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The detection of series arc faults using fault current is difficult to overcome the

influence of load types, making it difficult to establish a unified fault detection

criterion. In contrast, since the arc voltage waveform of fault point is less affected

by the load types and is basically a square wave shape, which provide conditions for

constructing aunified fault criterion. In termsof the fault information, the fault distortion

point of voltage on load-side caused by the arc voltage transition edge provides the

position information of the arc voltage transition edge, and its polarity, amplitude and

rateofchangemake itpossible todistinguish fromthe transitionedgecausedbynormal

harmonic voltage drop,which provide the theoretical basis for fault detection using the

voltage on load-side. Based on the basic analysis of arc voltagewaveform features, this

paper proposes an arc fault detection method based on load-side voltage sensitive

feature tracking for the purpose of identifying the existence of arc voltage transition

edges. Themethod proposed in this paper highlights the transition edge by eliminating

the fundamental wave component of the voltage on load-side, the phase areas where

the fault distortionpointsmayexist areused as the sensitive area for fault detection, and

the identification and tracking of the transition edge is achieved based on the same

direction of voltage change, finally, the presence of arc fault voltage is characterized

through the polarity, amplitude and rate of transition edge by fusion. The detection

method proposed in this paper has a clear physical meaning and has the advantage of

being less affected by the load types. Compared with other similar methods, the

method proposed in this paper has higher detection sensitivity and stronger ability to

distinguish fromvoltagedropdistortion.Theexperimental results showthat theaverage

detection accuracy of the proposed method for faults detection under various loads

exceeds 96%, which verifies the effectiveness of the method.
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Introduction

Arc faults caused by loose terminals, insulation damage and conductor damage in

low-voltage distribution lines are important causes of electrical fires, which account for

more than 45% of electrical fires in residential buildings (Liu et al., 2017a; Novak et al.,

2018). Nonetheless, the detection of series arc fault remains a difficult problem in the field
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of arc fault detection due to the features that the fault current is

similar to the load current, and the waveform features are

difficult to distinguish from the load current of the nonlinear

loads (USFA, 2018; Liu et al., 2017b).

The detection methods for series arc faults based on

electrical monitoring quantities are mainly divided into two

categories: (1)detection methods based on fault current

features, whose selections of fault features mainly focuses

on the harmonics content of fault current (Baptiste

Humbert et al., 2021; Jiang et al., 2022), high frequency

components (Wang et al., 2017a; Bao et al., 2019),

singularity of the zero-break (Lu et al., 2017; Pan et al.,

2017) and the randomness of fault current (Zhang et al.,

2016a; Wang et al., 2017b), etc. However, the feature of

harmonics content is difficult to distinguish from the

nonlinear loads, the feature of high-frequency components

has the problem in the threshold selection, the zero-break

feature is easily weakened by the influence of the inductive

component in the loads. Although the randomness feature can

overcome the influence of the diversity of the load current

waveform itself, its detection sensitivity and uncontrollable

features make it limited in application. In recent years, many

scholars have carried out many researches for the purpose of

multi-feature fusion (Wang et al., 2018; Gong et al., 2022),

related methods mainly focus on neural network methods

(Siegel et al., 2018; Wang et al., 2019), support vector machine

methods (Jiang et al., 2019; Lin et al., 2020) and fuzzy

recognition methods (Calderon-Mendoza et al., 2019).

However, the generalization ability of such methods to

different types of loads is still worthy of study,

furthermore, the redundancy between features and the

selection of optimal features are also worthy of study (Duc

Vu et al., 2019). 2) Detection methods based on fault voltage

features (Xiren et al., 2014): extracts arc fault features by using

wavelet decomposition on load-side voltage (Zhang et al.,

2016b) uses empirical mode decomposition to extract load-

side fault features of voltage. Both of the two methods

essentially use the fault distortion of load-side voltage

caused by the arc-starting of arc voltage, since the features

of arc voltage off-phase angle could be easily affected by load

types and line parameters, it is difficult to set the detection

threshold in practical application (Hongxin et al., 2019). uses

wavelet packet to decompose the load-side voltage, and the

prediction residual of the ELM(Extreme Learning Machine) is

used to extract the fault features of arc voltage for detection,

the actual detection performance of this method depends on

the number of types of training loads (Shekhar et al., 2018).

used the voltage drop information on the load-side for series

arc fault detection in DC systems.

Compared with the current features, the arc voltage at the

fault point is less affected by the load types. Therefore, it is easier

to establish a unified fault detection criterion by identifying the

existence of the fault arc voltage. The arc voltage at the fault point

is equivalent to a fault voltage source when arc fault occurs, since

the load impedance is much larger than the line impedance of the

loop, the fault information of arc voltage basically acts on the

load-side voltage which is the downstream of the fault point. The

distributed and communication conditions of the Internet of

Things technology have created conditions for low-voltage power

distribution terminals and electrical equipment to be equipped

with complex fault detection functions (Huang et al., 2021),

which provides the application basis for the use of low-voltage

power distribution terminals, smart sockets and even smart

appliances to implement fault detection for its upstream lines.

Therefore, the arc fault detection method based on the load-side

has important theoretical significance and engineering

application value.

In this paper, a mathematical description of the arc voltage is

established, and the fault detection method based on sensitive

feature tracking is proposed based on the analysis of the fault

characterization of the arc voltage at the fault point on the load-

side voltage. The method aims to identify the existence of the arc

voltage transition edge in the sensitive phase region, and

integrates the phase, polarity, amplitude and rate of change

information of the arc voltage transition edge to characterize

its existence and provide the basis for fault detection.

Analysis of arc voltage and fault
features

Mathematical description of arc voltage

The arc process consists of arc-starting, arc-burning and arc-

extinguishing, in which the voltages of arc-starting and arc-

extinguishing stages are mainly determined by features of

circuit and the arc-burning stage is determined by the volt-

ampere features of arc itself. Since the equivalent impedance of

load is much smaller than that of arc-starting and arc-

extinguishing, the waveform features in the two stages are

mainly determined by the power supply voltage in the low-

voltage systems. The millimeter-level arc gap can extinguish the

arc when arcing, so the voltage drop of arc column can be

ignored, and the arc voltage is approximately equal to the

sum of the near-anode and near-cathode voltage drops at the

fault point (Slade, 2014):

Uarc ≈ Uc + Ua (1)
where Uc and Ua represent the near-cathode and near-anode

voltage drops respectively. For the air medium, the copper

material is 8~9V and the carbon material is 9–11V.

Assuming the power supply voltage is expressed as

us(t) �
�
2

√
Um sin(ωt), which ignores the line voltage

drop. The voltage of arc-starting, arc-burning and arc-

extinguishing stages in half-wave are expressed as follows:

For resistive loads shown in Figure 1A:
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uarc(t) �
⎧⎪⎨⎪⎩

us(t) φ1 <φ<φ2

Uarc φ2 <φ<φ3

us(t) φ3 <φ< π
(2)

where uarc(t) represents arc voltage, Uarc represents the voltage

of arc-burning, φ represents the phase of supply voltage, φ1 ~ φ2,

φ2 ~ φ3, φ3 ~ π reflect the power supply voltage phases

corresponding to the arc-starting, arc-burning and arc-

extinguishing voltages, respectively. For resistive loads,

φ1 � 0°, φ2 depends on the occurrence time of arcing peak,

and φ3 depends on the occurrence time of arc-

extinguishing peak.

For inductive loads shown in Figure 1B:

uarc(t) �
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

α · us(t) φ1 <φ<φ2

Uarc φ2 <φ<φ3

u′
s(t − π/2)/ω φ3 <φ<φ1 + π

(3)

where α represents the rate of change of the arc-starting

voltage relative to the supply voltage. For inductive loads,

the phase difference between the current and the power supply

voltage makes the speed of arc-starting much higher than that

of resistive loads, thus, its value is greater than 1. The arc-

extinguishing voltage is equivalent to the self-induced

electromotive force of the load inductance, so the arc

voltage also drops at a higher speed than the resistive loads

during the arc-extinguishing stage.

Analysis of arc voltage waveform features

Figure 2 shows the arc voltage at the fault point and fault

current waveforms of resistive, resistive-inductive and

nonlinear loads. The current waveforms of different types

of loads differ greatly, most of which show the features of

zero-break distortion and harmonics on the basis of the load

current waveform itself. However, due to the influence of the

diversity features of the nonlinear load current waveforms,

the detection methods using current fault features are difficult

to implement.

As shown in Figure 2, the high rate of change of the arc

voltage in the arc-extinguishing to arc-starting stage and the

approximate DC features in the arc-burning stage make it appear

as an approximate square wave shape. For Figure 2E, since the

computer is a switching power supply load, the long “zero-off”

time of the load current makes the current in this process too

small to maintain a stable arc-burning, which makes the arc

voltage produce high-frequency oscillation feature at this stage.

However, its low-frequency profile is still approximately a

square wave.

The arc voltage can be described by the DC voltage in the arc-

burning stage and the rising (falling) edge in the arc-

extinguishing to arc-starting stage in terms of local features.

According to formula (1), the amplitude of arc-burning is

generally around 20V; the amplitude of rising (falling) edge is

determined by the difference between the arc-burning and arc-

extinguishing peak voltages of the positive and negative half-

waves, and the peak voltage mainly depends on the breakdown

time of gap in arc-starting (arc-extinguishing) stage and the types

of loads. The higher the power supply voltage at the end of arc-

starting (arc-extinguishing), the greater the peak voltage of arc-

starting (arc-extinguishing), and the greater the amplitude of the

arc voltage transition edge. In actual system, although the peak

voltages of arc-starting and arc-extinguishing have randomness

to a certain extent, from an overall point of view, the larger peak

voltages of arc-starting and arc-extinguishing are still as the

typical features (shown in Appendix A). The rate of the rising

(falling) transition edge of the arc voltage usually has a high rate

of change, and the load with inductive components is higher than

that of the resistive load. In addition, the rate of change of arc

voltage is significantly higher than that of load current near the

same phase region.

Analysis of voltage fault features on load-
side

As shown in Figure 3, it is equivalent to a fault voltage source

uarc(t) connected in series at the fault point in the circuit when a

series arc fault occurs in the line, whose amplitude is generally

less than 20 V. For monitoring points upstream of the fault, since

the upstream line impedance is generally not more than 5%

compared with the total impedance of the system loop, the

magnitude of the fault component does not exceed 1V, which

is much smaller than the load component, so the fault cannot be

effectively detected by using the upstream monitoring point. For

monitoring points downstream of the fault, since the equivalent

impedance of the load generally accounts for more than 95% of

the total impedance of the loop, the fault component basically

acts on the monitoring point on the load-side.

FIGURE 1
Diagram of phase relation between arc voltage and supply
voltage. (A) Resistive loads (B) Inductive loads.
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Considering the arc voltage uarc(t) as a square wave, its

Fourier series expansion is expressed as follows:

uarc(t) � 4A
π

∑
n

1
n
sin(nωt + nψ) n � 1, 3, 5,/ (4)

where A represents the voltage of arc-burning, ψ represents the

initial phase angle of the arc square wave which is also the initial

phase angle of the fundamental wave, ω represents the

fundamental frequency.

According to the equivalent circuit in Figure 3, the load-side

voltage uo(t) is expressed as:

uo(t) � us(t) − [i(t)R + L
di(t)
dt

] − uarc(t)

� us(t) − uz(t) − uarc(t)
� �

2
√

Us sin(ωt + φ) − ∑
n�1,2,3/

�
2

√
Uz

n sin(nωt + θzn)
−4A
π

∑
n�1,3,5/

1
n
sin(nωt + nψ)

(5)

FIGURE 2
Waveforms of arc voltage and current of different types of loads (A) Electric heater (B) Electromagnetic oven (C) Microwave oven (D) Vacuum
cleaner (E) Computer.
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where uz(t) represents the line voltage drop; L � L1 + L2,

R � R1 + R2; Us and φ represent the RMS value of the power

supply voltage and the initial phase angle, respectively; Uz
n and θ

z
n

represent the RMS value and initial phase angle of each harmonic

of the line voltage drop, respectively.

For the global harmonic features, the arc square wave voltage

will additionally introduce the fault fundamental wave and odd

harmonics to the load-side voltage when an arc fault occurs.

According to Eq. 5, for the fundamental wave, the phase of the

fault fundamental wave and the inherent fundamental wave of

the load-side voltage are basically opposite, and the fault will

cause the fundamental wave amplitude of the load-side voltage to

decrease. For the harmonics, the inherent harmonics of the load-

side voltage are generated by the harmonics of line voltage drop,

although the waveform of line voltage drop is diverse due to the

influence of the load current, since its waveform will not be in the

shape of a reverse square wave, the inherent harmonic phase of

the load-side voltage does not coincide with the fundamental

phase. Besides, since the phase of the fault harmonic is opposite

to the fundamental wave of the load-side voltage and the

amplitude of the fault harmonic is generally higher than the

inherent harmonic amplitude, the harmonic content post-fault is

generally higher than the pre-fault. Since the inherent harmonic

content of the load-side voltage is different due to the influence of

the load types and line parameters (Brown, 2009), it is difficult to

set the fault detection threshold only by using the voltage

distortion rate. It is necessary to use the local features of the

fault components to improve the detection sensitivity.

Since the amplitude of arc-burning is less than 20V, and the peak

value of load-side voltage generally exceeds 300V, the DC voltage of

arc-burning accounts for only about 5% of the total voltage on the

load-side; besides, due to the influence of the inherent harmonics of

the load-side voltage, the detection sensitivity based on arc-burning

feature is very low, which limits the application. For the features of

the rising (falling) edge, the position of the distortion generated by

which on the load-side is determined by the power factor of the

faulty branch, and its polarity, high amplitude and high rate of

change make it distinguishable from normal line harmonic voltage

drop, thus, the high detection sensitivity is achieved using this

feature. In order to highlight the features of the arc voltage

transition edge, an arc fault detection method is proposed by

fusing and identifying the phase, polarity, amplitude and the rate

of change information.

Fault detection method based on
sensitive feature tracking

Principle of fault detection

The transition edge of the arc voltage is generated by the arc-

extinguishing to arc-starting process which happens near the

zero-crossing point of the load current. The transition edge of arc

voltage has a different phase deviation ϕ from the power supply

voltage, which is determined by the power factor of the faulty

branch. Since the power supply radius of the low-voltage

distribution line is very short, the phase of the power supply

voltage and the voltage on the load-side is basically the same

(Arrillage and Watson, 2000), the phase deviation is also

expressed as the phase deviation between the fault distortion

generated by the arc voltage transition edge and the load-side

voltage. Restricted by the power factor of the faulty branch, the

deviation between the fault distortion point and the load-side

voltage is also limited, thus, the phase area where the fault

distortion point may exist is used as the sensitive area for

fault identification. For the load-side voltage, since the arc

voltage amplitude is small, the initial phase angle of the

fundamental wave before and after the fault varies very little,

the initial phase angle of the fundamental wave of the load-side

voltage can be used as a reference to locate the fault sensitive area.

The rising (falling) edge of the arc voltage can be described

using the polarity, magnitude, and rate of change. For the polarity

feature, the rising edge corresponds to the distortion point near

FIGURE 3
Equivalent circuit diagram of series arc fault.

FIGURE 4
Waveforms composed of different harmonic components.
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phase 0 of load-side voltage, and the falling edge corresponds to

the distortion point near phase π. For the amplitude feature,

according to Equation 4, the arc voltage consists of the

fundamental wave and odd harmonics with the same initial

phase angle (after normalization), among which the transition

edge is mainly the result of the action of the odd harmonics, and

the contribution of the fundamental wave is mainly reflected in

its DC level rather than the transition edge features. As shown in

Figure 4, taking the square wave formed by the superposition of

1–25 odd harmonics as an example, the amplitude of the

transition edge formed by the 3rd to 25th harmonics reaches

the arc voltage variation 2Uarc of the positive and negative half-

waves even if the fundamental wave component is ignored,

therefore, the influence of the fundamental wave can be

completely ignored in terms of identifying the amplitude of

the transition edge. Besides, the amplitude features of the

transition edge cannot be accurately represented by using only

high-order harmonics (taking the 15th to 31st harmonics as an

example) as shown in Figure 4. Therefore, the amplitude of the

transition edge needs to be characterized by low-order harmonics

other than the fundamental wave. For the feature of the rate of

change, the transition edges formed by the 1st to 25th, 3rd to 25th

and 15th to 31st harmonics basically have the same slope,

reflecting the same rate of voltage change. It can be concluded

that in order to effectively describe the amplitude and rate

features of the transition edge, the fundamental component

can be ignored, but the low-order harmonic component

cannot be ignored.

Compared with the load-side voltage, since the amplitude of

the arc voltage transition edge is relatively small, the sensitivity of

direct detection is low. The fundamental wave component needs

to be eliminated to improve the detection sensitivity. According

to formula (5), uo(t) can be expressed as follows:

uo(t) � [ �
2

√
Us sin(ωt + φ) − �

2
√

Uz
1 sin(ωt + θz1)

−4A
π

sin(ωt + ψ) ⎤⎦ − ⎡⎣ ∑
n�2,3...

�
2

√
Uz

n sin(nωt + θzn)
+4A
π

∑
n�3,5/

1
n
sin(nωt + nψ) ⎤⎦

� u′
o(t) − [uz

o″(t) + uarc
o ″(t)]

(6)

where u′o(t) represents the fundamental component of uo(t);
uzo″(t) represents the harmonic component of the line voltage

drop; uarco ″(t) represents the harmonic component of arc voltage.

Eliminating the fundamental component in Eq. 6:

u″
o(t) � u′

o(t) − uo(t) � uz
o″(t) + uarc

o ″(t) (7)

According to the above analysis, even if the fundamental

wave component is eliminated, the high amplitude (greater than

2Uarc) and high rate of change features of the arc voltage

transition edge can still be effectively retained. uzo″(t)

characterizes the harmonic component of the line voltage

drop, the line voltage drop waveform is determined by the

load current waveform, although the load current waveform is

diverse, it does not have the waveform features of high amplitude

and high rate of change similar to the rising (falling) edge of the

square wave at 0 and π phase, and the line voltage drop will not

have the same polarity, high amplitude and high rate of change

features at the same time near 0 and π phase which is similar to

the rising (falling) edge of the arc voltage. For the harmonic

components obtained through eliminating the fundamental

component, the low-frequency harmonic voltage drop does

not have the features of high rate of change, and the high-

frequency harmonic voltage drop does not have the features of

high amplitude. Thus, uzo″(t) does not have both high amplitude

and high rate of change features near 0 and π phase, which

provides the theoretical basis for the distinction between

transition edge of arc voltage and harmonic voltage drop.

Fault identification method based on
sensitive feature tracking

In order to identify the existence of the arc voltage rising

(falling) edge in the voltage sensitive phase region of the load-

side, a fault identification method based on the sensitive feature

tracking in the sensitive region is proposed in this paper.

As shown in Figure 5, the voltage distortion coefficient

exceeding the limit is used as the detection activation

condition to reduce the complexity of monitoring equipment.

FIGURE 5
Flow chart of detection method.
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The voltage waveform distortion coefficient ρ is defined as

follows:

ρ �
�������
U2

N − U2
1

√
U1

(8)

where UN represents the true RMS value of the current cycle of

the load-side voltage; U1 represents the RMS value of the

fundamental wave component.

Considering that the series arc fault has the features of

continuous occurrence, the waveform is recorded in units of

1s after the detection algorithm is started.

Considering the influence of the phase accumulation error

from data acquisition device and the fluctuation of power grid

frequency, the voltage sensitive area on the load-side should be

located in units of cycles. For each cycle uio(n) obtained by

sampling, since its initial phase angle is arbitrary theoretically,

the initial phase angle of uio(n) can be obtained by FFT

calculation, and the fault sensitive area can be located.

The sensitive phase filter windows maski(n) for each cycle

uio(n) are generated as follows:

maski(n) � maskstd n − [θ′(i)o

2π
N]( )( )

N

RN n)( (9)

where θ′(i)o represents the initial phase angle of the fundamental

wave of the cycle uio(n); N represents the number of sampling

points per cycle; maskstd(n) represents the phase-normalized

sensitive area data screening window, maskstd((n))N represents

the periodic extension sequence of maskstd(n) with N as the

period; [] represents the rounding operation on the result of the

operation; RN(n) represents a rectangular pulse sequence of

length N; maskstd(n) is constructed as follows:

maskstd(n) �
⎧⎪⎨⎪⎩ 1 n /

N 2π ∈ PSarea

0 other
(10)

where PSarea represents the set phase range of the sensitive area.

In order to highlight the fault features, using formula (7) to

eliminate the fundamental wave component u′(i)o (n) of uio(n) to
obtain the differential waveform u″(i)o (n) in cycles, and the

construction method of u′(i)o (n) is as follows:

u′(i)o n � U′(i)
1 sin(100π n/Fs + θ′(i)o n � 1/N))( (11)

where U′(i)
1 and θ′(i)o are the fundamental wave amplitude and

initial phase angle obtained by performing FFT transformation

on uio(n), respectively.
Concatenating each u′(i)o (n) to form u′o(n), and using

formula (7) to eliminate the fundamental component of uo(n)
as a whole to obtain u″o(n). Taking the same direction of voltage

change as the tracking basis, based on the initial and end value of

each voltage varies in the same direction, tracking and calculating

the amplitude of u″o(n) transition edge in the full phase domain,

thereby generating the amplitude sequence u″(edge)o (n) of voltage
transition edge, the calculation method of voltage transition edge

amplitude is as follows:

Uedge(α) � u″
o(nα +Wα) − u″

o(nα) α � 1, 2,/m (12)

where α represents the transition edge sequence number in

u″o(n); nα represents the starting sampling point number of

the α − th transition edge; Wα represents the number of

sampling points of the α − th transition edge; m represents the

number of transition edge in u″o(n).
Constructing the rate sequence u″(edge)o (n) of the voltage

transition edge to characterize the rate of change, the rate of the

voltage transition edge is calculated as follows:

Uedge(α) � Uedge(α)
Wα

α � 1, 2,/m (13)

Constructing cascading windows mask(n) with maski(n) to
perform sensitive area feature extraction from u″(edge)o (n) and

u″(edge)o (n), taking the maximum amplitude of the transition edge

of the corresponding polarity in each sensitive area as the

selection basis, the two-dimensional eigenvector of the

sensitive area is constructed by using the amplitude and the

corresponding rate of voltage change:

Fi � [U edge(i)
max , Uedge(i)

rate ] (14)

where U edge(i)
max represents the maximum amplitude of the

transition edge whose polarity is the same as the theoretical

polarity in the ith sensitive area, Uedge(i)
rate represents the rate of

voltage change.

Selecting the rising or falling edge as the identification target

with a whole cycle as the identification unit, and the criterion is

constructed as follows:

ui
o(n) � {faulty U edge(i)

max ≥Aarc and Uedge(i)
rate ≥ δ

non − faulty other
(15)

whereAarc is the set threshold that characterizes the amplitude of

transition edge from the positive or negative half-wave, δ is the

set threshold that characterizes the rate of change of the

transition edge.

Experimental verification

Test principle and verification

As shown in Figure 6, using the arc fault generator to create

arc faults on the line in real environment to test the method. The

point-contact arc fault generator is made according to

UL1699 standard, a copper electrode with a diameter of

10.0 mm is used as the moving contact, and a graphite

electrode with a diameter of 8.0 mm is used as the reference

static contact. The arc is generated by controlling the electrode
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gap, which is used to simulate the series fault arc caused by loose

wiring terminals and accidental wire breakage. The load-side

voltages are acquired by high-voltage differential probes

(DP6150, 5 MHz bandwidth) and oscilloscopes (Tektronix

MD03024). The method in this paper is tested using the loads

in Table 1.

Figure 7 shows the comparison of the voltage distortion

coefficients on the load-side before and after the fault of different

loads. The voltage distortion pre-fault is caused by the harmonic

voltage drop of the branch where the load is located and the main

circuit to the transformer. Affected by the difference in the

harmonic content of the load current and load power, the

distortion coefficients of different loads pre-fault are quite

different. Under the same line parameters, the higher the

harmonic content of the load current and the greater the load

power, the greater the normal distortion coefficient. According to

the load current waveforms shown in Figure 2 and the loads

power shown in Table 1, the microwave oven has the highest

distortion coefficient due to its high harmonic content and high

power; the induction cooker and computer also have high

distortion coefficient because of the high power and current

harmonic content, respectively. Overall, the distortion

coefficients pre-fault with different loads are concentrated

between 2% and 4%. The distortion coefficients of each load

post-fault are increased compared to that of pre-fault, and

different loads show different degrees of increase. Considering

the diversity of load types and the difference in the increase of the

distortion coefficients before and after fault, it is difficult to use

only the distortion coefficient as the detection criterion for arc

faults detection. Considering the sensitivity of the algorithm and

the start frequency, 3.5% should be used as the start threshold of

the algorithm.

Considering the load power factor cos ϕ within 0.8–1, the

−π/5 ~ π/5 and 4π/5 ~ 6π/5 phase intervals are used as the

detection sensitive area of fault features. Filtering out the high

frequency components above 2.5 kHz of the load-side voltage to

test the method.

As shown in Figure 8, the load-side voltages post-fault has

obvious fault distortion points compared to the original

waveforms, however, the distortion position and distortion

degree of the distortion point are different affected by the

types of loads. Specifically, the fault distortion points of

electric heaters show zero-break features, the fault distortion

features of electromagnetic ovens are relatively smooth, and the

distortion features of microwave ovens and vacuum cleaners are

relatively obvious, the load-side voltage of computers has

multiple distortion points due to the influence of high-

frequency noise of arc voltage. After eliminating the

fundamental wave component, the original rising (falling)

edges of the arc voltages are well highlighted, and the

FIGURE 6
System test schematic diagram.

TABLE 1 Main parameters of loads for test.

Load Power factor Power Type

Electric heater 1 800 W linear (resistive)

Electromagnetic oven 0.95 1,800 W linear (resistive-inductive)

Microwave oven 0.86 1,300 W nonlinear (magnetron)

Vacuum cleaner 0.92 1,500 W nonlinear (series motor)

Computer 0.88 200 W nonlinear (switching power supply)

FIGURE 7
Comparison of voltage distortion coefficients of pre-fault
and post-fault.
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FIGURE 8
The identification results of the method (A) Electric heater (B) Electromagnetic oven (C) Microwave oven (D) Vacuum cleaner (E) Computer.
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amplitude, rate of change and position features are effectively

preserved. For the amplitude of the transition edge, although the

harmonic voltage drops of transition edge reach a certain

amplitude, the overall amplitude is smaller than that of the

arc voltage due to the limited harmonic content. For the rate

of voltage change, since the waveform of harmonic voltage drop

does not have the high change rate feature as the arc voltage, its

rate of voltage change is generally smaller than that of the arc

voltage. Moreover, the features difference before and after the

fault is much more obvious only from the amplitude and rate of

change in the sensitive area of each waveform.

As shown in Figure 9, the feature recognition results of

different loads in Figure 8 are compared simultaneously.

Before the fault, the value and fluctuation of the amplitude

and rate of change in the sensitive area are small; after the

fault, the amplitude and rate of change of the sensitive area are

significantly higher than those before the fault both in value and

fluctuation. Although this feature is affected by the load types and

the randomness of the arc voltage, overall, the fault features

before and after the fault are significantly different. In addition, as

shown in Figure 8, since the waveforms of point-contact arc fault

voltage mostly has the gradual feature from small to large (shown

in Appendix A), the difference between a small amount of fault

data in the initial stage of the fault and the non-fault data may be

small. However, due to the short duration of this process, it has

no effect on the final test results.

Figure 10 shows the two-dimensional features of different

loads before and after the fault on a long-term scale (50 sets of

fault and non-fault waveforms respectively). The non-fault

feature points are basically distributed in the area near (0,0)

point; for the fault feature points, the absolute value of the

amplitude of the sensitive area is greater than 40 V and the

absolute value of the rate of change of the sensitive area is greater

than 4V, which have obvious distance difference from non-fault

feature points. Setting the detection threshold according to the

principle of avoiding misjudgment, even if few fault cycles in the

initial stage of the fault may be missed, since both UL1699 and

IEC standards use the detection of 14 or more half-wave faults

within 1s as the basis for fault confirmation, it has no effect on the

final detection result. Affected by the difference in arc fault

voltage waveforms, the fault feature points of different loads

show different distribution features, electric heaters and

electromagnetic oven have the features of relatively small

absolute values and relatively concentrated distribution

influenced by its low arc-starting (arc-extinguishing) peak

value and slow rate of the arc voltage transition edge; the rate

of change of the arc voltage of the microwave oven is higher than

the former, thus, the overall rate of change of the feature points is

greater than the former; vacuum cleaner and computer have the

features of relatively big absolute value and relatively scattered

distribution influenced by its high arc-starting (arc-

extinguishing) peak value. The detection threshold Aarc

should not be less than 2 times the sum of the near-cathode

and near-anode voltage drops of the arc electrode, which is set to

FIGURE 9
Comparison of features before and after fault of different
loads (A) Comparison of magnitude in sensitive area (B)
Comparison of rate of change in sensitive area.

FIGURE 10
Distribution diagram of two-dimensional features.
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FIGURE 11
Comparison of identification effects of related methods (A) Electromagnetic oven (B) Vacuum cleaner.
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40 V in this paper; since the arc duration from arc-extinguishing

to arc-starting is generally less than 1 ms, δ is set to 4 V (for

10 kHz sampling rate).

Comparison of methods

For the purpose of identifying the transition edge of arc

voltage, the fault detection can be carried out by identifying the

feature of the distortion point of the voltage on the load-side,

which is generally realized by use of the differential method and

the wavelet analysis method.

For the fault distortion point, the differential value at the

distortion point often fluctuates violently, so the difference

method can be used to detect its singularity, one or more

order differences can be performed to highlight fault features

in practical applications. The 1-order andm-order differences are

as follows:

Δu(1)
o (i) � uo(i + 1) − uo(i) i � 1, 2/N − 1 (16)

Δu(m)
o (i) � Δu(m−1)

o (i + 1) − Δu(m−1)
o (i) i � 1, 2/N −m (17)

The wavelet analysis method utilizes the feature of high

frequency information of fault distortion points, characterizing

the existence of the fault by analyzing the maximum value of the

wavelet coefficient modulus of the feature frequency band in

which the fault is located.

The test data in this paper is 200 sampling points per cycle,

whose highest detection sensitivity of fault is under the 2-order

difference. For the wavelet analysis method, since the transition

edge of the arc voltage is approximately a pulse signal, the

orthogonal quadratic spline wavelet function with

biorthogonal and compactly supported features should be

selected as the mother function of wavelet decomposition. The

bior2.6 wavelet is selected in this paper, whose d2 wavelet

coefficient (1.25 k~2.5 kHz frequency band) has the highest

detection sensitivity (the comparison of different differential

orders and wavelet coefficients is shown in Appendix B).

As shown in Figure 11, taking the electromagnetic oven with

relatively smooth fault distortion features and the vacuum

cleaner with large singularity of distortion features as

examples. The magnitude of fault features and the ability to

distinguish from normal line voltage drop distortion of different

methods are compared. As shown in Table 2, for the difference

method and the wavelet method, the detection effect of the fault

point with large singularity is better, but the effect of smooth

singular point with small singularity is poor. In contrast, the

method in this paper identifies the inherent waveform features of

the fault point, thus, both the size of fault component itself and

the ability to distinguish from normal voltage drop distortion are

obviously better than the above methods. Setting the detection

threshold on the principle of avoiding misjudgment, the

detection accuracy of the above methods is compared (the

accuracy is calculated in half-wave units), the fault and non-

TABLE 2 Comparison of the effects of related methods.

Load Performance Difference method Wavelet method Proposed method

Electromagnetic oven Feature of fault weak weak strong

Discrimination from normal distortion low low highest

Vacuum cleaner Feature of fault strong strong strong

Discrimination from normal distortion higher higher highest

TABLE 3 Comparison of detection accuracy of related methods.

Load Difference
method (|Δu(2)o |max � 3)

Wavelet method (|d2|max � 5) Proposed
method (

Aarc � 40V
δ � 4V

)

Electric heater 95.6% 84.1% 98.5%

Electromagnetic oven 76.2% 81.5% 96.8%

Microwave oven 96.5% 95.2% 96.1%

Vacuum cleaner 96.8% 97.3% 98.2%

Computer 95.4% 97.5% 93.8%

Average 92.1% 91.1% 96.7%
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fault waveforms of each load are not less than 500, the average

detection accuracy of each method is shown in Table 3.

According to the results in Table 3, and observing the

load-side voltage waveforms of different loads in Figure 8, on

the whole, the difference method and the wavelet method

have poor detection effect on smooth distortion points, and

better effect on distortion points with larger singularity. In

contrast, the method proposed in this paper is not affected by

the above factors. Moreover, the detection methods based on

transform decomposition mostly have the problem of

selecting feature frequency band, while the method in this

paper is based on the direct identification of the existence of

arc voltage transition edge, thus have a clear threshold

selection basis and physical meaning, which shows the

effectiveness of the method.

Conclusion

The paper proposes a method to detect series arc faults by

identifying the existence of arc voltage transition edges

through the fault points on the load-side. The distortion

points caused by arc voltages can be distinguished from the

line voltage drop distortion through the phase, polarity,

amplitude and rate of change features comprehensively.

Since the arc voltage waveforms of fault points are less

affected by the load types, compared with the traditional

current detection methods, the method in this paper has

the advantage of being less affected by the load types, and

it is easy to construct a unified criterion.

The distortion points generated by transition edges of arc

voltages appear in a local area of the load-side voltage

centered on 0 and π phase, the amplitudes of arc voltage

transition edges of stable arcs are generally not less than 40V,

and the transition time of the voltage transition edges is

generally not more than 1 ms, which can be used to set

unified feature thresholds. The overall detection accuracy

of the method in this paper exceeds 96%, which proves the

effectiveness of the method.

The method can be used to monitor the faults of the public

distribution lines in the station area with smart circuit

breakers and smart meters relying on the LPWAN

technology. Moreover, with the development of home

Internet of Things technology, the method can also be used

for fault monitoring on indoor lines relying on household

appliances, smart sockets, smart circuit breakers, etc.
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APPENDIX A

FIGURE A1
Waveforms of fault arc voltage on long time scale (A) Electric heater (B) Electromagnetic oven (C) Microwave oven (D) Vacuum cleaner (E)
Computer.
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APPENDIX B

FIGURE B1
Comparison of different orders differences and wavelet coefficients (A) Electromagnetic oven (B) Vacuum cleaner.
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