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The paper studies the estimation of state of charge (SOC) of batteries. Firstly, the

research status of battery management system, battery equivalent model and

SOC estimation algorithm is introduced, and the performance of common

equivalent circuit model and SOC estimation algorithm in complexity and

accuracy is compared and analyzed. On this basis, this paper proposes an

extended Kalman filter (EKF) algorithm based on the first-order RC model, and

optimizes it by piecewise fitting. The accuracy of the optimized EKF algorithm is

greatly improved. Finally, the modeling and simulation are completed through

MATLAB/SIMULINK, and the experimental platform is designed and built to test

the SOC estimation algorithm based on EKF. The simulation and experimental

results verify the accuracy of the estimation algorithm.
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Introduction

The energy situation in today’s world is facing a core contradiction, that is, the

contradiction between growing demand and increasingly tight supply. In the traditional

energy, the reserves of non-renewable energy represented by coal and fossil fuels are

limited, and it is more and more difficult to explore. With the emission of carbon dioxide

and various harmful gases, it seriously endangers the safety of the earth’s environment.

Facing the disharmonious development of global climate caused by energy problems, as of

12 June 2020, 125 countries in the world have promised to achieve the goal of carbon

neutrality by the middle of the 21st century (Chenic et al., 2022). Therefore, streamlining

the energy structure and improving energy utilization have become the joint efforts of

scholars and researchers all over the world. The research on renewable clean energy such

as photovoltaic and wind energy has objectivity and inevitability, and electrochemical

power supply has become the focus of research because of its high energy conversion and

storage efficiency.

As a key technology, energy storage technology not only promotes the intelligence of

large-scale distributed power grid (Yan et al., 2021; Sridhar and Salkuti, 2022), but also

relates to the large-scale grid connection of renewable energy. It is of great significance to

improve the efficiency of clean energy power generation. It is a key research object of
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countries all over the world, especially developed countries (Luo

et al., 2015). At present, pumped storage is still the main energy

storage means in the world, with the largest installed capacity,

accounting for 98% of the total global energy storage capacity by

2015. However, at the same time, energy storage technologies

such as compressed air, flywheel, superconductivity, lead-acid

battery and lithium-ion battery are also developing rapidly.

Different energy storage technologies have different

characteristics.

Among them, lithium battery energy storage has become a

research hotspot because of its safety and efficiency, short energy

storage cycle and high energy density. The voltage and capacity of

a single lithium-ion battery are limited, so that multiple batteries

need to be cascaded to form a battery module to adapt to the

application in the scenario of high voltage and high power level.

Therefore, the management system for battery module has been

further developed.

The core function of battery management system (BMS) is to

reasonably estimate the battery parameters and give different

solutions for different situations, so as to ensure the safe and

stable operation of battery energy storage system. The technology

development of BMS has been paid attention by more and more

manufacturers. General Motors Corporation of the United States

has developed a BMS serving EV1 of electric vehicle, which has

the functions of live monitoring, shunt adoption, thermal

management and so on. It can realize the power-off

protection of abnormal voltage, and support the application

on the battery module cascaded with up to 26 batteries (Lee

and Cheng, 2005). Germany has also independently developed

BADICHE system and BATTMAN system (Garcia et al., 2010);

Toyota Motor Corporation of Japan has developed Prius system

for hybrid electric vehicles; Tesla Motors has independently

developed the corresponding battery management system for

pure electric vehicles. It is a general trend that traditional vehicles

are constantly replaced by new energy vehicles.

Lithium-ion battery is the main energy storage element in the

energy storage system. Its various parameters usually change in

actual working conditions, and need to be measured indirectly by

certain means. At present, the commonly used method is to

establish the equivalent model of the battery, and then determine

the various states of the battery at a certain time through the

study of the equivalent model. At present, the equivalent models

of batteries are roughly divided into three categories:

electrochemical model, mathematical model and equivalent

circuit model. In this paper, the equivalent circuit model is

used to study, and its accuracy is between electrochemical

model and mathematical model. It is easy to model the

equivalent circuit model and predict the SOC, so it is widely

used in all kinds of automotive BMS.

It is the key and difficult point of BMS system to realize the

accurate estimation of battery SOC based on equivalent model

and corresponding estimation algorithm. At present, the

commonly used SOC estimation algorithms mainly include

traditional algorithm, filtering algorithm, learning algorithm

and hybrid algorithm.

Two typical traditional algorithms are ampere hour

integration method (Liu et al., 2019) and open circuit voltage

method (Zhang et al., 2016). The ampere hour integration

method is calculated by adding the initial value of SOC and

the integral value of current during charging and discharging

process. This method is simple and easy to understand, but

there are obvious shortcomings. Before SOC estimation, the

initial value of SOC is usually unknown. Moreover, this method

has high requirements for the accuracy of current sampling,

and SOC estimation is easily affected by the inaccurate initial

value and cumulative error of integration (LI et al., 2013; Xiong

et al., 2020). As an open-loop estimation method (Caumont

et al., 2000; Zhu et al., 2004), its estimation accuracy is difficult

to ensure.

The open circuit voltage method establishes the

corresponding relationship between SOC and open circuit

voltage (OCV) by measuring the OCV of the battery, and

then determines the SOC by looking up the table (Xiong

et al., 2018). This method also has high requirements for the

accuracy of voltage sampling, and the battery needs to stand for

several hours before OCVmeasurement which is difficult to meet

the requirements of on-line calculation whichmeans SOC cannot

be estimated in real time (Li et al., 2017).

Common filtering algorithms include Kalman filtering

algorithm (KF) (Rakhmatov et al., 2003; Xing et al., 2011),

particle filtering (PF)algorithm (Zhou et al., 2016) and

synovial observer (Chen et al., 2016; Chen et al., 2017)

algorithm. Among several filtering algorithms, KF can give

consideration to both computational complexity and

estimation accuracy, so it is widely used in automobile, energy

storage, navigation and other fields.

In 1960, Rudolph E. Kalman proposed the concept of

standard Kalman filter (SKF). This method is widely used in

discrete linear systems because of its recursive iteration of

predicted and measured values and continuous convergence

to obtain accurate results. Moreover, it needs less computing

space and has rapidity and accuracy which make it suitable for

online computing. The accuracy of Kalman filter depends on

the accuracy of modeling. When the model is inaccurate, the

accuracy of the algorithm will be greatly affected (Zhang et al.,

2017).However, linear Kalman filter can only be used in linear

battery model. Because it sacrifices part of the accuracy, the

estimation is not accurate enough. On this basis, an extended

Kalman filter suitable for nonlinear systems is proposed. This

method linearizes the nonlinear system by ignoring the higher-

order term through the Taylor expansion of the function, which

greatly improves the application scope of the algorithm and

improves the accuracy to a certain extent. In order to further

improve convergence and robustness, scholars have proposed a

series of derivative algorithms, such as adaptive extended

Kalman filter (AEKF) (Dong et al., 2018), unscented Kalman
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filter (UKF) (He et al., 2013) and cubature Kalman filter (CKF)

(Arasaratnam et al., 2010).

Neural network (NN) (Wang and Zhou, 2018) and fuzzy

logic (FL) (Zheng et al., 2019) are typical learning algorithms. NN

is a mathematical model that analyzes the system by

simulating the synaptic connection of human brain. By

training NN with a large amount of data, the relationship

between input and output of nonlinear system can be

simulated with high accuracy. When the training data is

sufficient, the output accuracy is high. However, when the

amount of data is too large, it will also lead to overfitting. At

this time, the estimation accuracy of NN will decline. The

disadvantage of NN is that it relies on a large number of

training data, and different training strategies will have a great

impact on the estimation results. FL refers to a mathematical

method that simulates the thinking mode of the human brain

for judging uncertain things with the help of the concept of

membership function, so as to deal with nonlinear and large

lag objects. Common FL algorithms include mean blur and

Gaussian blur.

Hybrid algorithm combines two or more algorithms.

Literature (Guo et al., 2016) combines the least square

method and adaptive unscented Kalman filter (AUKF).

Through simulation experiments, it is verified that the

proposed algorithm has higher SOC estimation accuracy and

convergence than the single AUKF. Literature (Xu et al., 2020)

proposes a hybrid algorithm PF-CKF that combines PF and CKF.

This hybrid algorithm significantly improves the SOC estimation

accuracy by updating the battery model parameters in real time.

Although the hybrid algorithm can achieve better results, its

computational complexity is greatly increased, which is higher

than the single algorithm.

The paper uses the extended Kalman filter algorithm based

on equivalent circuit model to estimate the battery SOC and

optimizes it by piecewise fitting which improves the accuracy and

stability of the estimation.

Equivalent model of lithium-ion
battery

As an energy storage element, lithium-ion battery has precise

internal structure and complex working principle. Due to the

influence of its own service state and external environment, the

internal characteristics of the battery often change. These factors

mainly include the internal discharge depth, charge and

discharge rate, life aging degree and external environment

temperature. In the process of predicting the battery state of

charge, the battery management system needs to monitor and

collect the changing internal parameters of the battery in real

time, so as to analyze and calculate the internal characteristics of

the battery in different states and realize the real-time estimation

of the battery state of charge.

The packaging of lithium-ion battery is highly integrated, so

the lithium-ion battery looks like a black box system. For the

external monitoring system, only the two battery parameters of

battery port voltage and load current can be obtained directly

through detection. However, the relevant parameters

characterizing the battery characteristics inside the battery

cannot be obtained intuitively through monitoring, which

makes it difficult for the battery management system to

estimate the battery SOC. Therefore, it is necessary to

establish the equivalent circuit model inside the battery and

realize the quantitative description of the actual circuit

characteristics inside the battery through modeling, so as to

meet the needs of BMS for reliable estimation of battery SOC.

Modeling battery is difficult as it is actually a non-linear model

depending on various changing variables like temperature,

discharging, and charging states (Sher and Addoweesh, 2012).

The establishment of the internal equivalent circuit model of the

battery needs to be able to accurately simulate the actual working

characteristics of the battery, including static and dynamic

characteristics. At the same time, the amount of calculation

and complexity should be moderate to ensure the response

speed of the estimation process. The establishment of accurate

battery internal equivalent model is the basis of the accuracy and

rapidity of the subsequent estimation algorithm in this paper.

When the battery is in an open circuit state, the potential

value on the electrode is called the equilibrium electrode

potential. When the battery is in a dynamic state and there is

current flowing in the closed circuit, the potential value on the

electrode is called the actual electrode potential. The actual

electrode potential is not invariable. With the current passing

through the battery, its value will gradually deviate from the

equilibrium potential. This phenomenon is the polarization

phenomenon of the battery. The difference between the

equilibrium electrode potential and the actual electrode

potential is called the overvoltage difference, and the

magnitude of the overvoltage difference reflects the degree of

polarization of the battery. Generally speaking, the deviation

degree of electrode potential is positively correlated with the

current flowing through the unit electrode, and large current will

aggravate the polarization phenomenon. According to the

different causes of polarization, battery polarization can be

divided into three categories: ohmic polarization,

electrochemical polarization and concentration polarization.

The corresponding battery internal resistance are ohmic

internal resistance, electrochemical polarization internal

resistance and concentration polarization internal resistance.

Therefore, the internal resistance of the battery can be divided

into ohmic internal resistance and polarization internal

resistance. The value of ohmic internal resistance is related to

temperature, SOC and other variables (Zhongbao et al., 2017).

The polarization of the battery represents the offset of the

battery port voltage to the open circuit voltage after power on. In

order to simulate this phenomenon, a variety of internal
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equivalent circuit models of the battery have appeared. At

present, several common equivalent circuit topologies are Rint

model, first-order RCmodel, second-order RCmodel and PNGV

model, as shown in Figure 1.

The Rint model consists of an ideal voltage source and a

resistor in series. Its advantages lie in simple topology, easy

determination of parameter values and easy realization of

modeling and simulation. However, this modeling method

simply equates the internal resistance of the battery with a

constant resistance. This is equivalent to assuming that the

internal resistance of the battery is constant during charging

and discharging which deviates from the actual situation. In

practice, the internal structure and chemical mechanism of the

battery are complex. Affected by the state of charge, working

temperature, current and other factors, the internal resistance of

the battery is in a dynamic state. Therefore, using an internal

resistance with a constant resistance value for equivalence will

produce large errors.

The first-order RC model, also known as Thevenin model,

adds a first-order RC parallel circuit composed of polarization

resistance and polarization capacitance to the topology of Rint

model. This resistance-capacitance circuit can simulate the

dynamic process of the generation and elimination of battery

polarization effect (Rakhmatov et al., 2003). In the Rint

equivalent circuit model, the polarization phenomenon is

linearly simplified as a kind of instantaneous polarization,

while in practical work, the battery usually has a more

complex polarization process. For example, when the battery

begins to have current, its port voltage will not change

instantaneously, but change slowly with time. After the

current path is disconnected, the polarization process will not

stop instantaneously, but will decay slowly with time. Therefore,

in order to more accurately simulate the polarization

characteristics of the battery, an RC parallel circuit is added to

the first-order RC circuit. By adjusting the value of RC, the

nonlinear change process of voltage with time can be

approximately simulated, so that the external characteristics of

the battery port are more in line with the actual external

characteristic curve. Due to the addition of resistance

capacitance parallel circuit, the accuracy of the first-order RC

model is improved. At the same time, the circuit is relatively

simple and the parameters are easy to measure.

The second-order RC model consists of an ohmic resistor

and two RC polarization circuits in series. A group of RC parallel

circuits are added to the topology of the first-order RC model.

This further improves the accuracy of the simulation. Similarly,

connecting more RC parallel circuits in series in the circuit can

continuously improve the accuracy of the equivalent model, but

the complexity of the model also increases, the rapidity of the

algorithm is difficult to guarantee, and there are high

requirements for hardware.

PNGV model is formed by adding a capacitor on the basis of

the second-order RC model to describe the cumulative effect of

load current, that is, the change of open circuit voltage caused by

external load. PNGV model can truly simulate the charge and

discharge behavior of battery, and is widely used in transient

analysis. However, PNGV is not suitable for long-time

simulation, otherwise the current accumulation effect will

cause a large change of open circuit voltage.

It should be noted that in the process of charge and discharge,

the internal parameters of the battery are not constant, but

constantly changing, and the specific value is related to the

SOC in the current state. In order to make the prediction

results more accurate, in the application process of the

equivalent model, the parameter value of the equivalent model

should be corrected in real time according to the estimated value

of the current SOC, that is, the battery equivalent circuit model

with dynamic parameters should be established.

Through the analysis of the above models, the relationship

between the complexity and accuracy of the model is roughly

positively correlated, that is, the higher the accuracy of the

model, the higher the complexity, and the higher the

complexity means the decrease of the calculation speed.

Therefore, how to balance the relationship between

calculation speed and calculation accuracy is the key point

to be considered when selecting the equivalent model. As for

SOC estimation algorithm, there are two aspects to consider.

On the one hand, in order to reduce the error, the equivalent

model is supposed to simulate the actual working state as much

as possible. On the other hand, the algorithm based on the

FIGURE 1
Topologies of equivalent circuits.
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equivalent model will be embedded in the battery management

system. Therefore, the equivalent model should not be too

complex and the order should not be too high. It should occupy

less memory and be easy to implement. After comprehensive

consideration, the first-order RC model is selected as the

equivalent model of EKF algorithm.

Combined with relevant circuit theoretical knowledge, the

state equations of first-order RCmodel can be deduced. The state

equations are listed based on the voltage current relationship of

the complete circuit and the resistance-capacitance parallel

circuit, as shown in Eq. 1.

Uo � Uoc − Up − ILRo

Up � Ip
sCp

� IL − Up/Rp

sCp
� IL
sCp

− Up

sCpRp

(1)

In the above formula, Uoc is the open circuit voltage of the

battery in the static state, Uo is the port voltage, Up is the

FIGURE 2
SOC calculation process based on EKF.
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voltage on the polarization resistance, Ro is the ohmic internal

resistance, Rp is the polarization internal resistance, Cp is

the polarization capacitance, Ip is the current flowing

through the polarization capacitance and IL is the load

current. The model is a nonlinear system which takes the

load current IL as the input variable and the port voltage

Uo as the output variable.

EKFmodeling based on first-order RC
model

SOC estimation is one of the important functions of battery

management system. The accurate prediction of SOC is an

important guarantee to realize the functions of battery

monitoring and equalization. Kalman filter is an algorithm

that uses the monitored data related to the predicted data to

correct the estimated value of the predicted data, and finally

realizes the accurate estimation of the predicted data through

continuous iteration. Kalman filter can be divided into two

parts: prediction and correction. It makes a priori estimation

and a posteriori estimation on the predicted data respectively.

The EKF method is more widely used in engineering because

most systems are nonlinear in practical application, The basic

idea of EKF is to linearize the nonlinear equation by using

Taylor expansion. In this way, the nonlinear system is

approximated as a linear time-varying system, so the EKF

method can be used (Garcia et al., 2010). When the

predicted object is a nonlinear system, its state space

expression is shown in Eq. 2.

{XN � F1(XN−1, UN−1) +W
YN � F2(XN,UN) + V

(2)

In the above equation, F1 (XN,UN) and F2 (XN,UN) are the state

equation function and observation equation function of the

system respectively.Expand F1 (XN,UN) and F2 (XN,UN)

with first-order Taylor formula respectively:

F1(XN,UN) ≈ F1(X̂N, UN) + zF1(XN,UN)
zXN

∣∣∣∣∣∣∣
XN�X̂N

(XN − X̂N)
(3)

F2(XN,UN) ≈ F2(X̂N|N−1, UN) + zF2(XN,UN)
zXN

∣∣∣∣∣∣∣
XN�X̂N|N−1

(XN − X̂N|N−1)
(4)

The recurrence formula of EKF is shown in Eqs 5–8:

The state space expression of the predicted object:

⎧⎪⎨⎪⎩
XN � GN−1XN−1 + [F1(X̂N−1, UN−1) − GN−1X̂N−1] +W

YN � CNXN + [F2(X̂N, UN) − CNX̂N] + V

⎧⎪⎪⎨⎪⎪⎩
GN � zF1(XN,UN)

zXN

∣∣∣∣∣∣∣
XN�X̂N

CN � zF2(XN,UN)
zXN

∣∣∣∣∣∣∣
XN�X̂N|N−1

(5)

The priori estimate of state variables:

X̂N|N−1 � F1(X̂N−1, UN−1) (6)

The priori estimate of error covariance matrix:

PN|N−1 � GN−1PN−1GT
N−1 + Q (7)

Gain matrix:

KN � PN|N−1CT
N(CNPN|N−1CT

N + R)−1 (8)

The posteriori estimate of state variables:

X̂N � X̂N|N−1 + KN[YN − F2(X̂N|N−1, UN)] (9)

The posteriori estimate of error covariance matrix:

PN � (1 − KNCN)PN|N−1 (10)

In the EKF method, Q and R are the variance of process

noise and observation noise respectively. The state transition

matrix GN and the observation matrix CN are the real-time

first-order derivative of the state equation function and the

observation equation function respectively to ensure the

prediction accuracy.

The circuit relation equations of the first-order RC model are

shown in Eq. 1. Taking SOC and up as state variables, combined

with the state expression of EKF predicted system, the state space

equation of first-order RC model based on EKF algorithm in

discrete system can be deduced, as shown in Eq. 11.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣ SOC
Up

⎤⎥⎥⎥⎥⎥⎦ � ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 0

0 − 1
RpCp

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎡⎢⎢⎢⎢⎢⎣
SOC

Up

⎤⎥⎥⎥⎥⎥⎦ +
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
− 1
Qmax

1
Cp

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Uo � F2−SOC−OCV(SOC) − Up − ILRo − V

I LN (11)

Discretize (11) to obtain the discrete state space equation, as

shown in Eq. 12.
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣ SOCN+1

UpN+1

⎤⎥⎥⎥⎥⎥⎦ � ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 0

0 1 − Δt
RpCp

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎡⎢⎢⎢⎢⎢⎣
SOCN

UpN

⎤⎥⎥⎥⎥⎥⎦ +
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
− Δt
Qmax

Δt
Cp

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
UoN � F2−SOC−OCV(SOCN) − UpN − I LNRoN − V

I LN

(12)
In the formula, Δt represents the sampling period of the

discrete system, and the system coefficient matrices GN、HN、

CN、DN are respectively shown in Eq. 13.

GN �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 0

0 1 − Δt
RpCp

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

HN �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− Δt
Q max

Δt
Cp

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

CN � [ zF2(SOC)
zSOC

∣∣∣∣∣∣∣SOCN�SOCN|N−1
1]

DN � RoN

(13)

It should be noted that Ro、Rp、Cp and other parameters in

Eqs 12, 13 are functions of SOC, whichmeans they have mapping

relationship with SOC. Therefore, when using EKF algorithm to

estimate SOC, it is necessary to make data table and linear

programming the corresponding relationship between Ro、

Rp、Cp and SOC. During each iteration, update the

equivalent circuit parameters of the first-order RC model

according to the latest estimated value of SOC. The SOC

calculation process based on EKF is shown in Figure 2.

The linear fitting method for the data table is ordinary least

squares. According to the known data points in the data table, the

one-to-one mapping curve of SOC and Ro、Rp、Cp is fitted.

The slope and intercept of the curve are shown in Eq. 14.

k � ∑n
i�1xiyi − n�x · �y∑n

i�1x
2
i − n�x2

b �
�y∑n

i�1x
2
i − �x∑n

i�1
xiyi

∑n
i�1x

2
i − n�x2

(14)

When SOC is at different levels, the variation degree of

internal parameters such as internal resistance and

capacitance varies greatly. If the data table is fitted as a whole,

FIGURE 3
Connection block diagram of SOC estimation based on EKF.

FIGURE 4
Non-constant discharge current.

FIGURE 5
SOC estimation curve of EKF method under non-constant
current source.
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it is easy to produce large errors and deviate from the real

situation. Therefore, in the data processing of the data table,

the original algorithm is optimized by piecewise fitting to

improve the accuracy of estimation as shown in Figure 3.

Simulation verification

The simulation software used in this paper is Matlab/

Simulink. The discharge current decreases as a linear function

from 1C, as shown in Figure 4. The SOC estimation curve and the

SOC estimation error is shown in Figure 5 and Figure 6

respectively. The simulation results show that EKF method

still has good follow-up to SOC. The estimation error is

within ±0.5%, and the estimation accuracy is high.

Experimental verification

The internal parameters of the battery will be affected by the

changes of various environmental factors. Therefore, parameter

identification is needed in SOC estimation. In this paper, in order to

improve the accuracy of SOC estimation, the battery discharge state

is tracked and corrected in real time by establishing a data table.

NCR18650BF lithium-ion battery is selected for the experiment. In

order to get the data table, HPPC tests was carried out on the battery.

Conduct a charge and discharge pulse test on every SOC step and

the SOC step is 0.1. The amplitude of charge and discharge pulses is

1C, lasting for 20s. The standing interval between charge and

FIGURE 6
SOC estimation error of EKF method under non-constant
current source.

TABLE 1 Parameter identification data of first-order RC model.

SOC Uoc (V) Ro (Ω) Rp (Ω) Cp (F)

0.1 3.4153 0.1243 0.0074 3980.7

0.2 3.5329 0.1222 0.0412 14101

0.3 3.5743 0.1162 0.0425 3500.2

0.4 3.6211 0.1080 0.0158 7500.9

0.5 3.6960 0.1118 0.0243 3432.8

0.6 3.7928 0.1215 0.0323 5535.8

0.7 3.8500 0.0936 0.0038 1928.9

0.8 3.9368 0.1143 0.0181 13468

0.9 4.0200 0.1108 0.0243 2622.6

TABLE 2 elements used in the experiment including and battery
specifications.

Element Battery NCR18650BF

Electronic Load Chroma633200A

Hall Current Sensor HS01-50

Battery Specifications Capacity 3400mAh

Full Voltage 4.2V

Termination Voltage 2.75V

Standard Voltage 3.7V

Operating Temperature -20~60°C

FIGURE 7
Appearance of experimental platform.
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discharge pulses is 80s. After that, SOC is adjusted with a charge and

discharge current of 0.2C. After standing for 1 hour, conduct the

next charge and discharge pulse test and repeat this cycle. The

experimental temperature is 25 ± 2°C. ThroughHPPC tests, the data

table of internal parameters of lithium-ion battery can be obtained. It

is shown in Tables 1 and 2.

NCR18650BF battery was used to build the experimental

prototype, and the SOC estimation experiment was carried out in

constant current discharge mode.

The experimental platform is shown in Figure 7. It mainly

includes the battery discharge link, sampling link and calculation

link. In the figure, from top to bottom, there are electronic load,

sampling circuit board, battery, battery holder andHall current sensor.

The load used in the experiment is the 63200A series programmable

electronic load of Chroma company, which has variousmodes such as

constant current (CC), constant resistance (CR), constant voltage

(CV), constant power (CP), etc. In the experiment, the constant

current discharge of the battery can be controlled by adjusting the

electronic load in the CC working mode. At the same time, the

electronic load used in the experiment can measure the SOC of the

battery and display it in real time as shown in Figure 8. The measured

value is taken as the real-time actual value of SOC for reference.

The calculation link processes and calculates the sampled

voltage and current data to obtain the real-time SOC prediction

value. The program flow chart is shown in Figure 9.

In the program, timer interrupt andmain loop are carried out

in parallel. Timer interrupt is used to collect port voltage and load

current to track the change of detectable value. The main cycle is

responsible for EKF calculation according to the collected data to

realize SOC prediction. Due to the large fluctuation range of the

actuallymeasured data table, if the overall linear programming of the

data table is carried out, the prediction result error is very large.

Therefore, it is decided to carry out the linear programming in

sections, and the linear programming coefficient of each function is

different. The SOC is divided into ten levels, and each level is stepped

by 0.1. When the program is running, the specific linear

programming coefficient should be judged according to the level

where the SOC iteration value is located. It should be noted that the

FIGURE 8
Electronic load display.

FIGURE 9
Procedure flow.
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sampled data and the data used for EKF calculation should be stored

separately, so as not to change the data used for calculation before

the EKF calculation in the main cycle is completed. In this program,

set the sampling frequency to 1 kHz and the frequency of parameter

update to 5Hz.

Figure 10A shows the comparison between the SOC estimation

curve measured in the experiment before optimization and the

actual curve. At the beginning of the iteration, the SOC estimated

value can quickly follow the real value in a short time. Then with the

passage of time, the estimation error becomes larger and larger. And

because of the disturbance and noise in the actual experiment, the

estimation result has a small amplitude oscillation.

After analysis, this may be due to the deviation error caused

by the overall linear fitting when identifying the data table in the

FIGURE 10
(A) Comparison between actual SOC curve and estimated SOC curve before optimization. (B) Comparison between actual SOC curve and
estimated SOC curve after optimization.

FIGURE 11
Comparison between overall fitting and piecewise fitting.
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algorithm. Therefore, piecewise fitting is adopted for the data

table instead of overall fitting. When SOC is at different levels,

different calculation coefficients are used. Figure 11 shows the

comparison of different fitting methods of the data table. The

optimized experimental results are shown in Figure 10B. It can be

seen that although there are still oscillations and offsets in the

estimation results, a correction will be made whenever entering a

new level. As time goes on, the estimated results will not deviate

significantly from the true value. Compared with the results

before optimization, the estimation accuracy is significantly

improved.

Summary

Aiming at the problem of battery SOC estimation, this paper

proposes an EKF estimation algorithm based on piecewise fitting.

The traditional EKF algorithm directly fits various parameters

based on the full SOC segment, which is easy to cause the

problem of parameter overfitting and then lead to the

deviation of estimation results. The proposed method can

achieve SOC tracking in the whole SOC range, has strong

self-correction ability, and the estimation error in actual

working conditions is basically less than 3%. Subsequently, the

author will further optimize the algorithm to optimize the

oscillation of SOC estimation value caused by switching state

matrix parameters in different SOC sections, so as to further

reduce the maximum estimation error.
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