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Wind power interval prediction
based on variational mode
decomposition and the fast gate
recurrent unit
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Large-scale wind power integration is difficult due to the uncertainty of

wind power, and therefore the use of conventional point prediction of

wind power cannot meet the needs of power grid planning. In contrast,

interval prediction is playing an increasingly important role as an effective

approach because the interval can describe the uncertainty of wind power.

In this study, a wind interval prediction model based on Variational Mode

Decomposition (VMD) and the Fast Gate Recurrent Unit (F-GRU) optimized

with an improved whale optimization algorithm (IWOA) is proposed. Firstly,

the wind power series was decomposed using VMD to obtain several Intrinsic

Mode Function (IMF) components. Secondly, an interval prediction model was

constructed based on the lower upper bound estimation. Finally, according

to the fitness function, the F-GRU parameters were optimized by IWOA,

and thefinal prediction interval was obtained. Actual examples show that the

method can be employed to improve the interval coverage and reduce the

interval bandwidth and thus has strong practical significance.

KEYWORDS

variationalmodedecomposition, gate recurrent unit,windpower, interval prediction, fast learning

network

1 Introduction

Due to the development of the global economy, energy and environmental issues
are increasing. The development and utilization of renewable energy has become a
research hotspot worldwide. Wind energy has received increased attention because wind
power has many benefits such as cleanliness, renewability, and accessibility. Wind power
generation has rapidly increased worldwide and the effect of wind power on the stability
and economy of the power system is increasing.

The randomness, fluctuation, and uncertainty of wind power have a significant effect
on the security, stability, and economy of the power system due to the expansion of the
scale of wind power integration. Wind energy prediction is the key to solve this problem.
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Historical data and current wind power information are used to
predict changes in the wind power generation to improve the
safety, reliability, and controllability of the system.

Wind power generation is greatly influenced by wind energy.
Wind energy is random and volatile in nature, and this non-
stability of wind energy brings great uncertainty to wind power
systems. Wind power data cannot be effectively processed with
traditional signal processingmethods, resulting in unsatisfactory
wind power data predictions. Therefore, identifying an accurate,
reasonable, and effective wind power data prediction method
is of great significance Peng et al. (2021); Wang et al. (2022);
Zhang S. H. et al. (2022).

1.1 Literature review

Many achievements have been made with respect to
wind power prediction, but commonly point prediction is
utilized. Point prediction can be used to predict the expected
wind power value but does not properly address uncertainty
problems, fluctuations, and the fluctuation risk and occasionally
does not meet the dispatching requirements Sideratos and
Hatziargyriou (2007); Foley et al. (2012); Zhang et al. (2019);
Pan et al. (2021); Duan et al. (2022).

Therefore, hybrid wind power prediction methods,
such as interval prediction, have been implemented. The
coverage probability (to be maximized) and narrower
interval bandwidth (to be minimized) are two key indexes
that can be used to identify the capability of interval
prediction. A higher coverage probability may lead to a
wider prediction interval, whereas a wider prediction interval
generally results in better coverage. Interval prediction is
a type of uncertainty prediction. Methods such as the
Bayesian Khosravi et al. (2011a); Yang et al. (2017, 2020b),
quantile regression Ul Haque et al. (2014); Yang et al. (2020a),
kernel density method Bessa et al. (2012), and Bootstrap
Wan et al. (2014); Ji et al. (2015); Afshari-lgder et al. (2018)
are used to construct wind power intervals. However, the
high computational cost and imprecise PI of the Bayesian are
disadvantageous. The quantile regression and kernel density
methods depend on the results of point prediction. The
performance of the Bootstrap method is excellent and it can
be easily implemented, but its main disadvantage is the large
computational cost. In addition, an interval construction
method, that is, the lower upper bound estimation (LUBE)
Khosravi et al. (2011b), was proposed in which a dual-output
neural network is employed to directly construct the prediction
interval.

The back propagation (BP) neural network has been applied
in many scenarios because of its nonlinear fitting ability.
However, many parameters of the BP neural network must
be optimized. When the training data are insufficient, the

model is prone to over fitting, resulting in a low generalization
performance. Therefore, Huang proposed the Extreme Learning
Machine (ELM) in 2004 Huang and Siew (2004). Compared
with the BP network, fewer parameters must be optimized.
Many scholars verified that it exhibits a good performance
in many fields. In another study, the ELM was used as the
prediction model and PSO was utilized to optimize the initial
threshold and weight of the ELM An et al. (2021). Subsequently,
the Ada-Boost algorithm was employed to fuse a series of
weak predictors with a strong predictor to obtain the prediction
result. Later, the ELM was introduced as basic prediction
model and optimized with an intelligent optimization algorithm
Wang et al. (2019); Li et al. (2021). The ELM only trains the
parameters of the hidden and output layers. Although fewer
parameters lead to a shorter training time, too few parameters
make it difficult to obtain a smaller interval bandwidth in the
field of interval prediction, which affects the prediction quality.
The Fast Learning Network (FLN) proposed by Li in 2014 is
similar to the ELM Li et al. (2016). It connects the input and
output layers so that further relevant information can be learned
from the input variables, its performance have been verified in
the fields of carbon emission and silicon content prediction Ren
and Long (2021); Zhao et al. (2020). The study of wind power
prediction is essentially a time series forecasting problem. In
recent years, a version of Recurrent Neural Network (RNN),
Fast Gate Recurrent Unit (F-GRU), has developed rapidly,
and it has good performance in processing time series data
Chen et al. (2021); Liu et al. (2021). In this study, a prediction
model F-GRU was constructed by combining the advantages of
GRU and FLN based on LUBE.

With respect to the optimization method of the network
parameters, a meta-heuristic intelligent optimization algorithm,
Whale Optimization Algorithm (WOA), was proposed by
Mirjalili and other scholars in 2016 Mirjalili and Lewis (2016).
The algorithm uses the encircling strategy based on the behavior
of humpback whales. Prey, random search, and spiral surround
are three options that can be used to update the position of
each humpback whale surrounding the prey. However, theWOA
has slow convergence and easily falls into the local optimum.
Many scholars have optimized this method, for example, by
increasing the inertial weight and improving the convergence
rate Lee and Zhuo (2021); Saafan and El-Gendy (2021);
Qiu et al. (2021). Considering these shortcomings, the improved
whale optimization algorithm (IWOA) was used in this study to
optimize theGRUparameters to obtain a prediction interval with
high accuracy and smaller bandwidth Zhang D. W. et al. (2022).

Because of the complexity and factors affecting wind
power data, it is very difficult to effectively predict them with
general data models. Based on data preprocessing, the wind
power series is initially decomposed into stationary subseries
to effectively capture the performance. Subsequently, each
decomposed subseries is assigned a respective prediction.
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The wavelet transform (WT), empirical mode decomposition
(EMD), and ensemble empirical mode decomposition (EEMD)
are commonly used for the decomposition of time series
data Naik et al. (2018); Devi et al. (2020); Bazionis et al. (2021);
Dong et al. (2021); Meng et al. (2021); Xie et al. (2021).
Variational Mode Decomposition (VMD) is a time–frequency
data decomposition method, which is used to decompose a
multi-component signal into multiple single-component AM
and FM signals; subsequently, the original signal is decomposed
into several IMF components by solving the constrained
variational problem Dragomiretskiy and Zosso (2014). Based
on this method, “false component” and “end effect” problems
that may be encountered in the iterative process of the operation
can be effectively avoided. The VMD has strong nonlinear and
non-stationary signal processing capabilities. In addition, it
can minimize the effects of the large fluctuation and strong
nonlinearity of wind power data on the prediction results.
Previously, original data were decomposed using VMD; the
modal components were combined into high, medium, and
low frequency; andthe improved grey wolf optimization was
used to optimize the ELM parameters to predict the wind
power Ding et al. (2020). In addition, a hybrid model based on a
combination of a gated recurrent unit and VMD was proposed,
which yielded good results Wang et al., 2020.

Based on the combination of the fast learning and
generalization abilities of the FLN and the processing time
serial data ability of the GRU, a new networks F-GRU is
proposed in this study. In the data processing part, we use
VMD to decompose, so as to enhance the extraction of useful
information. Since the fitness function is non convex, IWOA
algorithm is used to optimize the network parameters. Finally, we
propose VMD-IWOA-F-GRU wind power interval prediction
model. To verify the effectiveness of the proposed model,
a wind farm in Wenchang, Hainan, China, was used as an
example to build a model for experiments using MATLAB
2019b, and the results verify the capability of the proposed
model.

Compared with previous wind power interval forecasting
studies, this study contributes to the current understanding as
follows:

1) In view of the non-stationary and nonlinear characteristics
of the original wind power data, VMD was used as a
preprocessing method to decompose the original data and
obtain multiple single-component signals. This procedure
reduces the fitting difficulties and fully utilizes the inherent
data information.

2) The F-GRU were used to construct the wind power interval
prediction model based on the LUBE. The results of the case
analysis show that the F-GRU has a better generalization
ability than the traditional BP, ELM and FLN networks.

3) Considering shortcomings of the WOA, the nonlinear
convergence method was modified. The adaptive inertial

weight and chaotic search were added to improve the
optimization ability of the algorithm.

4) Based on the use of actual power data obtained at a wind
farm, the decomposition method, optimization algorithm,
and network model were compared to verify the effectiveness
of the new interval prediction model proposed in this study.

1.2 Paper organization

The mathematical VMD model and IWOA are described
in Section 2. The F-GRU prediction model based on LUBE is
constructed in Section 3 and the new objective function is used
as a fitness function to optimize the network parameters. The
excellent performance of the prediction model proposed in this
paper is verified in Section 4 based on the use of four seasons
of real wind farm data. The conclusions are summarized in
Section 5.

2 Methodology

2.1 Variational mode decomposition

The VMD of nonlinear and nonstationary signals based
on the data itself is adaptive. The VMD generalize the classic
Wiener filter into multiple and adaptive bands, which can realize
signal adaptive decomposition by finding the optimal solution
of the constraint variational model. VMD is a novel signal
decompositionmethod that is theoretically well founded and can
deal with nonlinear and non-stationary signals.

We apply VMD to wind power data which can be expressed
as follow:

S = {u1 (ω1) ,u2 (ω2) ,…,uk (ωk)} , k = 1,2,…,n (1)

where uk and ωk are shorthand notations for the set of all
modes and their center frequencies, respectively. To assess the
bandwidth of a mode, we propose the following VMD scheme:
1) for each mode, compute the associated analytic signal by
means of the Hilbert transform in order to obtain a unilateral
frequency spectrum; 2) for eachmode, shift themode’s frequency
spectrum to ‘baseband’, by mixing with an exponential tuned
to the respective estimated center frequency; 3) the bandwidth
is now estimated through the H1 Gaussian smoothness of the
demodulated signal, (i.e. the squared L2-norm of the gradient).
The resulting constrained variational problem is as follows:

min
{uk},{ωk}
{∑

k
‖αt[(δ (t) +

j
πt
)∗ uk (t)]e

−jωkt‖
2

2
}

s.t.∑uk = f
(2)

To render the problem unconstrained, a quadratic penalty
term and Lagrangian multipliers are employed and a new
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solution expression can be obtained as follows:

L({uk} , {ωk} ,λ) = α∑
k
‖αt[(δ (t) +

j
πt
)∗ uk (t)]e−jωkt‖

2

2

+‖ f (t) −∑
k
uk (t)‖

2

2

+⟨λ (t) , f (t) −∑
k
uk (t)⟩

(3)

where α is the data-fidelity constraint parameter and λ is the
Lagrangian multiplier.

The alternate direction method of multipliers (ADMM)
approach is used to produce different decomposed modes and
the center frequency during each shifting operation. Then, the
modes uk and their corresponding center frequency ωk can be
updated as

un+1k ← argmin
uk

L(un+1i<k ,u
n+1
i≥k ,ω

n
i ,λ

n) (4)

and

ωn+1
k ← argmin

ωk

L(un+1i ,u
n+1
i<k ,ω

n
i≥k,λ

n) (5)

Each mode obtained from solutions in the spectral domain can
be represented as

ûk (ω) =
̂f (ω) −∑

i≠k
ûi (ω) + (λ̂ (ω)/2)

1+ 2α(ω−ωk)
2 (6)

2.2 Improved whale optimization
algorithm

Thewhale optimization algorithm (WOA) is a global random
searching method based on swarm intelligence, which was
inspired by the specific hunting behavior of the humpback
whales. The mathematical modeling of the behavior of whale
optimization algorithm consists of three phases: random search,
encircling prey and bubble-net attacking. As a swarm intelligence
algorithm, WOA has the disadvantages of slow convergence
speed and easy to fall into local optimization, which seriously
affects the speed and accuracy of data processing. In this
paper, the non-negative convergence factor and adaptive inertial
weight are introduced into the whale optimization algorithm to
overcome the convergence problem, which can converge quickly.
The adaptive chaotic search is introduced to improve the ability
to jump out of local optimum.

2.2.1 Non-linear convergence factor
To overcome the convergence problem and optimization

out of balance, we introduce the non-linear convergence factor
α, which determines the step length of the whale approaching

the optimal individual. The convergence factor α decreases
nonlinearly with the increase of the number of iterations. In the
initial stage, the attenuation degree of α is low, and the whale
can move in a larger stride to better find the global optimal
solution. In the later stage, the attenuation degree of α increases
and the moving stride of whales decreases, so the optimal
solution can be found more accurately. Thus, the development
ability of global search and the mining ability of local search are
more effectively balanced. The nonlinear convergence factor is
defined as:

α = αmax −
αmax

1+ exp(−
T1 (t−T2tmax)

tmax
)
+ αmin (7)

Where T1 and T2 are non-negative constant that used to control
the time of α decrease.

2.2.2 Adaptive inertial weight
As the most important parameter in particle swarm

optimization algorithm, inertial weight should be a large value at
the beginning of training to search the global optimization, and
it should be a small value to improve the optimization accuracy
when around the global optimum as the number of iterations
increase. However, the decreasing trend of inertial weight affects
the convergence results and diversity of the population.The slow
and rapid decreasing of inertial weight will lead to the population
difficult to converge and the decrease of population diversity,
respectively; In order to solve the above problems, we proposed
a new inertial weight that varies according to fitness of whale
individual. The adaptive inertial weight can be written as:

w = normrnd(1,σ2) (8)

σ2 = 1

1+ e
2−( fi−fmin

fmax−fmin
×4)

(9)

where normrnd (1,σ2) is a normal distribution with mean
0 and variance σ2; fi is the fintess of xi; fmax and fmin are
the maximum and minimum fitness in the contemporary
pupulation, respectively.

The inertial weight proposed is calculated according to the
current individual fitness. For individuals with poor fitness, there
is a certain probability that a large inertial weight will be used
for a large-scale search, while for individuals with better fitness,
a local search will be performed around the global optimum.
The position update formula of whale optimization algorithm
is based on the optimal whale individual in whale optimization
algorithm, so the inertial weight w is added to the optimal whale
individual.The position update formula after adding the adaptive
inertial weight is written as:

x (t+ 1) = wxbest −AD (10)

x (t+ 1) = D′ebl cos (2πl) +wxbest (t) (11)
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2.2.3 Adaptive chaos search strategy
Chaos search strategy has strong randomness, which can be

used to improve population diversity of the whale optimization
algorithm so that whales can reduce the probability of sinking
into local optimal solution caused by premature phenomena.

Tent map has the characteristic of traversing more uniformly
than logistic map. In this paper an adaptive chaos search strategy
is proposed to improve the search ability through uses tent map
and adaptive search probability. The specific implementation
method is as follows:

1) Chaos Search Strategy

The tent map function expression is:

xn+1 =
{{{
{{{
{

xn
μ
, xn ∈ [0,μ)

1− xn
1− μ
, xn ∈ [μ,1]

(12)

The random search mechanism is modified as follows:

xi (t+ 1) = xc (t) − FAD (13)

D = |Cxc (t) − xi (t)| (14)

where xc is a chaos individual; F is called search factor which is
used to increase the step length so that the individual whale can
get rid of the local optimum. Before the start of the iteration, xc
is randomly generated which searches in the solution space by
tent map. When the current whale individual executes adaptive
chaotic search strategy, it will close to xc rather than randomly
selected individual, thereby increasing the diversity of population
and effectively improving the optimization ability of algorithm.

2) Adaptively Adjust the Search Probability

In overcoming the premature phenomenon of the original
whale optimization algorithm,we use adaptive search probability
to improve the possibility of jumping out of the local optimum,
which can be calculated as:

Pc = (
fi − fmin

fmax − fmin
)
k

(15)

where k is called probability factor which is used to adjust
the threshold of search probability; fi is the fitness of xi; fmin
and fmax are the minimum fitness and maximum fitness in the
contemporary population, respectively. The value of Pc is related
to the fitness of whale individual, it means that the high-quality
whale individuals can search for better solution around current
optimal solution with greater probability, while poor individuals
are more likely to follow the chaotic individual xc.

3 Interval prediction model

3.1 Network model

The lower upper bound estimation method (LUBE) is a
nonparametric method that constructs the prediction interval
directly. FLN is a novel artificial neural network. Since the weight
from the input layer to the hidden layer is generated randomly
and will not change during the training, it has a fast learning
speed, and Figure 1A shows the model of FLN. GRU and
LSTM are the improved neural network of RNN, both of them
have better performance in processing time series related data.
Compared with LSTM, fewer parameters need to be updated
in GRU, and the GRU is shown in Figure 1B. Based on the
advantages of both networks, we constructed the F-GRUnetwork
based on LUBE in this paper. Figure 1C shows the mode of F-
GRU based on LUBE, and the mathematical modelling of the
F-GRU can be represented as follows:

zt = σ(Wz ⋅ [ht−1,xt] + bz)

rt = σ(Wr ⋅ [ht−1,xt] + br)
̃ht = tanH(Wh ⋅ [ht−1 ⊙ rt,xt] + bh)

ht = (1− zt) ⊙ ht−1 + zt ⋅ ̃ht

yU =
m

∑
j=1

wj1 ⋅ hjT +
T

∑
i=1

wi1 ⋅ xi + b1

yL =
m

∑
j=1

wj2 ⋅ hjT +
T

∑
i=1

wi2 ⋅ xi + b2

(16)

FIGURE 1
The model of F-GRU based on LUBE. (A) FLN. (B) GRU. (C) F-GRU.
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whereWz ,Wr ,Wh and bz , br , bh are the weight matrix and bias
parameters of the update gate layer, the reset gate and candidate
state, respectively; wjo and wio (o = 1,2) are the weight matrix
from hidden layer neurons and input layer neurons to output
layer neurons, respectively; bo (o = 1,2) are the bias parameters
of the output neurons, and it is worth noting that the parameters
(Wz ,Wr ,Wh, bz , br and bh) in GRU are generated randomly and
will not update during training, the only parameters to be trained
are wjo and wio (o = 1,2); σ and tanH represent the Sigmoid
activation function adn tanH activation function, respectively;
xi is the input vector; yU and yL are the upper and lower bounds
of model output respectively.

3.2 Objective function for prediction
interval

In the method of this paper, the quality of PI is evaluated by
different performance measures, such as PI coverage probability
(PICP), PI normalized root-mean-square width (PINRW),
coverage width criterion (CWC) and PI average deviation. To
evaluate the accuracy of the interval, the predict interval coverage
probability (PICP) is introduced, PICP is defined as follows:

PICP = 1
N

N

∑
i=1

ci (17)

ci = {
0, yi ∉ [yU,yL]
1, yi ∈ [yU,yL]

(18)

where N is the total number of prediction points; yi is actual
power value. When yi is in the interval [yU ,yL], the prediction
interval can cover the actual value.

PINRW is defined to indicate the PIs average bandwidth and
can be expressed as:

PINRW = 1
N
√ 1
R

N

∑
i=1
(yU − yL)

2 (19)

where R is the range of the actual value, which is used to
normalize the average bandwidth. Moreover, PINRW ∈ [0,1],
where a smaller PINRW indicates a higher quality, and a higher
PINRW indicates a lower quality.

In practice overall quality of PIs can be evaluated
using coverage width-based criterion (CWC) and can be
mathematically represented as:

CWC = PINRW[1+ γ (PICP)e−η(PICP−μ)] (20)

γ (PICP) = {
0, PICP ≥ μ
1, PICP < μ

(21)

where μ is the predetermined confidence degree; η is the penalty
coefficient when the PICP is less than μ.

CWC can transform complex multi-objective problems
into single-objective problems effectively. However, when the
upper and lower bounds coincide, the optimization result
is erroneous, and the degree of the deviation of the actual
value within the prediction interval is not considered. For this
problem, the prediction interval average deviation (PIAD) is
considered Khosravi et al. (2011b); Zhang et al. (2022a), and can
be represented as:

PIAD = 1
N

N

∑
i=1
|
yU − yL

2
− yi| (22)

F = γ (PICP)e−η1(PICP−μ) + PINRW+ η2PIAD (23)

where η1 is the penalty coefficient when PICP is less than μ; η2
is the penalty coefficient for the deviation of the actual value
from the center of the prediction interval. The penalty cost is
high when PICP<μ, which is discarded due to the larger penalty
coefficient η1 during the training process. Otherwise, the PINRW
andPIADare considered tomeet theminimum target.Moreover,
the known training information is fully utilized to acquire a
narrower interval.

3.3 VMD-IWOA-F-GRU interval
prediction framework

TheVMD-IWOA-F-GRUmodel framework proposed in this
paper is shown in Figure 2, and the whole process is described as
follows:

1) Data preprocessing and construct the dataset: The outage
points are removed, and than the remaining datas
are decomposed with VMD. Each layer input vector
x = [xIMFK1,xIMFK2,…,xIMFK5] is determined, where xIMFK1
is the wind power at the first point before the forecasting of
the point in IMFK, xIMFK2 is the wind power at the second
point before the forecasting of the point in IMFK, and so
forth.

2) Construct the interval prediction model: Determing the
number of neurons in the hidden layer, and the parameters
(Wz ,Wr ,Wh and bz , br , bh) are then randomly generated.

3) Optimize the prediction model: The training dataset is used
as input for the prediction model and the IWOA is used to
optimize the parameters of the model based on the fitness
function (Eq. 23).

4) Calculate the prediction interval: By repeating the
independent calculations, the model with the best evaluation
metrics is selected to compose the final prediction model and
tested on the test set.

5) Analysis: Evaluate and analyze according to the calculated
prediction interval.
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FIGURE 2
The structure of VMD-IWOA-F-GRU.

4 Example analysis

We compared the network models, optimization algorithms,
anddecompositionmethods. Codeswere developed inMATLAB
2019b and executed on an Intel core i5 CPU 6300H 2.3 GHz,
8 GB RAM processor. Seven prediction models WOA-BP,
WOA-ELM, WOA-F-GRU, IWOA-F-GRU, EMD-IWOA-F-
GRU, EEMD-IWOA-F-GRU and VMD-IWOA-F-GRU were
independently run ten times and the best parameters were
applied to the test dataset. The number of iterations is 300, the
size of population is 50, and the penalty coefficients η1 and η2 of
the objective function F are 100 and 0.2, respectively.

For models that do not use decomposition methods, such
as WOA-BP, WOA-ELM, WOA-F-GRU, and IWOA-F-GRU,
the ReLU function was used as the activation function. For
models including decompositionmethods, such as EMD-IWOA-
F-GRU, EEMD-IWOA-F-GRU, and VMD-IWOA-F-GRU, the
trend mode (the first IMF of VMD, the last IMF of EMD and
EEMD)uses theReLUactivation function and the rest of the IMF
use the tanH activation function in the output layer.

4.1 Data description

In this study, we used data measured at an existing wind
farm in Wenchang, Hainan, China to verify the effectiveness of
proposed interval prediction model. Each data point represents
the average wind power within 10 minutes. In this study, 5,000
data points obtained in each of the four seasons were selected;
90% of the data were used as the training dataset and 10% were
used as the test dataset. Figure 3 shows the time series of wind
power data for four seasons.

4.2 Data processing

Actual wind power time series have a certain random
volatility and must be de-noised. Actual power time series are
complex due to the complex wind turbine, which is affected
by many cross-impact loads. It is difficult to accurately analyze
the data characteristics based on the graph alone and thus
the time series must be decomposed. The VMD is suitable
for processing nonlinear and non-stationary signals. The VMD
generalizes the classic Wiener filter into multiple and adaptive
bands, which realize signal adaptive decomposition by finding
the optimal solution for the constraint variational model. To
verify the effect of VMD, wind power data recorded in winter
were used as an example. The results of VMD and those of
EMD and EEMD were compared. The results are shown in
Figures 4, 5.

Figure 4 shows that the mode mixing problem of EMD still
exists when it is applied to composite wind power data. Hardly
any completed sub-signal has been successfully decomposed. To
some extent, EEMD effectively suppresses the mode aliasing, but
it is difficult to assign each mode to its real physical meaning.
In contrast to EMD and EEMD, VMD can be used to adaptively
decompose wind power data into an ensemble of band-limited
intrinsic mode functions and is suitable for the decomposition
of nonlinear and non-stationary signals. The Gauss noise is
removed by applying a Wiener filter to each mode during the
decomposition progress.The result ofVMD is shown inFigure 5.
The IMF1 clearly reflects the time change of wind power data
and IMF2–IMF6 reflect the changes of the wind power data in
different central frequency ranges with time, which has physical
significance.The VMD is more suitable for the decomposition of
original wind power data than EMD and EEMD. In this study,
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FIGURE 3
Time series of wind power data for four seasons.

we used VMD to decompose wind power data for preprocessing
purposes.

The VMD is used to decompose the data, which helps
to highlight the local characteristics of the original data and
reduces the randomness and volatility of the data. The selection
of the data decomposition level K significantly affects the data
decomposition performance. If the K value is too low, the
decomposition is insufficient. In contrast, a K value that is too
high will lead to the over decomposition of the signal. In this
study, the K value was determined with the central frequency
analysis method. Any ten groups of data from each season were
decomposed and the mean value of the center frequency was
calculated, as shown in Tables 1–4.

The inflection point of the maximum central frequency is
reached in spring, autumn, and summer when K = 6. The
magnitude of the change of the maximum value of the central
frequency gradually decreases. In summer, the inflection point
occurs when K = 4, but the results of several experiments
showed that the prediction quality does not decrease when
K = 6. Therefore, to unify the model, a K value of six was
used in this study. The winter data were decomposed with

K = 6 and VMD. The moderate bandwidth constraint α was
2000 and the tolerance range of the convergence criterion
was 10–7.

4.3 Comparison of network models and
algorithms

To reveal the effectiveness of the F-GRU model for
PI construction, the BP, ELM and FLN networks were
compared with the F-GRU at the 90% confidence level, without
decomposition. In this paper, the sample set is constructed using
the values of the first five moments to predict the values of the
next moment, so the number of input neurons is five in the BP,
ELM and FLN networks. The number of neurons in the hidden
layer is 9, and the number of neurons in the output layer is 2.
Therefore, the number of parameters to be trained is 74, 20 and
30 in BP, ELM and FLN, respectively. For the F-GRU network,
the number of parameters to be trained is also 30 because the
parameters inside the GRU are randomly generated and not
updated.
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FIGURE 4
Results of the EMD and EEMD decompositions of winter data. (A) EMD decomposition results of winter. (B) EEMD decomposition results of
winter.

FIGURE 5
VMD decomposition results of winter.

The evaluation indicators are shown in Table 5. Based on
the comparison of WOA-BP, WOA-ELM, WOA-FLN, WOA-F-
GRU and IWOA-F-GRU, the PICP values of the all models are
higher than 90%. Not only that, the PICP value of the model

using F-GRU networks (WOA-F-GRU and IWOA-F-GRU) are
much higher than 90%, which shows that the F-GRU has better
generalization properties. From the PINRW value, when using
the WOA algorithm, F-GRU performs averagely in autumn
and winter, but outperforms the other three networks in both
spring and summer. In terms of PIAD value, also under the
premise of using the WOA algorithm, the performance of F-
GRU is comparable to that of FLN, but both are better than
BP and ELM. It can also be clearly seen from Table 5 that the
indicators of IWOA-F-GRU perform the best. This indicates
that the proposed IWOA appropriately optimizes the F-GRU
parameters according to the fitness function, thus reducing
the bandwidth of the prediction interval and lowering the
deviation of the actual value from the center of the prediction
interval.

4.4 Comparison of decomposition
methods

The proposed VMD-IWOA-F-GRU framework was
compared with the IWOA-F-GRU, EMD-IWOA-F-GRU, and
EEMD-IWOA-F-GRU at the 90% confidence level. Figure 6
shows the prediction results of the four models based on theF-

Frontiers in Energy Research 09 frontiersin.org

https://doi.org/10.3389/fenrg.2022.1022578
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles


Zhang et al. 10.3389/fenrg.2022.1022578

TABLE 1 Center frequencies corresponding to different K values in
spring.

K IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7

1 12
2 7 349
3 5 177 964
4 3 112 529 1,500
5 3 89 376 933 1,804
6 2 71 265 657 1,294 2,067
7 2 59 197 462 882 1,459 2,155

TABLE 2 Center frequencies corresponding to different K values
in summer.

K IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7

1 14
2 11 712
3 8 395 1,221
4 8 349 1,066 2,007
5 4 167 608 1,203 2,081
6 3 103 342 700 1,250 2,103
7 3 100 329 650 1,054 1,456 2,169

TABLE 3 Center frequencies corresponding to different K values
in autumn.

K IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7

1 5
2 4 491
3 3 325 1,124
4 3 222 756 1,746
5 2 104 425 957 1,869
6 2 89 374 802 1,422 2,123
7 1 66 254 517 919 1,523 2,167

TABLE 4 Center frequencies corresponding to different K values
in winter.

K IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7

1 7
2 5 502
3 4 255 1,191
4 3 119 586 1,478
5 2 100 482 1,146 1,987
6 2 70 284 682 1,306 2,079
7 1 59 207 509 930 1,448 2,150

GRU. The PICP, PINRW, and PIAD of the four models in the
four seasons are provided in Table 6.

Figure 6 shows that the proposed model has a larger PICP
value and smaller PINAW value, which proves the superiority
of the proposed model for the wind power prediction. Overall,
the PICP of prediction models applying the decomposition

TABLE 5 Evaluation index of four network models in test dataset.

Season Model PICP PINRW PIAD

spring WOA-BP 92.40 19.42 71.76
WOA-ELM 91.80 17.84 66.09
WOA-FLN 92.60 16.71 57.44
WOA-F-GRU 93.40 16.32 53.60
IWOA-F-GRU 93.60 15.35 54.65

summer WOA-BP 93.60 14.46 53.92
WOA-ELM 93.40 15.12 55.58
WOA-FLN 93.60 14.72 47.43
WOA-F-GRU 93.80 14.05 51.86
IWOA-F-GRU 93.60 13.83 47.11

autumn WOA-BP 90.00 19.68 81.13
WOA-ELM 90.40 20.82 88.25
WOA-FLN 90.20 20.73 79.57
WOA-F-GRU 90.00 19.94 79.35
IWOA-F-GRU 91.80 19.34 72.00

winter WOA-BP 90.40 15.08 56.62
WOA-ELM 91.00 14.24 53.96
WOA-FLN 92.80 14.32 48.93
WOA-F-GRU 94.00 14.36 48.79
IWOA-F-GRU 94.60 13.30 44.31

TABLE 6 Evaluation index of five prediction models in test dataset.

Season Model PICP PINRW PIAD

spring IWOA-F-GRU 93.60 15.35 54.65
EMD-IWOA-F-GRU 90.00 14.10 54.84
EEMD-IWOA-F-GRU 97.40 14.86 37.66
VMD-IWOA-F-GRU 98.80 12.80 25.63

summer IWOA-F-GRU 93.60 13.83 47.11
EMD-IWOA-F-GRU 94.40 12.60 47.87
EEMD-IWOA-F-GRU 96.80 11.85 41.85
VMD-IWOA-F-GRU 97.80 10.15 24.59

autumn IWOA-F-GRU 91.80 19.34 72.00
EMD-IWOA-F-GRU 93.60 17.14 57.26
EEMD-IWOA-F-GRU 91.40 14.33 45.06
VMD-IWOA-F-GRU 97.60 12.57 26.39

winter IWOA-GRU 94.60 13.30 44.31
EMD-IWOA-F-GRU 98.00 14.71 39.57
EEMD-IWOA-F-GRU 96.20 12.02 29.08
VMD-IWOA-F-GRU 98.60 10.61 19.28

method to the original data is significantly higher than the
preset confidence level. However, confounding occurs in the
EMD and EEMD during the decomposition of wind power data,
which increases the fitting difficulty. The number of EMD and
EEMD decomposition layers reaches 13, which increases the
computational cost. In contrast, the original wind power series
can be decomposed well with VMD. Based on the combination
of the strong generalization ability of the F-GRU and optimized
objective function, the actual power values are as close to the
center of the prediction interval as possible, yielding a high
prediction accuracy. In conclusion, the prediction index of the
VMD-IWOA-F-GRU is significantly better than that of the
other four prediction models in all four seasons. Based on the
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FIGURE 6
Prediction results of different models for four different seasons.

above-mentioned results, the VMD-IWOA-F-GRU prediction
model effectively predicts the wind power interval, with a higher
accuracy and smaller bandwidth.

5 Conclusion

Due to the rapid development of wind power, wind power
prediction has become the key to solve problems of wind power
systems. Interval prediction is amethod based onwhich thewind
power can be effectively and quantitatively predicted. In this

study, a wind power interval prediction model was established
in which VMD is utilized for the decomposition of the original
wind power sequence. In order to reduce the parameters to
be trained and improve the training speed, F-GRU network
model was proposed, and the F-GRU is employed to predict the
decomposed modes. Finally, IWOA is applied to optimize the
F-GRU parameters.

To verify the effectiveness of VMD-IWOA-F-GRU, the four
seasons wind power datasets extracted from a wind farm was
applied, and the following conclusions could be drawn according
to the experimental results:
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1) By comparing the F-GRU proposed in this paper and
the traditional models such as BP, ELM and FLN,
the F-GRU network model has better generalization
ability.

2) VMD was used to decompose the wind power data, and
the decomposed modes were trained independently using F-
GRU and IWOA. Experiments show that the hybrid model
VMD-IWOA-F-GRU proposed in this paper performs well
in wind power prediction.
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