, H. H.,
and Kumar, B. S. (2021b). Identification of solar photovoltaic model parameters
using an improved gradient-based optimization algorithm with chaotic drifts. IEEE
Access 9, 62347–62379. doi:10.1109/ACCESS.2021.3073821

Premkumar, M., Jangir, P., Sowmya, R., Elavarasan, R. M., and Kumar, B. S.
(2021c). Enhanced chaotic JAYA algorithm for parameter estimation of
photovoltaic cell/modules. ISA Trans. 116, 139–166. doi:10.1016/j.isatra.2021.
01.045

Ram, J. P., Babu, T. S., Dragicevic, T., and Rajasekar, N. (2017). A new hybrid bee
pollinator flower pollination algorithm for solar PV parameter estimation. Energy
Convers. Manag. 135, 463–476. doi:10.1016/j.enconman.2016.12.082

Ramadan, A., Kamel, S., Hassan, M. H., Khurshaid, T., and Rahmann, C. (2021a).
An improved bald eagle search algorithm for parameter estimation of different
photovoltaic models. Processes 9, 1127. doi:10.3390/pr9071127

Ramadan, A., Kamel, S., Hussein, M. M., and Hassan, M. H. (2021b). A new
application of chaos game optimization algorithm for parameters extraction of
three diode photovoltaic model. IEEE Access 9, 51582–51594. doi:10.1109/ACCESS.
2021.3069939

Reddy, S. S., and Yammani, C. (2021). A novel two step method to extract the
parameters of the single diode model of Photovoltaic module using
experimental Power–Voltage data. Opt. (Stuttg). 248, 167977. doi:10.1016/j.
ijleo.2021.167977

Rezaee Jordehi, A. (2018). Enhanced leader particle swarm optimisation
(ELPSO): An efficient algorithm for parameter estimation of photovoltaic (PV)
cells and modules. Sol. Energy 159, 78–87. doi:10.1016/j.solener.2017.10.063

Rezk, H., Babu, T. S., Al-Dhaifallah, M., and Ziedan, H. A. (2021). A robust
parameter estimation approach based on stochastic fractal search optimization
algorithm applied to solar PV parameters. Energy Rep. 7, 620–640. doi:10.1016/j.
egyr.2021.01.024

Said, M., Shaheen, A. M., Ginidi, A. R., El-Sehiemy, R. A., Mahmoud, K.,
Lehtonen, M., et al. (2021). Estimating parameters of photovoltaic models using
accurate turbulent flow of water optimizer. Processes 9, 627. doi:10.3390/pr9040627

Sattar, M. A. El, Al Sumaiti, A., Ali, H., and Diab, A. A. Z. (2021). Marine
predators algorithm for parameters estimation of photovoltaic modules considering
various weather conditions. Neural comput. Appl. 33, 11799–11819. doi:10.1007/
s00521-021-05822-0

Şentürk, A. (2018). New method for computing single diode model
parameters of photovoltaic modules. Renew. Energy 128, 30–36. doi:10.
1016/j.renene.2018.05.065

Shaheen, A. M., Ginidi, A. R., El-Sehiemy, R. A., and Ghoneim, S. S. M. (2021). A
forensic-based investigation algorithm for parameter extraction of solar cell models.
IEEE Access 9, 1–20. doi:10.1109/ACCESS.2020.3046536

Sharma, A., Sharma, A., Moshe, A., Raj, N., and Pachauri, R. K. (2021). An
effective method for parameter estimation of solar PV cell using grey-wolf
optimization technique. Int. J. Math. Eng. Manag. Sci. 6, 911–931. doi:10.33889/
ijmems.2021.6.3.054

Stornelli, V., Muttillo, M., de Rubeis, T., and Nardi, I. (2019). A new simplified
five-parameter estimation method for single-diode model of photovoltaic panels.
Energies 12, 4271. doi:10.3390/en12224271

Wang, J., Yang, B., Li, D., Zeng, C., Chen, Y., Guo, Z., et al. (2021).
Photovoltaic cell parameter estimation based on improved equilibrium
optimizer algorithm. Energy Convers. Manag. 236, 114051. doi:10.1016/j.
enconman.2021.114051

Wang, L., and Huang, C. (2018). A novel Elite Opposition-based Jaya algorithm
for parameter estimation of photovoltaic cell models. Opt. (Stuttg). 155, 351–356.
doi:10.1016/j.ijleo.2017.10.081

Yang, B., Wang, J., Zhang, X., Yu, T., Yao, W., Shu, H., et al. (2020).
Comprehensive overview of meta-heuristic algorithm applications on PV cell
parameter identification. Energy Convers. Manag. 208, 112595. doi:10.1016/j.
enconman.2020.112595

Yousri, D., Rezk, H., and Fathy, A. (2020). Identifying the parameters of
different configurations of photovoltaic models based on recent artificial
ecosystem-based optimization approach. Int. J. Energy Res. 44, 11302–11322.
doi:10.1002/er.5747

Yu, K., Liang, J. J., Qu, B. Y., Cheng, Z., and Wang, H. (2018). Multiple learning
backtracking search algorithm for estimating parameters of photovoltaic models.
Appl. Energy 226, 408–422. doi:10.1016/j.apenergy.2018.06.010

Yu, K., Qu, B., Yue, C., Ge, S., Chen, X., and Liang, J. (2019). A performance-
guided JAYA algorithm for parameters identification of photovoltaic cell and
module. Appl. Energy 237, 241–257. doi:10.1016/j.apenergy.2019.01.008

Yu, S., Chen, Z., Heidari, A. A., Zhou, W., Chen, H., and Xiao, L. (2022).
Parameter identification of photovoltaic models using a sine cosine differential
gradient based optimizer. IET Renew. Power Gen. 16, 1535–1561. doi:10.1049/rpg2.
12451

Zeng, F., Shu, H., Wang, J., Chen, Y., and Yang, B. (2021). Parameter
identification of PV cell via adaptive compass search algorithm. Energy Rep. 7,
275–282. doi:10.1016/j.egyr.2021.01.069

Zhang, Y., Jin, Z., and Mirjalili, S. (2020). Generalized normal distribution
optimization and its applications in parameter extraction of photovoltaic
models. Energy Convers. Manag. 224, 113301. doi:10.1016/j.enconman.2020.
113301

Frontiers in Energy Research frontiersin.org21

Ali et al. 10.3389/fenrg.2022.1028816

https://doi.org/10.1016/j.enconman.2019.112243
https://doi.org/10.1016/j.enconman.2019.112243
https://doi.org/10.1016/j.engappai.2019.103457
https://doi.org/10.1016/j.engappai.2019.103457
https://doi.org/10.1016/j.energy.2021.120750
https://doi.org/10.1016/j.energy.2021.120750
https://doi.org/10.1109/tpel.2012.2188818
https://doi.org/10.1007/s42835-020-00589-1
https://doi.org/10.1016/j.seta.2020.100849
https://doi.org/10.1016/j.seta.2020.100849
https://doi.org/10.1155/2021/4343203
https://doi.org/10.1016/j.solener.2019.01.026
https://doi.org/10.1016/j.solener.2019.01.026
https://doi.org/10.1007/s12652-021-03564-4
https://doi.org/10.1049/rpg2.12475
https://doi.org/10.1109/ACCESS.2021.3073821
https://doi.org/10.1016/j.isatra.2021.01.045
https://doi.org/10.1016/j.isatra.2021.01.045
https://doi.org/10.1016/j.enconman.2016.12.082
https://doi.org/10.3390/pr9071127
https://doi.org/10.1109/ACCESS.2021.3069939
https://doi.org/10.1109/ACCESS.2021.3069939
https://doi.org/10.1016/j.ijleo.2021.167977
https://doi.org/10.1016/j.ijleo.2021.167977
https://doi.org/10.1016/j.solener.2017.10.063
https://doi.org/10.1016/j.egyr.2021.01.024
https://doi.org/10.1016/j.egyr.2021.01.024
https://doi.org/10.3390/pr9040627
https://doi.org/10.1007/s00521-021-05822-0
https://doi.org/10.1007/s00521-021-05822-0
https://doi.org/10.1016/j.renene.2018.05.065
https://doi.org/10.1016/j.renene.2018.05.065
https://doi.org/10.1109/ACCESS.2020.3046536
https://doi.org/10.33889/ijmems.2021.6.3.054
https://doi.org/10.33889/ijmems.2021.6.3.054
https://doi.org/10.3390/en12224271
https://doi.org/10.1016/j.enconman.2021.114051
https://doi.org/10.1016/j.enconman.2021.114051
https://doi.org/10.1016/j.ijleo.2017.10.081
https://doi.org/10.1016/j.enconman.2020.112595
https://doi.org/10.1016/j.enconman.2020.112595
https://doi.org/10.1002/er.5747
https://doi.org/10.1016/j.apenergy.2018.06.010
https://doi.org/10.1016/j.apenergy.2019.01.008
https://doi.org/10.1049/rpg2.12451
https://doi.org/10.1049/rpg2.12451
https://doi.org/10.1016/j.egyr.2021.01.069
https://doi.org/10.1016/j.enconman.2020.113301
https://doi.org/10.1016/j.enconman.2020.113301
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.1028816

	An efficient capuchin search algorithm for extracting the parameters of different PV cells/modules
	1 Introduction
	2 Mathematic model of the photovoltaic module
	2.1 Single-diode model
	2.1.1 Double-diode model
	2.1.2 Three-diode model


	3 Problem formulation
	3.1 Fitness function of the single-diode model
	3.2 Fitness function of the double-diode model
	3.3 Fitness function of the three-diode model

	4 Capuchin search algorithm
	4.1 Leaping motion
	4.1.1 Swinging motion
	4.1.2 Climbing motion


	5 Simulation and results
	5.1 Case 1: Photovoltaic cells
	5.2 Case 2: Photovoltaic panel operation at constant weather conditions
	5.3 Case 3: Photovoltaic panel operation at variable weather conditions

	6 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


