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Market-driven deployment of inexpensive (but intermittent) renewable energy

sources, such as wind and solar, in the electric power grid necessitates grid-

stabilization through energy storage systems Redox flow batteries (RFBs), with

their rated power and energy decoupled (resulting in a sub-linear scaling of cost),

are an inexpensive solution for the efficient electrochemical storage of large

amounts of electrical energy. Titanium-based RFBs, first developed by NASA in

the 1970s, are an interesting albeit less examined chemistry and are the focus of

the present review. Ti, constituting 0.6% of the Earth’s crust and an ingredient in

inexpensive white paints, is amongst the few elements (V and Mn being some

others) which exhibit multiple soluble oxidation states in aqueous electrolytes.

Further, the very high (approaching 10 M) solubility of Ti in low pH solutions

suggests the possibility of developing exceptionally high energy density aqueous

Redox Flow Batteries systems. With these advantages in mind, we present the

state-of the-art in Ti-RFBs with a focus on Ti/Mn, Ti/Fe and Ti/Ce couples and

systems that use Ti as an additive (such as Ti/V/Mn). The inherent advantages of

inexpensive Ti actives and relatively high energy density is contrasted with

potential side-reactions resulting in reduced energy efficiency. Technological

pathways are presented with a view to overcoming critical bottlenecks and a

vision is presented for the future development of Ti-RFBs.
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1 Introduction

The rapid, market-driven deployment of economical but intermittent renewable

energy sources such as solar and wind necessitates the integration of reliable energy

storage solutions with the electric grid to ensure grid stability and reliability. Amongst

various energy storage technologies redox flow batteries (RFBs) are an economical

solution at scale due to their characteristic decoupling of energy and power that
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ensures sublinear scaling of cost (Chen et al., 2009; Zhao et al.,

2015). A plethora of possible RFBs have been investigated and

proposed in the literature, such as, Fe-X (X = Cr, Mn, Fe, Zn)

(Fedkiw and Watts, 1984; Skyllas-Kazacos et al., 2011; Gong

et al., 2016; Selverston et al., 2017; Archana et al., 2020; Zhen

et al., 2020), V-X (X = Mn, Ce, Br, V) (Chen et al., 2009; Prifti

et al., 2012; Cunha et al., 2015; Zhao et al., 2015;

Sankarasubramanian et al., 2019; Reynard et al., 2020; Raja

et al., 2021; Wang et al., 2021) and Zn-X (X = Ce, Br, Mn, V)

(Chen et al., 2009; Leung et al., 2011; Dewage et al., 2015; Zhao

et al., 2015; Jiang et al., 2018; Ulaganathan et al., 2019; Naresh

et al., 2021) RFBs. Critically, the translation of these RFBs to the

market hinges on numerous factors, namely - 1) cell potential, 2)

energy density (a function of salt solubility in the electrolyte), 3)

chemical and electrochemical stability of the cell components,

and finally (and possibly most importantly) 4) availability of the

redox active species at low marginal cost and at scale. The energy

storage cost of RFBs hinges on the cost of the electrolyte actives

and their degradation and loss during operation. The loss of

electrolyte due to crossover results in poor coulombic efficiency

at the system level and hinders economical operation. The

crossover of electrolyte species is largely determined by the

nature of the separator employed. Three classes of separators

are typically encountered in RFBs i.e., cation exchange

membrane (CEM), anion exchange membrane (AEM), and

porous membrane (PM) (Varcoe et al., 2014; Barry et al.,

2021). The two classes of ion exchange membranes operate on

the principle of charge-based repulsion and hence exclusion of

redox active species. Selectivity is conferred by the nature of

the charged species attached to the separator backbone and

density of these species. Porous separators, on the other hand,

rely on size-based exclusion of redox active species. Here,

ionic species and chemical species in solution (irrespective of

charge) are prevented from crossing over on the basis of their

size relative to the pores across the separator. CEMs (typically

Nafion®) are relatively expensive and exhibit high ionic

conductivity. Given that most RFBs utilize cationic redox

species, the use of CEMs in these systems results in cation

cross-over and hence a drastic reduction in capacity over time

(Gubler, 2019). This makes CEMs suitable only for systems

employing catholytes and anolytes consisting of different

oxidation states of the same chemical species (e.g., V2+/V3+

and V4+/V5+ in all-V RFBs). AEMs, on the other hand, mitigate

cation crossover but typically exhibit lower ionic conductivity

and chemical stability compared to CEMs (Barry et al., 2021).

PMs allow the cross-over of the ions that have smaller

diameter than the pore size of the separator irrespective of

the nature of the charge they carry and hence show poor ion

selectivity (Lu et al., 2017). All separators may require

mechanical rebalancing to adjust the osmotic pressure

(Bhattarai et al., 2019) and chemical rebalancing to

maintain electrolyte purity (Wu et al., 1983; Fedkiw and

Watts, 1984).

All-V RFBs are the farthest along the commercialization

route and have been reported to operate at typical power

densities of 100 mW cm−2 with cycle life of 10–15 years with

1000 cycle per year (Holland-Cunz et al., 2018). A recent study

has reported small, lab-scale (4cm2 electrode area, 20 ml

catholyte and anolyte) all-V RFB operating for ~20,000 cycles

at 600 mA cm−2 (>8 months) (Jiang et al., 2020). Despite

concerns stemming from component degradation while

operating at such current densities, the demonstration of

similar cycle life (even at lower current density) at a practical,

pilot scale would be a major advancement in commercializing all-

V RFBs. Although the V-X family of RFBs are quite successful in

terms of providing high power densities with stability, the

availability of V in the earth’s crust and its susceptibility to

degradation during cycling is a limiting factor for successful

industrialization. On the other hand, the Ti-X (X = Fe, Mn, Ce)

family of RFBs offer several advantages over the V-X systems as -

1) Ti is ca 50x as abundant as V in the Earth’s crust and is

produced at ca 100x the rate of V (Figures 1A,B).

2) The market price of Ti is 1/10th that of V in the US

(Figures 1A,B).

3) The half-cell potential of Ti4+/Ti3+ redox couple is 0.1 V (vs

SHE) as compared to -0.26 V (vs SHE) for V3+/V2+ which

makes Ti4+/Ti3+ redox couple less prone to hydrogen

evolution side reactions (Figure 1C).

4) The maximum possible storage capacity of Ti-Ce RFBs would

be 9.9 TWh as compared to 6.95 TWh for all-V RFBs

considering all exploitable worldwide reserves of V, Ti,

and Ce.

5) The Ti-X (X = Fe, Mn, Ce) RFBs also meets the DOE cost

target of <100 $/kWh (Dong et al., 2015; Kaku et al., 2016;

Funding opportunity announcement advanced research

projects agency, 2016; Kaku et al., 2019;

Sankarasubramanian et al., 2021).

Given these advantages, in this work we critically review the

developmental state of Ti-X RFBs and chart a course for their

future development.

2 The Ti-X (X = Fe, Mn, Ce) family of
RFBs

A schematic representation of Ti-X RFBs is shown in

Figure 1D. The anolyte is the Ti salt dissolved in an acid and

the catholytes are either Fe or Mn or Ce dissolved in their

appropriate acidic counterparts. As discussed in literature, the

oxidation states of Ti vary from +2 to +4 and the Ti ions exist

stable in the salts as Ti3+ (+3 oxidation state), and TiO2+

(+4 oxidation state) but not as Ti2+. Their stability is confined

to a very narrow region i.e., ~1 pH and lesser, as seen in the

Pourbaix diagram (Pourbaix, 1966). TiOSO4 (titanium
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oxysulfate) and TiCl3 (titanium chloride) with Ti in +4 and

+3 oxidation state are the most widely used salts for Ti-X RFBs

with supporting electrolytes including H2SO4, HCl, HNO3 and

H3PO4. Thus, the solvation and coordination of Ti species in the

strong acidic electrolytes influences the reversibility and stability

of the Ti4+/Ti3+redox couple and impacts the energy density of

the Ti-X RFBs. The following section summarizes Ti solution

chemistry in the context of RFBs.

2.1 Ti4+complexes in acids

Extensive literature report (Lingane and Kennedy, 1956;

Miyanaga et al., 1990; Kavan et al., 1993; Cservenyák et al.,

1996; Sole, 1999; Bahdad, 2020; Tsurumura et al., 2020; Choe

et al., 2021) the solvation behavior of Ti4+/Ti3+ redox couple with

different ligands in various acids solutions like H2SO4, HCl,

HNO3 and H3PO4. The redox stability of Ti
4+/Ti3+ is influenced

by the formation of different reaction/intermediate complexes

that appear in various acids as discussed below. Critically, we are

considering only strong mineral acids in our discussion given

that the Ti4+/Ti3+ redox couple is stable only in low pH (< ca

pH 1.5) conditions.

2.1.1 The H2SO4 system
In case of H2SO4 solution comprising dissolved TiOSO4 salt,

hereafter called the Ti-O-SO4 system, the half-cell reaction is

represented by the following equation,

Ti3+ +H2O#TiO2+ + 2H+ + e− (1)

FIGURE 1
(A)Cost permetric ton, worldwide production, and proven reserves of Ti, and V; (B) Abundance of Ti in the Earth crust (C)Half-cell potentials (vs
SHE); for some redox couple for possible use in RFBs; (D) Schematic diagram of Ti- X (X = Fe, Mn, Ce) RFBs.
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The Ti3+ and Ti4+ (i.e., as TiO2+) species of the redox couple

co-exist in the concentrated Ti-SO4 system. Ti4+ is the most stable

oxidation state of Ti. The high charge density (ratio of charge to

ionic radius) of Ti4+ prevents it from forming simply hydrated

[Ti(H2O)6]
4+ (Miyanaga et al., 1990). Ti4+ appears as

[Ti(OH)2(H2O)4]
2+ in 1 M H2SO4 aqueous solutions (Bahdad,

2020) and in solutions where 0.04 < pH < 1 (Beukenkamp and

Herrington, 1960; Kotsyubynsky et al., 2017), represented in

short as TiO2+. These TiO2+ complexes tend to form oligomers

(Figure 2A) when the oxo-oxygen of the titanyl ion is readily

protonatable through hydrolysis reactions (Shepherd, 2013). The

formation of oligomers is predominant when the concentration

of TiO2+ is between 0.1–0.5 M, the H+ concentration between

1.0–2.5 M, and the temperature between 236–323 K (Comba and

Merbach, 1987). In the presence of H+, SO4
2- and HSO4–ions

(H2SO4 dissociation products in an aqueous solution (Choe et al.,

2021)), Ti4+ forms complexes containing SO4
2- or HSO4

– ligands

exhibiting the possible structures shown in Figure 2B. The

competing coordination of Ti4+ to SO4
2- or HSO4

- depends on

the strength of SO4
2- concentration in the electrolyte [for e.g., 3 M

H2SO4 concentration results in the dominance of Ti4+ to SO4
2-

coordination (Bahdad, 2020)]. The coordination of HSO4
- with

Ti4+ proceeds through a deprotonation pathway wherein H+ is

accepted by a proton acceptor such as H2O to form H3O
+ or

Ti=O+ to form Ti-OH SO4
2- and a Ti4+-SO4

2- complex results. At

higher SO4
2- concentrations (and higher pH values), Ti4+ is

predicted to exist as either mononuclear complexes (chelating

complexes) or multinuclear complexes (bridging bidentate

complexes) (Kotsyubynsky et al., 2017). Mononuclear

complexes are formed by the coordination of Ti4+ ion with

SO4
2- leading to formation of [Ti(OH)2SO4(H2O)3]

0
,

[Ti(OH)2(SO4)2(H2O)2]
2− and [Ti=O(OH)2(H2O)3]

0. The

multinuclear complexes are formed either due to polymerized

Ti4+ complexes formed via oxygen atoms leading to -Ti-O-Ti-O-

zigzag structures (Tsurumura et al., 2018) or via formation of

[Ti2O2(H2O)5(OH)2SO4] (Choe et al., 2021). These Ti4+

complexes are either electrically neutral or anionic in the Ti-

O-SO4 system under high pH conditions. Ti4+ tends to form

multinuclear complexes (nanoscale aggregates) in solutions of

high SO4
2- and Ti4+ concentrations which eventually results in

the nucleation and precipitation to TiO2. Thus, high

pH conditions (typically with high SO4
2- concentrations and

low H+ concentration) are to be avoided when designing

electrolytes for Ti RFBs.

Upon electrochemical reduction of Ti4+ to Ti3+, there occurs

substantial change in the structures of Ti-ion complexes and

nanoscale Ti4+ aggregates are gradually disrupted to yield

mononuclear Ti3+ complexes (Tsurumura et al., 2020). The Ti3+

ion is stable at very low pH (< ca 1.5) as seen through Pourbaix

diagram. In dilute (higher pH) aqueous solutions, Ti3+ usually exists

in the form of [Ti(H2O)6]
3+. Literature also report using EXAFS

(Extended X-ray Absorption Fine Structure) analysis, that Ti-Ti

bond does not exist in Ti3+ solution, and the possibility for Ti-O

bond exists in Ti3+ solution (Miyanaga et al., 1990) with Ti3+ ions

existing in various other forms in aqueous solutions as Ti(OH)2+,

TiO+, Ti(OH)2
+, and other complexes (Sole, 1999). However, with

FIGURE 2
Schematic representation of various Ti4+ complexes under weakly and strongly acidic conditions.
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H2SO4 solution, Ti3+ react with SO4
2- ion to form Ti3+-SO4

2-

complexes (Cservenyák et al., 1996).

2.1.2 The HCl system
In case of HCl solutions containing TiCl3 salt, both the H+,

and Cl− ions play a significant role in the reversibility of Ti4+/Ti3+

redox couple. Ti3+ exist as a TiOH3+ complex in acidified

solutions (pH 2–2.5) and, due to hydrolysis of Ti3+, Ti(OH)2
2+

is formed with proton liberation as shown below (Kavan et al.,

1993; Lokhande et al., 2004),

TiOH3+ +H2O � Ti(OH)2+2 +H+ (Fast Reaction) (2)
Ti(OH)2+2 →Ti(IV)oxo species+ e− → TiO2(Undesired side reaction)

(3)

Unfortunately, Ti(OH)2
2+ leads to the formation of TiO2 by

precipitation as shown above, through an intermediate Ti(iv)oxo

species which limits the reversibility of the redox couple. The

Ti(iv)oxo species consist of partly dehydrated polymeric Ti(IV)

hydroxide (Kavan et al., 1993), which get converted to TiO2

(Lokhande et al., 2005). The Ti4+ ions in HCl exist in the form of

TiOCl+, an oxy-chloro ion which reduces to a Ti3+ chloro

complex, TiCl4
- as shown below,

TiOCl+ + e− + 2H+ + 3Cl− � TiCl4− + H2O (4)

The Ti3+/Ti4+ redox couple was found to be reversible only

in >1 M HCl solution. The irreversibility observed in <1 M HCl

solutions indicates the necessity of Cl− ion for the reversibility

of Ti4+ and Ti3+ as shown in Eq. 4 (Lingane and Kennedy, 1956).

In the presence of HCl and H2O, Ti4+ ions form unstable

[Ti(OH)2(H2O)4]Cl2 which eventually results in the

formation of TiO2. In the context of RFBs requiring high

reversibility of the Ti4+/Ti3+ redox couple, addition of

(unfortunately unstable) organic compounds with oxygen-

containing functional groups, such as acetylacetone, can

partially suppress the hydrolysis reaction owing to the

affinity between TiO2+ and oxygen-containing functional

groups (Wang et al., 1984). HCl concentrations up to 6 M

have been found to mitigate the precipitation of TiO2 (Qiao

et al., 2022). However, it enhances H+ concentration in the

electrolyte and accelerates another undesired side reaction,

namely the hydrogen evolution reaction (HER), thereby

decreasing the RFB efficiency. The choice of the catholyte to

be paired with the Ti anolyte can also preclude the use of HCl

supporting electrolytes due to the occurrence of the chlorine

evolution reaction (+1.36V vs. SHE).

2.1.3 The HNO3 system
In case of HNO3 solutions containing TiOSO4, the salt

dissolves as small clusters as observed through Small-angle

X-ray scattering (SAXS) experiments (Molina et al., 2017).

The analysis of TiOSO4 dissolved in 1 M HNO3 solution,

suggests that the clusters contain a dense 1.2 nm diameter

core (dominated by Ti–oxo) with a dynamic shell of water,

sulfate, and nitrate which also results in precipitation for any

dilution below 0.25 M TiOSO4 (Molina et al., 2017). No

complexation of Ti4+ was observed in dilute HNO3 solutions

(0.73–2.2 mM.L−1) with 0.05 mM.L−1 ortho-titanic acid (TiH4O4)

due to their weak tendency to form nitrato complexes with most

metal ions (Morris et al., 1978). This is markedly different from

the formation of divalent mononuclear species like [Ti(OH)2]
2+

in H2SO4 solutions (Mangold et al., 2021). But, however HNO3 is

not actively used as supporting electrolyte due to the reduction of

NO3− leading to degraded performance during cycling in RFBs

(Xie et al., 2011a).

2.1.4 The H3PO4 system
Studies with H3PO4 solutions containing Ti salts are very

scarce in the literature (Lingane and Kennedy, 1956; Oldenburg

et al., 2018; Mangold et al., 2021) as the solubility and stability

of Ti4+ ions in these systems is a practical limitation (Lingane

and Kennedy, 1956). The reversibility of Ti4+/Ti3+ redox couple

and their stability was studied under different concentrations

(1–10 M) of H3PO4 with 10 mM and lower concentrations of

Ti4+ [as the Ti(OH)4 salt]. It was found that a 10 mM solution of

Ti4+ ions in 1M H3PO4 was unstable and precipitated after 24 h

but stabilized in 4M H3PO4 without any phase separation. But

upon increasing the Ti4+ ion concentrations to >10 mM, the

electrolyte was again unstable in 4M H3PO4 leading to

precipitation. Interestingly, the reversibility of Ti4+/Ti3+

redox couple is more pronounced at 1M H3PO4 as

compared to 4M H3PO4 (Shepherd, 2013). In this electrolyte

system, Ti4+ is present as mononuclear (µ = 1) or polynuclear

(µ > 1) free cation(s), [(TiO)µ]
2µ+ in diluted H3PO4 solutions

(<0.1 mol.L−1). Ti4+ ions progressively form [(TiO)µ(H3-

mPO4)δ]
2µ−δm complexes as the concentration of H3PO4 is

increased to >1 mol.L−1 and [(TiO)µ(H3-mPO4)δ(H3-nPO4)β]
2µ−δm-βn complexes at >6 mol.L−1 H3PO4 (Mangold et al.,

2021). The poor solubility and reversibility of Ti solutions in

H3PO4 precludes their use in RFBs.

2.2 Performance of Ti RFBs
Given the discussion above, reports on the Ti-X family of

RFBs consist predominantly of systems using H2SO4 as the

supporting electrolyte due to the stability and reversibility of

the Ti4+/Ti3+ redox couple at relatively high Ti concentrations

(~0.5–1.5 M). This configuration also avoids any side reactions

(H2-, Cl2-, and NO2- evolution) thereby increasing the overall

energy efficiency of the RFBs.

Ti - Fe RFB: Fe based RFBs (coupled with Ti or Cr) have been

widely investigated by NASA in the early 1970s due to the low

cost and abundant supply of Fe. These RFBs can achieve a

theoretical energy density of nine Wh. L−1 (at 0.67V open

circuit potential (OCP)). Cr-Fe RFBs was initially assessed for

space applications and scale-up studies were conducted, but the

systemwas not commercially developed due to several drawbacks
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like, low energy density of the mixed electrolyte (containing both

Fe and Cr in the anolyte and catholyte), membrane fouling, the

slow Cr redox kinetics requiring expensive noble metal catalysts

and parasitic HER on the Cr side (Skyllas-Kazacos et al., 2011).

The Ti-Fe RFBs was studied by Thaller in aqueous HCl solution

(Thaller and inventor, 1976). In this system, during the charge

cycle, Ti4+ (i.e., TiO2+) reduced to Ti3+ on the negative side and

Fe2+ is oxidized to Fe3+ in positive side. The half-cell charge

reactions of the Ti-Fe RFB are,

Negative Electrode: TiO2+ + 2H+ + e−#Ti3+

+H2O(+0.1Vvs SHE) (5)

Positive Electrode: Fe2+ #Fe3+ + e−(−0.771Vvs SHE) (6)

Initially, TiCl3 and FeCl3 were the salts used at the anolyte

and catholyte respectively in the HCl supported electrolytes.

This system suffered from the formation of TiO2 particles as an

undesired side reaction, decreasing the overall coulombic

efficiency. The maximum current density of these initial Ti-

Fe RFBs with HCl supporting electrolyte was 8.16–14 mAcm−2

with a nominal cell voltage around 0.67V (Savinell et al., 1979).

Recent improvements in Ti-Fe RFBs have consisted of using

H2SO4 as supporting electrolyte instead of HCl and using

TiOSO4 and FeSO4 salts in the anolyte and catholyte

respectively. In the presence of H2SO4, the interaction

between H2O and Ti4+ ions are diminished, thereby

inhibiting the formation of Ti(OH)2
2+ and improving the

stability of the electrolyte. Such as second generation Ti-Fe

RFB with bismuth (Bi) catalyst at the positive electrode and a

carbon felt at the negative electrode exhibited a diffusion

coefficient of 19.18×10–8cm2 s−1 for Fe3+/Fe2+ and

0.36×10–8cm2 s−1 for Ti4+/Ti3+ (Qiao et al., 2022) with a rate

constant of 3.828×10–4cm s−1 for Fe3+/Fe2+ and 0.203×10–4cms−1

for Ti4+/Ti3+ respectively (Qiao et al., 2022). It suggests that

both the diffusion coefficient and rate constant for Fe3+/Fe2+ is

higher than Ti4+/Ti3+ with the reactions of Ti redox couple

being rate limited. The Ti-Fe RFBs in 3M H2SO4 were cycled at

current densities as high as 120 mAcm−2 with the highest energy

efficiency of 85.6% (at 40 mAcm−2). This system showed 80%

discharge capacity after 1000 cycles (30 min per cycle) with a

low-capacity decay of 0.193 Ah. cycle−1 (Qiao et al., 2022).

CEMs like Nafion® 212, sulfonated poly (ether ketone)

(SPEEK) have been used in Ti-Fe RFB. Non-fluorinated

SPEEK is predominantly used as it reduces the cost for

energy production from $165.79/kWh (Nafion® 212) to

$88.22/kWh (SPEEK) (Qiao et al., 2022).

Ti-Mn RFB: Ti-Mn RFBs was first developed by Dong et al,

(2012) where a relatively high OCP of 1.41 V was obtained (as

compared to 0.67 V for Ti-Fe RFBs) resulting in superior power

density (Dong et al., 2015; Kaku et al., 2016). These RFBs can

achieve a theoretical energy density of 18.9 Wh. L−1. The half-cell

charge redox reactions of Ti-Mn RFB are represented by the

following equations.

Negative Electrode: TiO2+ + 2H+ + e−#Ti3+

+H2O(+0.1Vvs SHE) (7)

Positive Electrode: Mn2+#Mn3+ + e−(−1.51Vvs SHE) (8)

Unfortunately, Mn3+ is highly unstable and inclined to form

manganese dioxide (MnO2) via the following reaction-

2Mn3
+ + 2H2O → Mn2

+ +MnO2

+ 4H+(Disproportionation Reaction)
(9)

The precipitated MnO2 particles start to aggregate and hinder

the flow of electrolyte by blocking the pores of the membrane

thereby reducing the columbic efficiency. So, it is required to

reduce the formation ofMnO2 particles as well as to ensure that the

MnO2 particle are small enough to avoid aggregation and prevent

membrane fouling (Kaku et al., 2016). Several approaches have

been proposed for stabilization of Mn3+ such as by increasing the

acidity, by increasing the Mn2+ concentration, or via complex

formation (Davies, 1969). However, increasing Mn2+

concentration necessitates limiting the cycling of the cell to

only 50% state of charge (SOC) to prevent Mn3+

disproportionation, thereby negating any advantages due to

increased reactant concentration. On the other hand, the

formation of Mn complexes (i.e., MnOOH) results in loss of

electro-activity (Dong et al., 2015; Bahdad et al., 2021).

MnO2 +H+ + e− → MnOOH (10)

The disproportionation reaction and the morphology of MnO2

were significantly influenced by addition of H2SO4 solution

containing TiO2+ ions (Kaku et al., 2016). TiOSO4 solutions of

varying molarities was added to 1M MnSO4 and the characteristic

of the composite electrolyte was studied in the context of

suppressing the disproportionation of Mn3+ ions. The MnO2

aggregates were found to be > 1000 nm without adding TiOSO4

or with the addition of 0.25M TiOSO4 inMnSO4. The particles size

reduced to less than 100 nm with addition of 0.5M–1M of TiOSO4

in MnSO4 (Kaku et al., 2016). The optimal composition of 1.5 M

TiOSO4 in the 1 M MnSO4 electrolyte improved the performance

of the Ti-Mn RFB in terms of energy density to achieve ~11.75Wh.

L−1 (accounting for the electrolyte in both tanks) with coulombic

efficiency of 99.8% and energy efficiency of 88.7%, both of which

were stable over 40 cycles (Dong et al., 2015; Dong et al., 2017; Kaku

et al., 2019). Unfortunately, the addition of TiOSO4 with MnSO4

also reduces the cell voltage bymore than 100 mV and increases the

cost of energy components (Kaku et al., 2016). An alternate

approach using V5+ ions to stabilize the Mn electrolyte has also

been proposed (Reynard et al., 2020). These V/Ti/Mn RFB systems

will exhibit higher voltages compared to the Ti/Mn system given the

lower standard electrode potential of the V3+/V2+ couple (-0.26V vs

SHE). But this system is economically unattractive given the

increased cost associated with the use of vanadium and thus we

do not believe this is a viable future direction. Various thicknesses of

Nafion® i.e., Nafion® 115, Nafion® 212, Nafion® 211 have been
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evaluated to investigate their impact on the performance of Ti-Mn

RFBs. The energy efficiency was found to be function of separator

thickness with the energy efficiency being 84%, 83%, and 81% for

Nafion® 211 (25 μm), Nafion® 212 (51 μm), and Nafion® 115

(127 μm) respectively (Kaku et al., 2017).

Ti-Ce RFB: An alternative Ti based RFB which provides a

higher OCP compared to, Ti-Fe and Ti-Mn RFBs, are Ti-Ce RFB.

The OCP of Ti-Ce RFB is 1.61V, which results in higher

operating power density at the same operating current density

and higher energy density for the same electrolyte concentration

compared to Ti-Fe and Ti-Mn systems (Sankarasubramanian

et al., 2021). These RFBs can achieve a theoretical energy density

of 19.4 Wh/L. The half-cell redox reactions of Ti-Ce RFB are

represented by the following equations.

Negative Electrode: TiO2+ + 2H+ + e− #Ti3+

+H2O (+0.1Vvs SHE) (11)

Positive Electrode: Ce3+ #Ce4+ + e− ( − 1.72Vvs SHE) (12)

The Ce Pourbaix diagram shows that cerium ions are soluble in

strong acids but forms stable, insoluble hydroxyl complexes above

pH~7. Given the exceptionally high standard reduction potential for

Ce (the highest amongst all the catholyte candidates considered

here), the stability of the supporting electrolyte is a particular

concern - HCl and HNO3 cannot be used due to their side

reactions that produce Cl2 and NO2 respectively

(Sankarasubramanian et al., 2021). The Ce4+/Ce3+ redox couple

exhibits unusual solubility behavior as a function of the

supporting electrolyte (acid) concentration. The solubility of both

species in this redox couple decreases in inverse proportion to

H2SO4 concentration and the highest concentration achieved was

0.5M Ce in 1M H2SO4 (Xie et al., 2011b). But interestingly, in

CH3SO3H, the solubility of Ce
3+ decreases and the solubility of the

Ce4+ increases with increasing acid concentration and this results in

a solubility maximum of 0.9M Ce in 4M CH3SO3H (Kreh et al.,

1989; Shi et al., 1989; Sankarasubramanian et al., 2021). Thus, the

energy density of this system is circumscribed by the solubility of the

Ce catholyte as TiOSO4 is highly soluble in both H2SO4 and

CH3SO3H (Sankarasubramanian et al., 2021). On the other hand,

the Ti electrode is the rate-limit electrode (relevant for achieving

higher operating current densities) as the rate constants of the Ce4+/

Ce3+ couple is 3x that of the Ti4+/Ti3+ redox couple (Klingler and

Kochi, 1981; Sankarasubramanian et al., 2021). Cyclic voltammetry

shows the anodic to cathodic peak separation for Ti3+/Ti4+ to be 1V

and 0.67V for the Ce4+/Ce3+ couple (Sankarasubramanian et al.,

2021), indicating these reactions are not electrochemically reversible

and suggesting high charge and discharge overpotentials (Bard and

Faulkner, 2000). Nevertheless, in both H2SO4 and CH3SO3H

supporting electrolytes, the Ti-Ce RFB exhibited nearly 100%

coulombic efficiency with over 70% energy efficiency (charging

and discharging at 100 mA/cm2) during 1300 and 700 h of

diurnal cycling, respectively (Sankarasubramanian et al., 2021).

These cells employed highly permselective quaternary cardo-poly

ether ketone (QPEK-C) AEM separators (Yun et al., 2014; Yun et al.,

2015; Yun et al., 2016) which demonstrated negligible crossover

(<0.4%) over 1000 h of operation with 24 h cycle as compared to

commercial CEM which suffers from drastic cation crossover and

loss in capacity early in the cycling of the RFB (Sankarasubramanian

et al., 2021).

3 Future Directions and Prospects
The Ti-X family of RFBs represent an interesting new

direction in the development of aqueous RFB systems given

their high theoretical energy density and economic

competitiveness enabled by the high solubility and low cost of

Ti. We anticipate the following future directions –

1) Unlocking the high energy density of the Ti electrolyte by

pairing it with a stable and high solubility counter electrolyte.

The long-term stability of the low pH Ti electrolytes needs to

be demonstrated.

2) Catalyzing Ti4+/Ti3+ redox kinetics to overcome its nature as

the rate-limiting electrode. The catalysts should be low cost to

preserve the cost advantage enjoyed by the Ti electrolyte.

3) Increasing the thermal stability of the Ti electrolyte to prevent

TiO2 formation by hydrolysis.

4) Using AEM and pore tailored PM instead of CEM to reduce

crossover of the predominantly cationic redox active species,

thereby enabling electrode decoupled RFBs. (Wang et al., 2018).

The continued development of these systems is anticipated to

result in a commercially viable, high-energy density aqueous RFB

that can economically be integrated into the electric grid.
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