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Large-scale wind power integration brings great challenges to power system

operation. The use of large-scale wind power in the electricity market has

become a concern for many researchers. Demand response (DR) and energy

storage systems (ESSs) play crucial roles in the consumption of large-scale wind

power. In this paper, a detailed DR model is established, including price-based

demand response (PBDR) and incentive-based demand response (IBDR). IBDR

contains load shifting (LS) and load curtailment (LC). The IBDR model in this

study not only includes its bidding and market clearing but also contains

relevant constraints: maximum/minimum duration time, shifting/curtailment

gap time, and shifting/curtailment frequency. A two-stage trading method,

including a day-ahead (DA)market and a real-time (RT)market, is proposed. The

method contains various market participants: conventional units (CUs), rapid

adjustment units (RAUs), wind power, ESS, and multiple types of DR. The roles

and economic benefits of various market participants in the consumption of

large-scale wind power are analyzed in an IEEE 30 bus system, verifying the

accuracy and validity of the model. The best DR scale and the suggestions of

ESS are given. The results show that the proposedmethod can effectively utilize

wind power and decrease system costs.
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1 Introduction

Renewable energy sources such as wind power are playing an increasingly significant

role worldwide to address energy shortages and the environmental problems caused by

fossil fuels (Jamali et al., 2020; Khaloie et al., 2022). Due to the intermittency and inverse

peak regulation characteristics of wind power, large-scale wind power integration brings

great challenges to the balance of supply and demand in the power system. The demand

response (DR) and energy storage system (ESS) play crucial roles in coping with the
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intermittency and inverse peak regulation characteristics of

renewable energy (Yousefi et al., 2013; Le et al., 2021). The

development of high-percentage renewable energy power

systems is difficult without flexible load and storage systems

(Saberi et al., 2019). The consumption of large-scale wind power

in an electricity market environment has become a concern for

many researchers (Wei and Zhong, 2015).

There have been many studies on the use of DR to assist in

source-load balancing in an electricity market environment.

Yousefi et al. (2013) considered a price-based demand

response to construct a production model of the user.

Bottieau et al. (2020) investigated the problem of optimal

hourly electricity consumption scheduling considering real-

time electricity prices, and a dynamic price-based DR model

was proposed. Agrali et al. (2020) studied the operation of an

integrated energy system in the presence of DR. The

abovementioned studies only consider the price-based demand

response (PBDR) but not the incentive-based demand response

(IBDR).

Due to the very important role of incentive-based demand

response, a two-stage data-driven unit combination scheduling

scheme based on IBDR is proposed by Child et al. (2018), and the

commercial air conditioner is modeled as incentive-based

demand response to wind power changes. A day-ahead power

market clearing model considering DR is proposed by Li and

Hong (2016), and the proposed IBDR approach provides flexible

load profiles and reduces the ramping need for a conventional

generator. Samal and Tripathy (2019) propose a stochastic

bidding strategy for virtual power plants, considering IBDR to

improve the profitability of wind farms in the electricity market.

Asensio and Contreras (2015) proposed a stochastic framework

accounting for IBDR for an offer strategy. In the abovementioned

literature, only IBDR is considered and not PBDR. In practice,

IBDR and PBDR exist simultaneously. Sadati et al. (2019)

propose a two-layer framework containing PBDR and IBDR,

and the operational scheduling of smart distribution companies

is studied. Kim et al. (2021) propose a two-stage stochastic robust

optimal energy trading management for microgrids to reduce the

peak hour load while ensuring the reliability of the microgrid.

The potential of PBDR and IBDR in power systems is

investigated by Hajibandeh et al. (2019). Neda et al. (2018)

propose a DR-based operation method to cope with the

uncertainty and intermittency of wind power generation. The

main role of DR in the operation of future power markets is

presented. In the abovementioned literature, the model of IBDR

is relatively simple, only including its offer model. The amount of

load shifting/curtailment and its price are obtained through

market clearing. Table 1 is a summary of previous studies

considering DR.

In addition, some studies have explored the impact of

energy storage systems (ESSs) on wind power consumption. A

robust scheduling framework is proposed to obtain an optimal

unit commitment in the system, which includes a large-

capacity ESS, wind power, conventional units, and DR

(Heydarian-Forushani et al., 2015). Arteaga and Zareipour

(2019) established a model of ESS participating in the

electricity market and studies the potential profit of ESS in

providing multiple services. Khaloie et al. (2020) presented

multistage electricity market trading strategies, taking

environmental factors, ESS, thermal units, and wind power

into account. According to the policy of promoting wind

power development (Guangdong Provincial People’s

Government, 2021), to ensure effective wind power

consumption, encouraging the installation of energy storage

systems for wind power generation is required. At present, few

studies have analyzed the effects and economic benefits of

energy capacity and power rating of ESS for wind power

consumption.

Much literature has studied the supply–demand balance in

power systems containing renewable energy using energy

management. Ahmad et al. (2020a) presented the joint energy

management and energy trading models, which provides low-

cost electricity consumption to the distribution system. Ahmad

et al. (2020b) proposed a demand side management (DSM)

model to reduce electricity costs and minimize distribution

losses. A heuristic algorithm is proposed by Ahmad et al.

(2018) to develop an autonomous system, which can manage

photovoltaic panels and wind turbines effectively and efficiently.

Different DSM schemes are employed for consumer demand

management by Yaqub et al. (2016) to optimize energy

consumption with minimum consumer interaction. Ahmad

et al. (2019) proposed a novel residential energy management

approach for efficient energy consumption. Different from the

abovementioned studies, mainly making use of active load

resources through the DSM method, our research uses price

signals (PBDR) and DR trading (IBDR) to assist supply–demand

balance.

In this paper, a detailed DR model is established in the

electricity market with large-scale wind power integration.

Market trading includes two stages: day-ahead (DA) market

and real-time (RT) market. DR includes PBDR and IBDR, of

which IBDR is further divided into load shifting (LS) and load

curtailment (LC). Different types of DR enable active

consumers to play a flexible role in a two-stage electricity

market. The main contributions of this study can be

summarized as follows:

1) A detailed DR model is established, including PBDR and

IBDR. The IBDR model not only contains its bidding and

market clearing but also contains relevant constraints:

maximum/minimum duration time, shifting/curtailment

gap time, and shifting/curtailment frequency.

2) The effects of ESS energy capacity and power rating are

investigated.

3) The influence of different wind power scales on system

operation is analyzed.
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4) The effects and economic benefits of different market

participants for wind power consumption are analyzed.

2 Electricity market transaction
mechanism

2.1 Market participants

DA market participants include conventional units (CUs),

rapid adjustment units (RAUs), wind power, and LS, whereas

RT market participants include RAUs, wind power, ESS,

and LC.

2.2 Market transaction process

Considering PBDR, the system load will change in response

to PBDR, followed by DA market and RT market transactions.

The market transaction process is shown in Figure 1. The DA

market is to clear 1 day in advance of the operation day to obtain

the relevant resources operating status of the operation day. RT

market transactions are conducted 15 min before the actual

operation of the system, and rolling clearing is carried out to

obtain the scheduling resource operating condition for the next

15 min.

Consumers usually participate in PBDR based on price

signals and do not directly participate in market transactions.

LS only participates in the DA market to reduce the system

peak–valley difference and ramping need for units. LC and ESS

only participate in the RTmarket to reduce wind curtailment and

load shedding. CUs have a slow adjustment speed, while RAUs

have a rapid adjustment speed; therefore, CUs only participate in

the DA market and RAUs participate in both DA and RT

markets.

2.3 Market expense settlement

After the operation day, the relevant market participants

will be charged through the DA and RT clearing electricity

prices.

PBDR does not need to be settled. LS is settled according

to the load shifting quantity and the DA price obtained from

DA market clearing, while LC and ESS are settled by the RT

price.

CUs are settled by the DA price and their power quantity,

which is obtained by DA market clearing. When the RT market

clearing power quantity of RAUs is greater than or equal to the

DA market, the DA power quantity is settled by the DA price,

and the excess part is settled by the RT price. On the contrary,

when the clearing power quantity of RAUs in the RT market is

less than the DAmarket, the RT power quantity will be settled by

the DA price. The reduced power quantity will be subsidized to

RAUs by the difference between DA price and RT price. It means

that RAUs make room for wind power generation to utilize

excess wind power in the RT market.

Like the RAUs, when the output of wind farms in the RT

market is greater than the DA market, wind farms are settled by

the DA price, and the excess part is settled by the RT price. On

the contrary, when the output of wind power in the RT market is

less than the DA market, the wind power is settled by the DA

TABLE 1 Summary of previous studies considering DR.

Reference PBDR IBDR Relevant
constraints of IBDR

(Yousefi et al., 2013), (Bottieau et al., 2020), (Agrali et al., 2020) √ × ×

(Child et al., 2018), (Li and Hong, 2016), (Samal and Tripathy, 2019), (Asensio and Contreras, 2015) × √ ×

(Sadati et al., 2019), (Kim et al., 2021), (Hajibandeh et al., 2019), (Neda et al., 2018) √ √ ×

In this study √ √ √

“√”means the reference contains that matter while“×” means that it does not.

FIGURE 1
Market transaction process.
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price. It means that the RT output of wind farms is less than the

DA output, the wind power is insufficient, and the insufficient

output is punished by the penalty coefficient.

3 Model introduction

3.1 Price-based demand response

The time-of-use (TOU) price is used to divide the

peak–valley–flat periods of electricity consumption. The price

signal is used to guide the consumers to change the power curve.

The formula of PBDR is as follows:

Dn,t � D0
n,t

⎧⎨⎩1 + ∑T
t′�1

Et,t′
(ρt′ − ρ0t′)

ρ0t′

⎫⎬⎭ (1)

where Dn,t and D0
n,t, respectively, represent the load power

demand before and after PBDR, ρ0t′ and ρt′ are, respectively, the

electricity prices before and after PBDR in time t′, and the

prices are parameters set in advance. It relies on price difference

to adjust consumers’ power consumption. Et,t′ is the elasticity

coefficient of power demand between time t and t′. Before
PBDR, the electricity price for a whole day is the same; after

PBDR, TOU prices are set up, and a day is divided into

peak–valley–flat periods with different prices. The

aforementioned formula embodies “self-elasticity” and

“mutual -elasticity” of the consumer. The “self-elasticity”

means that if ρt′ > ρ0t′, the load power demand of period t′
will decrease, while if ρt′ < ρ0t′, it will increase. The “mutual-

elasticity” means that if ρt′ > ρ0t′, the load power demand of

period t (t ≠ t′) will increase, while if ρt′ < ρ0t′, it will decrease.

Cutting the peak and filling the valley of the power curve can be

realized by the consumers participating in PBDR. It is worth

mentioning that PBDR is for all consumers, and its power

changes have uncertainty; the analysis of PBDR uncertainty is

beyond the scope of this study.

3.2 Incentive-based demand response

The IBDR discussed in this study can be divided into two

types: LS and LC. Both types need to declare the shifting/

curtailment quantity and price to the system operator. The

declared quantity and price have a piecewise linear curve as

shown in Figure 2, which shows a stepwise rise. The higher the

compensation, the greater the LS/LC shift/curtail. According to

Li and Hong (2016) and Neda et al. (2018), the bidding in this

study is divided into four segments.

3.2.1 Load shifting
LS participates in the DA market. Figure 3 shows the

schematic of load shifting. The green parts represent load

shifting, while the blue parts represent load recovery.

The total load shifting quantity and its constraint are:

PLS
ls,t � qLSls,0u

LS
ls,t + ∑4

m�1
qLSls,m,t (2)

0≤ qLSls,m,t ≤ qLSmax
ls,m,t uLS

ls,t (3)

where PLS
ls,t is the total load shifting quantity of DR aggregator ls in

time t, qLSls,0 is the initial minimum shifting quantity, uLSls,t is the

binary status indicator of DR aggregator ls in time t, qLSls,m,t is the

subsequent segmental load shifting, and qLSmax
ls,m,t is the segmental

maximum load shifting.

The total cost of load shifting is:

FIGURE 2
Demand response bidding curve.

FIGURE 3
Schematic of load shifting.
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CLS
ls,t � cLSls,0,tu

LS
ls,t + ∑4

m�1
cLSls,m,tq

LS
ls,m,t (4)

where CLS
ls,t is the total cost and cLSls,0,t and cLSls,m,t are the offering

prices of initial shifting quantity and the subsequent segmental

shifting quantity, respectively.

uLS
ls,t � 0, t ∉ TLS

ls (5)

∑t+LSTls
min−1

t′�t
uLS
ls,t′ ≥LSTls

min(uLS
ls,t − uLS

ls,t−1) (6)

∑t+LSTls
max

t′�t
uLS
ls,t′ ≤ LSTls

max (7)

∑t+LSgapd−1

t′�t
(1 − uLS

ls,t′)≥ LSgapls(uLS
ls,t−1 − uLS

ls,t) (8)

Eq. 5 is the constraint of shifting time, Eqs. 6–7 are the

maximum/minimum duration shifting time limit, and Eq. 8 is

the constraint of load shifting time interval. TLS
ls is the period

allowing to shift, LSTls
max/LSTls

min is the maximum/minimum

duration shifting time, and LSgapls is the minimum time

interval.

The constraints of load shifting times are:

ςLSls,t � max{0uLS
ls,t − uLS

ls,t−1} (9)
∑
t∈T

ξLSls,t ≤M
LS
ls (10)

where ςLSls,t is an auxiliary variable used to record the shifting times

within the scheduling periods andMLS
ls is the maximum transfer

time of DR aggregator ls.

The constraints of power recovery quantity and recovery

time are:

∑
t∈TLR

ls

PLR
ls,t � ∑

t∈TLS
ls

λlsP
LS
ls,t (11)

uLR
ls,tP

LRmin
ls ≤PLR

ls,t ≤ uLR
ls,tP

LRmax
ls ,∀t ∈ TLR

ls (12)
uLR
ls,t � 0 ,∀t ∉ TLR

ls (13)

where PLR
ls,t is the recovery quantity, λls is the recovery coefficient;

uLRls,t is a binary status indicator of power recovery in time t,

PLRmax
ls and PLRmin

ls are the upper and lower limits of recovery

power in each t, respectively, and TLR
ls is the recoverable time

period.

3.2.2 Load curtailment
LC participates in the RT market. Figure 4 shows the

schematic of load curtailment; the blue parts represent the

load curtailment. The total load curtailment quantity and its

curtailment quantity are:

PLC
lc,t � qLClc,0,tu

LC
lc,t + ∑4

m�1
qLClc,m,t (14)

0≤ qLClc,m,t ≤ qmax
lc,m,tu

LC
lc,t (15)

where PLC
lc,t is the total load curtailment quantity of DR

aggregator lc in time t, qLClc,0 is the initial minimum

curtailment quantity, uLClc,t is the binary status indicator of

DR aggregator lc in time t, qLClc,m,t is the subsequent segmental

load curtailment, and qLCmax
lc,m,t is the segmental maximum

curtailment load.

The total cost of load curtailment is:

CLC
lc,t � cLClc,0,tu

LC
lc,t + ∑4

m�1
cLClc,m,tq

LC
lc,m,t (16)

where CLC
lc,t is the total cost c

LC
lc,0,t and c

LC
lc,m,t are the offering price of

the initial curtailment quantity and the subsequent segmental

curtailment quantity, respectively.

uLC
lc,t � 0, t ∉ TLC

lc (17)

∑t+LCTlc
min−1

t′�t
uLC
lc,t′ ≥ LCTmin

lc (uLC
lc,t − uLC

lc,t−1) (18)

∑t+LCTmax
lc

t′�t
uLC
lc,t′ ≤ LCTmax

lc (19)

∑t+LCgapd−1

t′�t
(1 − uLC

lc,t′)≥ LCgaplc(uLC
lc,t−1 − uLC

lc,t) (20)

Eq. 17 is the constraint of curtailable time, Eqs. 18–19 are

the maximum/minimum duration curtailment time limits,

and Eq. 20 is the constraint of load curtailment time

interval. TLC
lc is the period allowing to curtail, LCTlc

max and

LCTlc
min are the maximum and minimum duration

curtailment time, respectively, and LCgaplcis the minimum

time interval.

The constraints of load curtailment times are:

FIGURE 4
Schematic of load curtailment.
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ςLClc,t � max{0, uLC
lc,t − uLC

lc,t−1} (21)
∑
t∈T

ξLClc,t ≤M
LC
lc (22)

where ςLClc,t is an auxiliary variable used to record the curtailment

times within the scheduling period and MLC
lc is the maximum

curtailment times of DR aggregator lc.

3.3 Day-ahead market clearing model

The objective function of the DA market is to minimize the

total cost:

minCos tDA � ∑T
t�1

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
∑NG

i�1
[Ci,t(Pi,t) + SUi,t

+SDi,t
] + ∑NGf

if�1
[CDA

if,t(PDA
if,t) + SUif,t

+SDif,t
] + ∑NLS

ls

CLS
ls,t+

M1 ∑NW

w�1
QwindDA

w,t +∑NL

l�1
M2[SLDA+

l,t + SLDA−
l,t ]

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(23)

where Ci,t(Pi,t), SUi,t, SDi,t is the generation cost and start-up/

shutdown cost of CUs i; CDA
if,t(PDA

if,t), SUif,t, SDif,t is the

generation cost and start-up/shutdown cost of RAUs if; CLS
ls,t is

the cost of LS, and the LS model is described in detail in Section

3.2.1; M1 and M2 are the wind power curtailment penalty

coefficient and the network power flow constraint penalty

coefficient, respectively; QwindDA
w,t is wind power curtailment

in the DA market; and SLDA+
l,t and SLDA−

l,t are slack variables for

forward and reverse power flow of line l in the DA market,

respectively. The decision variables are

ui,t, uif,t, uLSls,t, Pi,t, PDA
if,t, q

LS
ls,m,t, Qwind

DA
w,t subject to the

following constraints. The meaning of the symbols can be

obtained from the nomenclature table.

3.3.1 Day-ahead system power balance
constraints

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑NG

i�1
Pi,t + ∑NGf

if�1
PDA
if,t + ∑NW

w�1
PDA
w,t � ∑N

n�1
Dn,t + ∑NLS

ls�1
(PLR

ls,t − PLS
ls,t)

PDA
w,t � PDAmax

w,t − QwindDA
w,t

(24)

where Pi,t is the power generation of CUs, PDA
if,t is the power

generation of RAUs, PDA
w,t is DA wind power consumption,

PDAmax
w,t is the maximum wind power that is predicted in DA,

and Dn,t is the load power demand at bus n after PBDR.

3.3.2 System power flow constraints

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

PSP � Bθ
Pj,k � (θj − θk)/xjk

Pj,k − SLDA+
l,t ≤Pmax

j,k

Pj,k + SLDA−
l,t ≥ − Pmax

j,k

j, k � 1, 2, 3 . . .N

(25)

where PSP is the N-dimensional column vector of injected power

of bus n. The first and second rows of Eq. 25 represent the DC

power flow, and the third and fourth rows represent the

maximum forward and reverse flow of the branch between

bus j and k, respectively.

3.3.3 Unit constraints
The related constraints of CUs and RAUs are similar,

which include power generation upper and lower limit,

ramp up/down limit, and minimum start-up/shutdown

duration time limit. For brevity, only the CU model is

presented here.

1) Constraints of power generation

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0≤ qi,t,m ≤ ui,tq
max
i,m

Pi,t � ui,tqi,0 + ∑4
m�1

qi,m,t

Ci,t(Pi,t) � ci,0ui,t + ∑4
m�1

ci,m,tqi,m,t

(26)

where qi,0 is the initial minimum power generation, ui,t is the

binary status indicator of CU i in time t, qi,t,m is the subsequent

segmental power generation, qi,m max is the segmental maximum

power generation, and ci,0 and ci,m,t are the offering price of initial

power generation and the subsequent segmental power

generation, respectively.

2) Constraints of ramp up/down

{Pi,t − Pi,t−1 ≤RUiui,t−1 + SURiyi,t

Pi,t−1 − Pi,t ≤RDiui,t + SDRizi,t
(27)

where RUi(RDi) is the ramp-up (ramp-down) rate of CU I,

SURi(SDRi) is the startup (shutdown) ramp rate of CU i, and

FIGURE 5
IEEE 30 bus system.
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yi,t(zi,t) is the startup (shutdown) binary status indicator of CU i

in time t.

3) Constraints of minimum start-up/shutdown duration time

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ui,t � 1, t ∈ [1, Ui]
∑t+Toni−1

x�t
ui,x ≥Toni(ui,t − ui,t−1), t ∈ [Ui + 1, T − Toni + 1]

∑T
x�t
ui,x ≥ (ui,t − ui,t−1), t ∈ [T − Toni + 2, T]

(28)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ui,t � 0, t ∈ [1, Di]
∑t+Toffi−1

x�t
(1 − ui,x)≥Toffi(ui,t−1 − ui,t), t ∈ [Di + 1, T − Toffi + 1]

∑T
x�t
ui,x ≥ (ui,t−1 − ui,t), t ∈ [T − Toffi + 2, T]

(29)

where Ui(Di) represents the period during which CU i must be

on/off at the beginning of the scheduling cycle; it is determined

by the state of CU i at the end of the last scheduling cycle.

Toni(Toffi) is the period of the minimum on/off time of CU i.

The relevant constraints of LS are given in Eqs. 2–13.

3.4 Real-time market clearing model

RT market transactions are conducted 15 min before the

actual operation of the system, and rolling clearing is carried out

to obtain the scheduling resource operating condition for the

next 15 min.

minCos tRT �
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∑NGf

if�1
CRT

if,t(PRT
if,t) + ∑NLC

lc�1
CLC

lc,t + ∑NB

ib�1
Cdegra

ib,t +M1∑N
n�1

QloadRT
n,t +∑NL

l�1
M2[SLRT+

l,t + SLRT−
l,t ]

+M3∑NW

w�1
QwindRT

w,t , t � 1, 2, 3, ..., T

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(30)

where CRT
if,t(PRT

if,t) is the generation cost of RAU if in the RT

market, CLC
lc,t is the cost of load curtailment; the LC model is

described in detail in Section 3.2.2, Cdegra
ib,t is the degradation cost

of ESS, QwindRTw,t,Qload
RT
n,t are the wind power curtailment and

load shedding in the RT market, respectively, M1,M2,M3 are

penalty coefficients; and SLRT+l,t , SLRT−l,t are slack variables for

forward and reverse power flow of line l in the RT market,

respectively. The decision variables are

uLClc,t, u
ch
ib,t, u

dis
ib,t P

RT
if,t, q

LC
lc,m,t, Pch

ib,t, P
dis
ib,t, Qwind

RT
w,t, Qload

RT
n,t ,

subject to following constraints. The meaning of the symbols

can be obtained from the nomenclature table.

3.4.1 Real-time system power balance
constraints

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑NG

i�1
Pi,t + ∑NGf

if�1
PRT
if,t + ∑NW

w�1
PRT
w,t + ∑NB

ib�1
(Pdis

ib,t − Pch
ib,t) � ∑N

n�1
(DLS

n,t − QloadRT
n,t ) − ∑NLC

lc�1
PLC
lc,t

PRT
w,t � PRTmax

w,t − QwindRT
w,t

(31)

where Pi,t is the power generation of CUs, which is given by

the DA market clearing results, PRT
if,t is the power generation of

RAUs in the RT market, PRT
w,t is the RT wind power

consumption, PRTmax
w,t is the maximum wind power, which

is predicted in RT, Pdis
ib,t and Pch

ib,t are the discharge and charge

power of ESS, respectively, and DLS
n,t is the load power demand

at bus n after LS.

3.4.2 Energy storage system constraints

{ 0≤Pch
ib,t ≤Pchmax

ib,t uch
ib,t

0≤Pdis
ib,t ≤Pdismax

ib,t udis
ib,t

(32)

{ELib,t � ELib,t−1 + Δt(ηchPch
ib,t−1 − (Pch

ib,t−1/ηdis))
ELib,t ≤ELib

max (33)

Cdegra
ib,t � λib(Pch

ib,t + Pdis
ib,t) (34)

udis
ib,t + uch

ib,t ≤ 1 (35)

TABLE 2 TOU electricity price for PBDR.

Period Time Without PBDR ($/MWh) With PBDR ($/MWh)

Peak 29–48, 61–84 60 80

Flat 25–28, 49–60 60 60

Valley 1–24, 85–96 60 40

FIGURE 6
Day-ahead and real-time wind power.
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where Pdismax
ib,t and Pchmax

ib,t are the maximum discharge and charge

power, respectively, udisib,t and u
ch
ib,t are binary status indicators ESS,

ELib,t is the stored power energy of ESS in time t; ELib,t max is the

stored power energy of ESS, ηch and ηdis are charge and discharge

efficiency coefficients, respectively, and λib is the ESS degradation

coefficient.

For the relevant constraints of LC, refer to Eqs. 14–22, and for

the other constraints (power generation upper and lower limit for

RAUs and ramp up/down limit for RAUs), refer to the day-ahead

market model.

4 Results and discussions

In this section, the numerical results are presented to validate

the effectiveness of the proposed model. Case studies, carried out

in the IEEE 30 bus system, are shown in Figure 5. The IEEE-30

FIGURE 7
Solution flowchart.

FIGURE 8
Original load and load with PBDR and LS.

FIGURE 9
Load curtailment in the RT market.

FIGURE 10
ESS’s charge power, discharge power, and stored energy.
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bus system is a typical power grid, and the studies in a typical

power system can verify the accuracy and effectiveness of the

proposed models. There are three conventional units, one rapid

adjustment unit, four wind farms, and four IBDR aggregators. A

day is divided into 96 periods. PBDR parameters such as

peak–valley–flat periods division and corresponding electricity

price are shown in Table 2. The self-elasticity coefficient and

mutual-elasticity coefficient are set as -0.12 and 0.012,

respectively (Aalami et al., 2010). There are four IBDR

aggregators in the bus, 5, 7, 21, and 30, where the power

demand is large. The total aggregated load of aggregators

accounts for 7% of the total system load. The predictive DA

TABLE 3 Effects of IBDR with or without relevant constraints.

Maximum duration period Shifting/curtailment frequency

Without relevant constraints 28 (not adjustable) 3 (not adjustable)

With relevant constraints 16 (adjustable) 2 (adjustable)

TABLE 4 Effects of different DR scales.

DR scale (%) System cost/$ Wind power curtailment/MWh Load curtailment/(MWh) Ramping need/(MW)

1 1753895 13.86 43.62 3493

2 1750863 9.53 16.40 3417

3 1734597 6.21 16.19 3140

4 1736691 6.19 3.20 3145

5 1732500 6.06 0 3050

6 1725200 5.04 0 2972

7 1724225 3.06 0 2836

8 1724673 3.07 0 2796

9 1724464 3.02 0 2691

10 1724214 3.33 0 2753

When the proportion increases to 7%, the system cost and wind power curtailment no longer decrease significantly.

FIGURE 11
System cost.

FIGURE 12
Wind power curtailment.
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and RT wind power are shown in Figure 6. The proportion of

wind power to the total load of the system is 50%. The real wind

power historical data of Belgium in Elia are scaled down and used

as the wind power DA forecast output and RT forecast output in

this study. In DA market clearing and RT market clearing, the

objective of wind power is to reduce the amount of wind

curtailment as much as possible, and the wind power

consumption does not exceed the predicted output.

The DA and RT two-stage market clearing model are MILP

problems essentially, which can be efficiently solved by GAMS

using the CPLEX solver. The solution flowchart is shown in

Figure 7.

4.1 Day-ahead market and real-time
market clearing results

Figure 8 shows the comparison between the original load of

the system and the load considering PBDR and LS. After PBDR

and LS, the load decreases in the peak periods (29–48 and 61–84)

and increases in the valley periods (1–24 and 85–96), making the

peak–valley difference of the load curve smaller. It can enhance

the reliability and security of system operation.

Figure 9 shows the curtailment of LC in the RT market. Load

curtailment takes place during the peak demand periods (29–48,

61–84). Figure 10 shows one of the ESS’s charge power, discharge

power, and stored energy. ESS discharges when the RT wind

power is lower than DA and charges when the RT wind power is

higher. LC and ESS are used to solve the uncertainty problem of

wind power. Each wind farm is equipped with ESS. ESS does not

participate in bidding in the RT market directly, and the charge/

discharge power are obtained by solving the RT model.

4.2 Effects of incentive-based demand
response relevant constraints and
different incentive-based demand
response scales

The IBDR model in this study not only includes its bidding

and market clearing but also contains relevant constraints:

maximum/minimum duration time, shifting/curtailment gap

time, and shifting/curtailment frequency. The IBDR model

does not contain these constraints in many reports in the

literature. The effects of IBDR relevant constraints are

analyzed in this section, and the results are shown in Table 3.

Without relevant constraints, the maximum duration time and

shifting/curtailment frequency are 28 and 3, respectively, which

are not adjustable. With relevant constraints, the maximum

duration time and shifting/curtailment frequency are 16 and

2, respectively, which are adjustable. There is a limit on load

shifting or load curtailment; too long duration time and too high

frequency for IBDR will have a great impact on the production

and life of IBDR providers. Therefore, relevant constraints are

considered for the IBDR model in this study.

To obtain the best scales of DR, we analyzed the effects of

different DR scales. The results are shown in Table 4. The

proportion of DR in the total system load increased from 1 to

TABLE 5 Effects of different wind power integrations.

Wind
power integration (%)

System cost/$ Wind curtailment/MWh Wind curtailment/total wind
power

Ramping need/(MW)

10 2348066 0 0 2159

20 2213025 0 0 2149

30 1981130 0 0 2068

40 1811097 0 0 2609

50 1724225 3 0.02% 2836

60 1626211 89 0.43% 2806

70 1247173 333 1.4% 2849

In general, the quantities of wind curtailment are acceptable.

FIGURE 13
Market clearing price, total load shifting, and load curtailment.
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10%. When the DR scale increases, system cost, wind power

curtailment, and the system total ramping need (including ramp

up/down) of the unit show a decreasing trend. However, the

marginal benefit brought by the DR per scale is constantly

decreasing. When the proportion of DR increases to 7%, the

system cost and wind power curtailment no longer decrease

significantly. Therefore, in the following studies, the DR scale is

set at 7%.

4.3 Effects of energy storage system
energy capacity and power rating

The effects of ESS energy capacity and power rating are

investigated. Figure 11 and Figure 12 respectively show the

system cost and wind power curtailment under different energy

capacities and power ratings. When energy capacity and power

rating are improved, the total system cost and wind power

curtailment can be reduced effectively. This is because the ESS

with a large capacity and large charge, discharge power rating can

storemore excess wind power, making full use of wind energy, and

reducing the generation cost of units. It is worth noting that due to

the investment cost and operation maintenance cost of the ESS,

when the energy capacity and power rating are too large, the total

system cost will increase.When the energy capacity/power rating is

50MWh/25MW, the cost of the system is higher than when it is

30MWh/15 MW.

The system cost and wind curtailment at the lowest power

rating and maximum capacity (50 MWh/5 MW) are larger than

the highest power rating and minimum capacity (10 MWh/

25 MW), respectively. Although these two conditions are not

the most conducive to wind power consumption, the

combination of high capacity and low power rating negatively

affects wind consumption more. Therefore, if the budget of the

ESS is limited during the system planning, a relatively high power

rating should be given priority. The same conclusion can also be

drawn from the variation trend in Figure 11 and Figure 12. As the

power rating increases from small to large, the reduction trend of

the system cost and wind power curtailment becomes more

intense than the capacity increases.

4.4 Effects of wind power scale

The effects of the wind power scale were analyzed, and the

proportion of wind power in the total load changed from 10 to

70%. The results are shown in Table 5. With the increasing

proportion of wind power, the system cost is constantly

decreasing, and the ramp need of unit is increasing. When the

proportion of wind power is 70%, the wind curtailment is

323 MWh, which is 1.4% of total wind power, indicating that

it is difficult for the system to utilize such a high proportion of

wind power completely. However, the proportion of wind

curtailment is acceptable.

Figure 13 shows the DA and RTmarket clearing price and the

variation of the total load shifting and load curtailment within a

day.With the increasing wind power, the averageDA and RT price

reduces. The DA price reduces from $60 to $30, and the RT price

reduces from $50 to $20. RT price is lower than DA price because

when wind curtailment appears in some periods, there will be

some negative electricity, and it is more likely to appear in the RT

TABLE 6 Different cases of market participants.

Case Market participants in
DA market

Market participants in
RT market

Case 1 CUs and RAUs RAUs

Case 2 PBDR + Case1 Case1

Case 3 LS + Case1 Case1

Case 4 PBDR, LS + Case1 Case1

Case 5 Case4 ESS +Case1

Case 6 Case4 LC + Case1

Case 7 (this study) Case4 LC, ESS + Case1

FIGURE 14
Comparison of PBDR and LS.
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market. Therefore, the RT price will be lower. The total load

curtailment decreases (from 900 to 300 MWh) with the increasing

wind power output because when the proportion of wind power is

small, the power generation of CUs and RAUs is large, the market

clearing price will be high, and LC will curtail more load. With the

increasing wind power, the power generation of CUs and RAUs

gradually reduces, the system clearing price decreases, and LC will

curtail less load. Compared with the load curtailment, the overall

trend of the load shifting does not change much with the increase

of the wind power output.

4.5 Effects of different market participants

The effects of different market participants are analyzed. The

market participants in various cases are shown in Table 6.

Figure 14 shows the comparison of PBDR and LS in cases

1–4, and Table 7 shows the related results in each case. According

to cases 1–4 in Figure 14 and Table 7, both PBDR and LS can

reduce the load in peak periods (29–48 and 61–84) and increase

the load in valley periods (1–24 and 85–96). It can help to reduce

the peak–valley difference of the system, the ramping need of

units, and the system cost. Considering LS alone is more effective

than considering PBDR alone; the combination of PBDR and LS

works best.

Figure 15 shows the comparison of wind curtailment and

load shedding in each case. There are large wind curtailments

in cases 1–4; this means that cases 1–4 cannot utilize wind

power efficiently. Cases 1–4 show load shedding which is

unacceptable. Case 5 curtails little wind power and shows

load shedding. Case 6 shows wind curtailment but does not

cause load shedding. Case 7 does not curtail wind power and

does not show load shedding. According to the previous

analysis, ESS can effectively avoid wind curtailment, but

each ESS has a charge power and discharge power limit.

When the RT wind power is much smaller than the DA

wind power, a serious shortage of the system supply will

appear. The system supply shortage will not be solved just

by relying on the RAUs and ESS, which will cause load

shedding. LC provides additional regulation capacity to the

system, which makes the system appear less or no load

shedding and enhances the reliability of the system’s power

supply to consumers. The combination of ESS and LC

works best.

Case 7, the method adopted in this study, is better than cases

1–6 in terms of system cost, wind curtailment, load shedding, and

ramping need.

5 Conclusion

Large-scale wind power integration has brought great

challenges to the balance of supply and demand in the

power system. DR and ESS play crucial roles in the

consumption of large-scale wind power. This study designs

a DA and RT two-stage electricity market trading method

including various market participants: wind power, ESS, and

FIGURE 15
Wind curtailment and load shedding.

TABLE 7 Comparison of different cases.

Case System cost/($) Wind curtailment/(MWh) Load shedding/(MWh) Ramping need/(MW/t)

1 1874529 351 82 3776

2 1788314 347 56 3692

3 1763447 297 21 3184

4 1749945 295 20 3180

5 1745608 7 17 3092

6 1732646 242 0 2873

7 1724225 3 0 2836

Case 7 is better than cases 1–6.
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multiple types of DR. An innovative DR model is established

considering PBDR and IBDR. The IBDR model not only

includes its bidding and market clearing but also contains

relevant constraints: maximum/minimum duration time,

shifting/curtailment gap time, and shifting/curtailment

frequency. Some examples are studied in the IEEE-30 bus

system. The roles and economic effects of various market

participants in the consumption of large-scale wind power are

analyzed. The conclusions are as follows:

1) It makes more sense to take relevant constraints of IBDR into

account than not. The optimal proportion of DR in this study

is about 7%.

2) Increasing the energy capacity and power rating of ESS can

effectively reduce the total system cost and system wind

curtailment, and the power rating increase should be given priority.

3) It can achieve the best effect when PBDR and LS are

considered in the DA market, while ESS and LC

participate in the RT market. Minimum system cost, wind

curtailment, and load shedding can be attained.

For future research, the uncertainty of DR can be considered,

and relevant stochastic optimization techniques will be studied.
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Nomenclature

Indices and sets

t, t’ (T) index (set) of time periods, each period represents

15 mins

n, j, k (N) index (set) of buses

ls (NLS), lc (NLC) index (set) of LS, LC aggregators

m(M) index (set) of bidding segments

i (NG), if (NGf) index (set) of CUs, RAUs

w(NW) index (set) of wind farms

l(NL) index (set) of system branches

ib (NB) index (set) of ESS

Parameters

Dn,t(D0
n,t) load power demand before (after) PBDR

ρ0t (ρt) electricity price before (after) PBDR

Et,t9 elasticity coefficient

qLSls,0(q
LC
lc,0) initial minimum load shifting (curtailment) quantity

qi,0 initial minimum power generation

qLSmax
ls,m,t (qLCmax

lc,m,t ) the segmental maximum load shifting

(curtailment) quantity

qi,m max the segmental maximum power generation

cLSls,0,t(c
LS
ls,m,t) the offering price of initial shifting quantity

(segmental shifting quantity)

cLClc,0,t(c
LC
lc,m,t) the offering price of initial curtailment quantity

(segmental curtailment quantity)

ci,0(ci,m,t) the offering price of initial power generation (segmental

power generation)

TLS
ls (T

LR
ls ) the periods allowing to shift (recovery)

TLC
lc the periods allowing to curtail

LSTls
max(LSTls

min) the maximum (minimum) duration

shifting time

LCTlc
max(LCTlc

min) the maximum (minimum) duration

curtailment time

LSgapls(LCgaplc) minimum time interval of LS(LC)

RUi(RDi) ramp-up (ramp-down) rate of CUs i

SURi(SDRi) startup (shutdown) ramp rate of CUs i

Ui(Di) periods during which CUs i must be on/off at the

beginning of the scheduling cycle

Toni(Toffi) the periods of the minimum on/off time of CUs i.

MLS
ls (M

LC
lc ) the maximum transfer times of DR aggregator ls (lc).

λls the recovery coefficient

PLRmax
ls (PLRmin

ls ) the upper and lower limits of recovery power

PDAmax
w,t (PRTmax

w,t ) maximum wind power which is predicted in

day ahead (read time) M1,M2,M3 penalty coefficients

Pdismax
ib,t (Pchmax

ib,t ) maximum discharge (charge) power

ELib,t max maximum stored power energy of ESS

ηch(ηdis) charge and discharge efficiency coefficients

λib ESS degradation coefficients

Variables

PLS
ls,t(P

LR
ls,t) total load shifting (recovery) quantity

PLC
lc,t total load curtailment quantity

Pi,t(PDA
if,t) power generation of CUs (RAUs)

PRT
if,t power generation of RAUs in RT market

PSP N-dimensional column vector of injected power of bus n.

uLSls,t(u
LR
ls,t) binary status indicator for load shifting (recovery) of

DR aggregator ls

uLClc,t binary status indicator for load curtailment of DR

aggregator lc

ui,t binary status indicator of CUs i in time t

udisib,t(u
ch
ib,t) binary status indicators ESS discharge (charge)

yi,t(zi,t) startup (shutdown) binary status indicator of CUs i in

time t

qLSls,m,t(q
LC
lc,m,t) the segmental load shifting (curtailment) quantity

qi,t,m the segmental power generation of CUs i in time t

CLS
ls,t(C

LC
lc,t) the total cost of LS (LC)

ςLSls,t(ς
LC
lc,t) the auxiliary variable used to record the shifting

(curtailment) times

Ci,t(CDA
if,t) the generation cost of CUs (RAUs) in DA market

CRT
if,t the generation cost of RAUs if in RT market

SUi,t(SDi,t) start-up (shutdown) cost of CUs

SUif,t(SDif,t) start-up (shutdown) cost of RAUs

PDA
w,t (P

RT
w,t) DA (RT) wind power consumption

QwindDA
w,t (Qwind

RT
w,t)wind power curtailment in DA (RT) market

QloadRTn,t load shedding in RT market

SLDA+
l,t ,SLDA−

l,t (SLRT+l,t , SLRT−l,t ) slack variables for power flow of line

l in DA (RT) market

Pdis
ib,t(P

ch
ib,t) discharge (charge) power of ESS

ELib,t stored power energy of ESS in time t
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