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E-Nose finds its use in a wide range of applications such as quality

assessment in food processing to toxic gas identification in chemical

industry either in the offline or online mode. Their usage can be

extended to transformer condition monitoring in the online mode.

Considering the importance of transformers in power system and the

impact it could create if faults in them are unidentified or left

unattended, their functioning should be monitored on a real time

basis. This work, describes the realization of a prospective E-Nose for

online transformer incipient fault identification. The resistive gas sensor

array has been simulated in real time using variable resistances forming

one arm of a Wheatstone bridges. Separate variable resistances have

been calibrated using characteristics of different fault gas sensors. The

sensor array of the E-Nose helps to identify the transformer fault gases

resulting from an incipient fault condition at the nascent stage itself and

prompts for the necessary corrective action well before a catastrophic

situation arises. Furthermore, ANFIS model of the Duval’s Triangle (DT)

method have been developed to facilitate the online classification of

incipient faults. The ANFIS models of other popularly used incipient fault

interpretation methods, reported in earlier works, have also been used

for a comparative analysis on their diagnostic capabilities. The

developed model has been tested using the fault cases of IEC-TC10

fault database and the results thus obtained have been found to be very

promising.
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Introduction

Power transformers are essential and costly power system

assets which are used primarily for changing voltage levels in the

power system. Transformers operate with their insulation

stressed both under normal stable operation and even during

fault where the magnitude of stress is augmented by thermal or

electrical fault conditions in the insulation. A timely diagnosis of

these slow developing anomalies in the transformer could save

the transformer and the system as a whole from large scale

damages (Duval, 1989). Diagnosis of faults at the incipient stage

can prevent large scale component outages. Incipient fault

identification methodologies have been designed for the

diagnosis of winding faults in squirrel cage induction motors

(Wu et al., 2020) and for transformers as well. Dissolved Gas

Analysis (DGA) is one such diagnostic tool that aids to predict

such eventualities before their occurrences. However, DGA based

incipient fault diagnosis has failed to give consistent reliable

diagnosis at all times. Hence, the fault interpretation standards

have apparent shortcomings in the form of no diagnosis or

unresolved diagnosis. This calls for use of other tools that

would aid the standards in the diagnosis process by removing

these apparent fallacies (Duval, 2003; Duval, 2002; Singh and

Bandyopadhyay, 2010a; Wani et al., 2015; Khan et al., 2020;

Benmahamed et al., 2021; Zhang et al., 2022).

E-Nose system is essentially an array of sensors which can

respond to a wide range of inputs. The need for E-Nose for

transformer health monitoring arises from the requirement of

nonintrusive diagnostic method (Gardner and Bartlett, 1994;

Wilson and Baietto, 2009).

A host of soft computing methodologies have been

implemented using the diagnostic standards of IEEE and IEC

(Interpretation of the analysis of, 1978; Rogers, 1978;

Hooshmand and Banejad, 2008; Author anonymous, 2009).

The possibility of transformer incipient fault diagnosis and

transformer insulation health monitoring has been explored

using Artificial Neural Network (ANN) and Machine Learning

(ML) (Guardado et al., 2001; Equbal et al., 2018; Nezami et al.,

2021a; Ghoneim et al., 2021; Kherif et al., 2021; Taha et al., 2021),

Fuzzy Logic (FL) system (Dukarm, 1993; Dhote and Helonde,

2012; Huang and Sun, 2013; Noori et al., 2017) and Adaptive

Neuro Fuzzy Inference System (ANFIS) (Hooshmand et al.,

2012; Khan et al., 2014; Vani and Murthy, 2014; Khan et al.,

2015; Nezami et al., 2021b). However, these methods have their

own limitations which needs to be addressed for their effective

use in an online system.

In this work an online system of incipient fault identification

of transformer is showcased through the use of an E-Nose and

ANFIS based fault interpretation model. The E-Nose is realized

by using an array of variable resistances simulating gas sensors

instead of directly employing the sensors for identifying the

evolved gas concentrations. These variable resistances simulate

various resistive fault gas sensors. Variable resistance values are

converted into gas concentrations by calibrating them using real

sensor characteristics. Furthermore, one of the popular methods

of incipient fault classification, the Duval’s Triangle Method

(Duval, 1989; Duval, 2003; Duval, 2002; Singh and

Bandyopadhyay, 2010a; Singh and Bandyopadhyay, 2010b),

has been implemented using ANFIS. The E-Nose is interfaced

with the online incipient fault detection model using a

microcontroller. The gas concentrations obtained from the

E-Nose are used as inputs in the ANFIS model which in turn

helps diagnosis the fault developing in the transformer.

This paper proposes an online non-destructive procedure of

transformer incipient fault identification without the use of

sophisticated instruments and without interrupting the

transformer operation. It aims to identify the gases evolved as

a result of transformer oil decomposition and relay this

information to an online system hosting the ANFIS model for

interpretation of fault type. The conventional method involves a

destructive procedure requiring the extraction of transformer oil

and determination of dissolved gases in oil using gas

chromatography and then interpreting the fault gases to

converge upon the fault type. Here, the objective is to obtain

a model that facilitates non-intrusive online detection of

incipient fault with a high degree of accuracy. The testing of

the developed system has been done using fault cases reported in

IEC-TC10 fault database (Duval and DePablo, 2001; Gouda et al.,

2021). The outcome of the diagnostic tests has been found to be

reliable and suggests that the developed model can be regarded as

a prospective online incipient fault identification system.

Development of an ANFIS model of
the duval’s triangle method for online
transformer incipient fault
classification

Dissolved gas analysis

Transformer insulating oils, under normal aging as well as

under increased thermal and electrical stress resulting from

incipient faults, decomposes to release fault gases. The type

and concentration of gases is fault dependent such that aging

of oil will result in the production of the low molecular weight

gases while incipient fault-related gases include hydrocarbons,

oxides of carbon and some non-fault gas types as well. Sustained

faults in transformers that are allowed to persist for longer

duration may eventually lead to catastrophic failure of the

transformer. The different types of gases that evolve due to

transformer oil decomposition are: 1) Hydrocarbon and

hydrogen-a. Methane (CH4) b. Ethane (C2H6) c. Ethylene

(C2H4) d. Acetylene (C2H2) e. Hydrogen (H2) 2) Carbon

oxides-a. Carbon monoxide (CO) b. Carbon dioxide (CO2)

and 3) Non fault gases a. Nitrogen (N2) b. Oxygen (O2).

Further, the classification may also be done on the basis of
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combustible gases (H2, CO, CH4, C2H6, C2H4 and C2H2) and

non-combustible gases (CO2, N2 and O2). The gases released in

the process of oil decomposition get dissolved in the liquid

insulation. The identification of these gas types and their

concentration would indicate the possible fault type (Singh

and Bandyopadhyay, 2010a).

DGA is one of the most commonly used tools for online

health monitoring of transformers in service. DGA has gained

immense acceptability in maintenance procedures due to its

ability to detect incipient faults in addition to providing early

warnings of slow developing faults and the rate of the fault

build up.

A number of ratio and concentration-based transformer

incipient fault diagnosis methods have been universally

adopted for determining the existing fault type in the

transformer oil insulation using the DGA data. Various

indicators such as Total Dissolved Combustible Gaz (TDCG),

Total Dissolved Hydrogen and Hydrocarbon Gas (TDHG), the

primary gases- Methane, Ethane and Ethylene (MEA) and

thermal fault gases-Total Heat Gases (THG) use combination

of gas concentrations for performing health assessment of

transformer insulation. The TDCG method is most commonly

used method among them and has been elaborated in the IEEE

C57.104-2008 standard (Author anonymous, 2009). The ratio-

based methods include the Roger’s Ratio Method, Doernenberg

Ratio Method, and IEC methods while the Duval’s triangle

method is a graphical method that uses relative gas

concentration for performing diagnosis functions (Duval,

2002; Singh and Bandyopadhyay, 2010a; Zhang et al., 2022).

Duval’s triangle method of incipient fault
identification

The Duval’s Triangle method is a transformer incipient fault

diagnosis method that has gained world-wide acceptability due to

its simplicity in application and interpretation, as well as its

effectiveness in diagnosing fault conditions (Duval, 2002). It is a

graphical method in which the region within the triangle is

demarcated into seven zones, each representing a fault

condition. This method uses the relative concentration of

three fault gases (CH4, C2H4 and C2H2) to identify seven

possible fault conditions namely, Partial Discharge (PD),

Discharges of Low Energy (D1), Discharges of High Energy

(D2), Thermal Fault, T< 300°C (T1), Thermal Fault, 300°C <
T < 700°C (T2), Thermal Fault, T > 700°C (T3) and an

intermediate fault zone comprising of a mix of electrical and

thermal fault (DT). Figure 1 shows the Duval’s triangle along

with the fault regions represented as polygons within the triangle.

The relative concentration values of the three gases are calculated

and plotted on their respective sides of the triangle using Eqs 1–3.

The zone in which the point of intersection of the projection of

the relative gas concentration from each side lies indicates the

incipient fault type.

This method provides a fairly reliable diagnosis. The

formulation of this graphical method is easy but the

interpretation of the results requires precision. In addition, for

transformer incipient fault diagnosis, the Duval’s triangle

method mandates a fault condition to exist as it does not

have the provision to diagnose a non-fault condition. It

assigns a fault type to the no-fault cases, thus giving a wrong

diagnosis (Duval, 2003) (Khan et al., 2020) (Singh and

Bandyopadhyay, 2010b).

%CH4 � Conc.ofCH4in ppm

Total Conc.of (CH4 + C2H4 + C2H2 ) × 100, (1)

%C2H4 � Conc.ofC2H4in ppm

Total Conc.of (CH4 + C2H4 + C2H2 ) × 100, (2)

%C2H2 � Conc.ofC2H2in ppm

Total Conc.of (CH4 + C2H4 + C2H2 ) × 100, (3)

Development of ANFIS model of the
duval’s triangle method

ANFIS is a hybrid approach to input-output mapping that

makes use of the advantages of neural networks’ capacity for

learning within the context of fuzzy inference systems. The

generalised structure of ANFIS, which consists of nodes

connected to one another through directed linkages, is

depicted in Figure 2. ANFIS contains five layers, each of

which has a fixed or adaptable node. The output of the

adaptive square nodes depends on the input parameters.

While the circular nodes are stationary and their output is

dependent on the output of the previous layer. The directed

linkages offer a conduit for the signal’s flow without changing its

weight (Khan et al., 2015; Nezami et al., 2021b).

FIGURE 1
Duval’s triangle zones showing the identifiable fault types.
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Here, A1, A2, B1, and B2 are the four nodes that make up layer

1, the top layer. Each nodes represent a fuzzy set that converts the

input to the output based on how closely it resembles the fuzzy

sets. The output of node k in the first layer, Ok1, is determined by

Eqs 4–7.

O11 � μA1(x) (4)
O21 � μA2(x) (5)
O31 � μB1(y) (6)
O41 � μB2(y) (7)

The circular shape of the layer two nodes indicates its fixed

nature. These nodes combine the input signals to produce an

output that is represented by Eqs 8, 9.

w1 � μA1(x) × μB1(y) (8)
w2 � μA2(x) × μB2(y) (9)

The third layer’s nodes carry out the layer 2’s output’s

normalizing function. Eqs 10, 11 can be used to express this.

�w1 � w1/(w1 + w2) (10)
�w2 � w2/(w1 + w2) (11)

The outputs of layer four nodes are of the adaptive kind, and

they depend on the nodes’ ensuing parameters. Because of this,

the outputs of this layer mix the output of layer 3 with the

parameters chosen by the fuzzy sugeno system. Eqs 12, 13 serve

as representations of this form.

O14 � �w1f1 (12)
O24 � �w2f2 (13)

Where �w1 and �w2 stand for the layer three outputs that have been

normalised, and f1 and f2 are the fuzzy Sugeno system

parameters. Eqs 14, 15 are used to determine these parameters.

f1 � p1x + q1y + r1 (14)
f2 � p2x + q2y + r2 (15)

where the system parameter set is composed of p, q, and r. In

order to produce the final output, layer 5, the last layer,

summarizes the incoming signals O14 and O24 to estimate O15.

Eq. 16 is used to calculate this layers output.

O15 � (w1f1 + w2f2)/(w1 + w2) (16)

The ANFIS model for the implementation of Duval’s triangle

method has been developed in the MATLAB environment. The

model has been trained based on the confinement of each fault type in

a given zone. Separate ANFIS models have been trained suitably to

identify their respective fault type using a training dataset comprising

of 1821 simulated data points. Each of the ANFIS model has been

trained to keep the error within a tolerance of 0.001. The triangular

membership function when selected as the input MF gave the most

accurate diagnosis. Hence, triangular MF has been chosen to

represent the inputs while linear MF has been selected as the

output MF in the developed ANFIS model. Seven ANFIS models

have been developed, one for each of the seven faults that can be

detected by the Duval’s Triangle method. The input gas

concentrations are simultaneously applied to all the seven ANFIS

model and the fault corresponding to the highest value in the output

vector is identified as the prevalent fault type. The input-output

pattern which forms the basis for the development of the ANFIS

models is given in Table 1. The input values of P1, P2 and P3 are the

contributions in terms of relative percentage of the three fault gases

forming the three sides of the triangle. The input codes are taken as

the coordinates of the vertices of the polygon representing the

respective zones formed inside the triangle. Additional care has

been taken to handle overlapping points by preventing replication

of data points in two fault zones up to four places of decimals.

Faults lying on the boundaries of two fault zones has been

treated to be of the more severe type among them so as to prompt

for immediate corrective action. This generalization for the

ANFIS model has been made in view of the fact that if a

given fault condition is sustained for larger time duration will

lead to a more severe fault condition.

The MATLAB based GUI of the ANFIS model for Duval’s

trianglemethod has been shown in Figure 3. This GUI can be utilized

for online detection of the prevalent incipient fault in the transformer.

Development of E-NOSE based
online transformer incipient fault
identification system

Realization of E-Nose for transformer
incipient fault gas identification

The objective here is tomake a prototype of an E-Nose that would

work in conjunction with an ANFIS based fault interpretation model

FIGURE 2
Generalized ANFIS structure.
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for assessing the condition of the transformer and identifying the type

of incipient fault existing in the transformer, if any. However, the

E-Nose is not designed using an array of actual gas sensors but instead

adopts the characteristics of these standard gas sensors to calibrate

variable resistances, one for each fault gas type. One arm of the

Wheatstone bridge is a variable resistance to account for the resistance

change in accordance with change in gas concentration following the

sensor characteristics. Output of the Wheatstone bridges have been

calibrated using four gas sensors characteristics. The sensors based on

which the system has been calibrated are MQ-2 for Hydrogen, MQ-4

forMethane, Figaro TGS2620 for ethylene and a lab fabricated sensor

reported in (Lin et al., 2015) for acetylene. The schematic of the

experimental setup showing the arrangement of the Wheatstone

bridges and the interfacing equipment in the form of an Arduino

Mega 2,560 microcontroller for online readings is shown in Figure 4.

The essential specifications of the four sensors are summarized in

Table 2.

As stated earlier, the feasibility of usage of an E-Nose for

transformer incipient fault identification is studied through an

arrangement of variable resistances simulating the actual

characteristics of the sensors. The variable resistance is varied

imitating the resistance variation of the sensing material due to

TABLE 1 Input-output codes for the ANFIS model of the Duval’s triangle.

No. Type of fault Input coordinates Output codes

P1 P2 P3 F1 F2 F3 F4 F5 F6 F7

1 Partial Discharge (PD) 0.7999 0.199 0.0000 1 0 0 0 0 0 0

1.0000 0.0000 0.0000

0.9799 0.0000 0.0199

2 Discharge of Low Energy (D1) 0.0000 0.0000 1.0000 0 1 0 0 0 0 0

0.0000 0.2299 0.7699

0.6399 0.2299 0.1299

0.8699 0.0000 0.1299

3 Discharge of High Energy (D2) 0.0000 0.2300 0.7700 0 0 1 0 0 0 0

0.0000 0.7099 0.2899

0.3099 0.3999 0.2899

0.4699 0.3999 0.1299

0.6400 0.2300 0.1300

4 Thermal Fault, T<300°C (T1) 0.7599 0.1999 0.0399 0 0 0 1 0 0 0

0.7999 0.1999 0.0000

0.9800 0.0200 0.0000

0.9800 0.0000 0.0200

0.9599 0.0000 0.0399

5 Thermal Fault, 300°C < T<700°C (T2) 0.4599 0.4999 0.0399 0 0 0 0 1 0 0

0.4999 0.4999 0.0000

0.8000 0.2000 0.0000

0.7600 0.2000 0.0400

6 Thermal Fault, T>700°C (T3) 0.0000 0.8499 0.1499 0 0 0 0 0 1 0

0.0000 1.0000 0.0000

0.5000 0.5000 0.0000

0.3499 0.4999 0.1499

7 Mix of Both Electrical and Thermal Faults (DT) 0.0000 0.7100 0.2900 0 0 0 0 0 0 1

0.0000 0.8500 0.1500

0.3500 0.5000 0.1500

0.4600 0.5000 0.0400

0.9600 0.0000 0.0400

0.8700 0.0000 0.1300

0.4700 0.4000 0.1300

0.3100 0.4000 0.2900
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FIGURE 3
MATLAB GUI for ANFIS based implementation of Duval’s triangle method.

FIGURE 4
Schematic arrangement of a simulated E-Nose for online transformer incipient fault identification.
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the change in gas concentration. The resistance values

corresponding to a given concentration is determined from

the equations established using the sensitivity characteristics

of the sensors.

In the balanced state, the voltage across the output terminals

of the bridge remains zero. As the concentrations of the fault

gases change, the balance of the respective Wheatstone bridges is

disturbed due to the change in the sensor resistance and a voltage

appears across the detector terminals of the Wheatstone bridge.

This voltage representing the output voltage is detected and

displayed on a monitor using a microcontroller-based

interface. In order to obtain a diagnosis of the prevailing fault

condition in the transformer the output voltage needs to be

converted into gas concentrations in ppm. Calibration has been

carried out using the voltage-concentration relation derived for

each sensor.

The response characteristics (resistance-gas concentration

relationship) and the voltage-gas concentration relationship

for the MQ-2, MQ-4, Figaro TGS2620 and the laboratory

fabricated acetylene sensor of (Lin et al., 2015) are given in

Figure 5 (i)–(iv), respectively. The resistance-gas concentration

relationships are obtained by extracting data points from the

response characteristics given in the data sheet of the respective

sensor while the voltage-gas concentration plot is obtained by

observing the voltage across the detector for the for the whole

range of sensor resistance extracted from the response

characteristics. In the figures Rs denotes the sensor resistance

while Ro is the resistance of sensor at a particular concentration

(say 1,000 ppm) in fresh air. Its value can be determined by

calibrating the actual sensors in fresh air. In this experimental

study, Ro has been designated a value of 1 KΩ for all the sensors.

It can be observed from the plots of all the characteristics that the

R-squared values i.e. the regression is very close to 1, thus,

indicating a good fit.

The relation between gas concentration in ppm and the

sensor resistance within the detectable concentration range

and the relation between the output voltage and gas

concentration are given by Eqs 17, 18, respectively for the

MQ-2 hydrogen sensor, Eqs 19, 20, respectively for MQ-4

methane sensor, Eqs 21, 22, respectively for ethylene sensor

and Eqs 23, 24, respectively for acetylene sensor.

TABLE 2 Specifications of gas sensors.

S. No Sensor Identifiable gas Sensing material Concentration range Type

1 MQ-2 H2 SnO2 300–10000 ppm Resistive

2 MQ-4 CH4 SnO2 200–10000 ppm Resistive

3 Figaro TGS2620 C2H4 MOS 0–100 ppm Resistive

4 Lab. Fabricated Sensor of (Lin et al., 2015) C2H2 NiO/SnO2 Composite 0–4,000 ppm Resistive

FIGURE 5
(A) Sensitivity characteristics plot and (B) output Voltage-PPM
plot- (i) MQ-2 sensor for H2 (ii) MQ-4 sensor for CH4 (iii) Figaro
TGS2620 for C2H4 (iv) lab. Fabricated sensor for C2H2 (Lin et al.,
2015)
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Logppm � −2.109 × (logRs/Ro) + 2.983, (17)
ppm � 971.5e−1.77Vo (18)

logppm � −2.849 × log(Rs/Ro) + 2.997 (19)
ppm � 998.5e−2.34Vo (20)

logppm � −1.852 × log(Rs/Ro) + 1.828 (21)
ppm � 19.1 × Vo2–70.24 × Vo + 65.51 (22)

logppm � 0.857e0.794×log(Rs/Ro) (23)
logppm � 2179 × (logVo)3 − 1872(logVo)2

+ 532.6 × (logVo) − 48.31
(24)

Interface for online transformer incipient
fault study

The setup for the simulated E-Nose based online transformer

incipient fault identification is given in Figure 6. It can be

observed that the sensor array output voltages samples are

acquired to host computer using an Arduino Mega

2,560 microcontroller interface. The Arduino Mega 2,560 has

an ATmega2,560 microcontroller housed on board that provides

adequate clock speed, RAM and analog input channels for the

application. The objective of acquiring the data on a computer is

to enable a host fault diagnosis algorithm to identify the fault type

after calibration of the sensor output voltage.

In the setup the variable resistances are simulating the actual

gas sensors of the E-Nose and are calibrated using their

characteristics. The change in gas concentration leads to

change in sensor resistance which results in an output voltage

appearing across the output terminals of the Wheatstone bridge.

The output terminals of the bridges are wired to the analog input

of Arduino Mega 2,560. The Simulink model on the host

computer needs to acquire this voltage available with the

hardware so that after suitable conversion into gas

concentration the diagnostic functions can be performed online.

In order to acquire the voltage data from the Arduino hardware

a communication interface needs to be setup. Simulink model has

been executed in the normal mode as normal mode execution of the

simulation model ensures its validation as well as accelerates the

process since no code generation or model deployment is required.

The Simulink IO that comes with the Simulink support package for

Arduino hardware creates a communication link that allows the

Simulink model and the IO server on the hardware to communicate

among themselves. Figure 7 gives an insight on the interaction

between the simulation model and the Arduino hardware in the

normal mode with Simulink IO.

Arduino being a microcontroller-based device are capable of

performing the Analog to Digital Conversion (ADC) when the

inputs are given to the analog ports on the board of an Arduino

Mega 2,560. The output of the ADC is a ratiometric values,

proportional to the system voltage. For a 10-bit microcontroller

the output of an ADC ranges from 0 to 1,023, where

0 corresponds to an output voltage of 0V while and an ADC

output reading of 1,023 would imply 5V output. Hence, a

conversion of the ADC readings needs to be done for

obtaining output voltages in Volts using a simple relation

given in Eq. 25.

Resolution ofADC (1023forArduinoMega)
System InputVoltage (Here 5V)

� ADCReading

Output AnalogVoltage
(25)

Based on this relation the voltage data acquired in the

simulation model from Arduino Mega 2,560 is a 10-bit

voltage value with a resolution of 0.0048875V.

FIGURE 6
Setup for online transformer incipient fault diagnosis using an
E-Nose prototype.

FIGURE 7
Communication between host computer and Arduino
hardware.
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FIGURE 8
Flow diagram of the fault diagnosis process.

FIGURE 9
MATLAB subsystem for acquiring output voltages and conversion to gas concentration.
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Online transformer incipient fault
detection and classification model

The output from the Arduino Mega after suitable conversion to

voltages is used to obtain the gas concentrations in ppm. The

conversions to ppm follows the relations obtained from the

voltage-ppm curve for each of the sensors. These gas

concentrations are used as input to the fault identification

algorithm for diagnosing the existing incipient fault. The complete

process of the online fault identification model is shown as a flow

diagram in Figure 8.

The output of the E-Nose in the form of fault gas

concentrations obtained after suitable conversion of the

output voltages resulting from variation in sensor resistances

into gas concentrations in ppm serves as the inputs for the ANFIS

based fault diagnosis model. The MATLAB Simulink model to

acquire the output voltages and their subsequent conversions

into gas concentrations is shown in Figure 9. The fault

interpretation model is a composite model comprising ANFIS

model of the DT method developed above.

And the ANFIS models based on IEC-599 standard, Roger’s

ratio method, Doernenberg ratio method as reported in (Khan et al.,

2015). The standard fault identification methods, in general, depend

on the concentration of five primary gases to recognize the fault

condition in the transformer. These gases are namely, hydrogen,

methane, ethane, ethylene and acetylene. However, in the prototype

for E-Nose based online transformer incipient fault detection

method only four sensors have been considered, one each for

hydrogen, methane, ethylene and acetylene. The ethane gas

concentration has been manually fed in the fault identification

process. In the event that an ethane gas sensor with sensing

capabilities in the desired gas concentration range is obtained/

fabricated, their incorporation would be in a manner similar to

the other sensors.

The ANFIS based fault interpreting Simulink model is given in

Figure 10.

Result and discussion

The ANFIS model based on the Duval’s triangle method

has been tested to identify its diagnostic capability using

incipient fault cases from field data of faulty transformers

reported in (Duval and DePablo, 2001). The accuracy

FIGURE 10
ANFIS model for online transformer incipient fault diagnosis.
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of the ANFIS model for DT method was determined to

be 97%.

The developed setup, simulating an E-Nose, applied for the

identification of transformer incipient faults has been also tested

using the fault cases reported in (Duval and DePablo, 2001).

Since the sensors are limited to operate within a specified gas

concentration range, only those fault cases which satisfy these

ranges have been selected for testing. These diagnosable cases

along with their respective gas concentrations are given in

Table 3. These fault cases were diagnosed to check the

diagnostic efficiency of the developed online E-Nose system.

The sensor resistance for a particular sensor is obtained using the

sensitivity characteristics of that sensor by projecting the given

gas concentration on the ppm-sensor resistance curve or by using

the equation derived from the characteristics.

The combined diagnosis results for all the fault cases under

study are given in Table 4. It is observed that the ANFIS models

based on the IEC-599, Roger’s ratio method, Doernenberg

method and the Duval’s triangle method have an accuracy of

40%, 44%, 72% and 80%, respectively. Unlike the other fault

interpretation models the Duval’s triangle method requires only

threes gas inputs i.e. gas concentrations of CH4, C2H4 and C2H2

and they are all acquired from the output of the sensor array

prototype.

In order to showcase the diagnostic capability of the

proposed method a comparison of diagnosis of sample fault

cases reported in published works has been shown in Table 5. The

cases have been carefully selected to satisfy the ppm limitations of

the CH4, C2H2, C2H4 sensors of the E-Nose while the limitations

of other gases are ignored as they are insignificant in incipient

fault diagnosis by Duval’s method. It can be observed that the

ANFIS model of the Duval Triangle method successfully

diagnoses all cases while the E-Nose based diagnosis

incorrectly diagnoses the high thermal fault in Case 3 as a

mix of Thermal Electrical fault.

Furthermore, the proposed E-Nose based transformer

incipient fault model has been tested for the impact in

diagnosis due to errors introduced in the measurement of

gases, errors in the interfacing devices or due to the

conditions in the transformers. Table 6 shows the sample

transformer cases of Table 3 being subjected

to ±5%, ±10%, ±15% and ±20% errors. The conclusion drawn

TABLE 3 Transformer fault cases for diagnostic testing of E-Nose model.

S. No. H2 CH4 C2H2 C2H4 C2H6 Fault identified
by inspection

1 8,266 1,061 0 0 22 PD

2 1,000 500 500 400 1 D1

3 60 10 4 4 4 D1

4 95 10 39 11 0 D1

5 35 6 482 26 3 D1

6 210 22 7 6 6 D1

7 385 60 159 53 8 D1

8 595 80 244 89 9 D1

9 120 25 40 8 1 D1

10 8 0 101 43 0 D1

11 1,330 10 182 66 20 D1

12 4 1 52 7 2 D1

13 57 24 30 27 2 D1

14 120 31 94 66 0 D2

15 13 3 6 3 1 D2

16 137 67 104 53 7 D2

17 34 21 56 49 4 D2

18 150 130 30 55 9 D2

19 75 15 26 14 7 D2

20 90 28 32 31 8 D2

21 48 610 0 10 29 TH1

22 12 18 0 4 4 TH1

23 2031 149 0 3 20 TH1

24 150 22 11 60 9 TH2

25 1 8 6 100 8 TH2

PD- Partial Discharge; D1- Discharge of Low Energy; D2- Discharge of High Energy; TH1- Thermal Fault Less than 700°C and TH2- Thermal Fault in excess of 700°C
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from the diagnosis is that the even though noises does influence

the performance of the model, the E-Nose system along with the

ANFIS is able to effectively classify most cases particularly the

low ppm fault cases. The faults causing release of higher

concentration of fault gases have shown some deviation in

their diagnosis.

Conclusion

In this work, an online system for transformer incipient

fault identification using an E-Nose has been implemented.

Actual sensor characteristics have been used to realize the

E-Nose by suitably calibrating variable resistances

simulating sensors. The Wheatstone bridge is used as a

signal conditioning circuit for the sensors. The outputs of

the bridges were voltages, equivalent to the sensor output

voltages. The prototype model utilized these output voltages

to obtain the gas concentration online through an Arduino

Mega 2,560 interface. An ANFIS model using the Duval’s

Triangle method was developed and used along with ANFIS

models of popular interpretation standards were used to

arrive upon a fault diagnosis online. The offline testing of

the AFIS model based on DT method gave an accuracy of

97%. The selected fault cases in compliance with the

detectable concentration range of the sensors, from a fault

larger transformer incipient fault database were used to test

this online fault diagnosis system. The Duval’s triangle

TABLE 4 Transformer fault diagnosis results using the E-Nose setup.

S.
No.

IEC-599 standard Rogers ratio method (RRM)
diagnosis

Doernenberg ratio method
(DRM) diagnosis

Duval’s triangle method
(DTM) diagnosis

IEC-599
diagnosis

E-Nose based
Diagnosis

RRM
Diagnosis

E-Nose based
Diagnosis

DRM
Diagnosis

E-Nose based
diagnosis

DTM
Diagnosis

E-Nose based
diagnosis

1 F0 F2 F0 F0 NV F1 F1 F1

2 ND F0 ND F0 NV F3 F3 F3

3 F3 F0 ND F0 NV F2 F2 F7

4 F3 F3 ND F2 NV F3 F2 F2

5 ND F0 ND F0 F3 F1 F2 F2

6 F2 F2 ND F0 NV F3 F2 F2

7 F3 F3 F2 F2 F3 F3 F2 F3

8 F3 F3 F2 F2 F3 F3 F2 F2

19 F3 F2 ND F0 F3 F3 F2 F2

10 F4 F0 ND F0 NV F3 F3 F3

11 F3 F4 ND F1 F3 F3 F3 F3

12 F3 F3 ND F0 NV F2 F2 F2

13 F4 F0 F2 F0 NV F3 F3 F3

14 F4 F0 F2 F0 F3 F3 F3 F3

15 F3 F4 ND F2 NV F3 F3 F3

16 F4 F4 F2 F2 F3 F3 F3 F3

17 F4 F8 F2 F1 NV F3 F3 F3

18 ND F3 F2 F3 NV F2 F3 F7

19 F3 F3 ND F2 NV F3 F3 F3

20 F4 F4 F2 F2 NV F3 F3 F3

21 F6 F6 ND F2 NV F1 F4 F1

22 F7 F3 F4 F2 NV F1 F4 F7

23 F1 F2 F1 F0 F2 F1 F1 F1

24 F4 F3 F2 F3 NV F2 F6 F6

25 F8 F8 F5 F5 NV F1 F6 F6

ND: Non-Diagnosable; NV: Not Valid Ratio

IEC- F0: No Fault; F1: Partial Discharge with low energy density; F2: Partial Discharge with high energy density; F3: Discharge (arc) with low energy; F4: Discharge (arc) with high energy;

F5: Thermal faults of temperatures <150°C; F6: Thermal faults of temperatures between 150°C and 300°C; F7:Thermal faults of temperatures between 300°C and 700°C; F8:Thermal faults of

temperatures >700°C.
RRM- F0: No Fault; F1: Low-energy density arcing-PD; F2: Arcing-High-energy discharge; F3: Low temperature thermal; F4: Thermal fault < 700°C; F5: Thermal fault >700°C.
DRM- F0: No Fault; F1: Thermal Decomposition; F2: Partial Discharge(Low intensity PD); F3: Arcing (High intensity PD).

Bold values indicate deviation in diagnosis from expected or correct diagnosis.
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TABLE 5 Comparison of Transformer fault diagnosis with reported results.

S.
No

Ref.
No.

H2 CH4 C2H2 C2H4 C2H6 Method
used

Diagnosed
fault
type

Proposed model
diagnosis

ANFIS
model
of DT
method

E-Nose
based
diagnosis

1 Li et al. (2016) 48 610 0 10 29 Genetic Algorithm based ratio
method

Low and Medium
Thermal

F4
(T<300°C)

F4
(T<300°C)

2 Mang-Hui
Wang, (2003)

18 262 0 28 41 Extension Method based on the
matter-element model and
extended relation functions

150–300°C Thermal Fault F4
(T<300°C)

F4
(T<300°C)

3 Zhang et al.
(1999)

56 286 7 28 96 Fuzzy Equivalent Matrix High Temp. Overheating F6
(T<700°C)

F7 (DT)

4 Gouda et al.
(2018)

180 652.9 4 50 75 Three Ratio Technique Thermal<150°C F4
(T<300°C)

F4
(T<300°C)

5 Gouda et al.
(2018)

56 334.1 31 32 75 Three Ratio Technique Low Energy Discharge F2 (D1) F2 (D1)

6 Gouda et al.
(2018)

33,046 619 0 2 58 Three Ratio Technique Low Energy Corona
Partial Discharge

F1 (PD) F2 (D1)

7 Gouda et al.
(2018)

40,280 1,069 1 1 1,060 Three Ratio Technique High Energy Corona
Partial Discharge

F3 (D2) F3 (D2)

8 Gouda et al.
(2018)

9,340 995 7 6 60 Three Ratio Technique High Energy Corona
Partial Discharge

F3 (D2) F3 (D2)

TABLE 6 Impact of noise on incipient fault diagnosis.

Transformer
Case
No.
(Table 3)

Noise H2 CH4 C2H2 C2H4 C2H6 Expected
fault
type
as per
DTM

E-Nose
diagnosis

1 +5% 8,679.3 1,114.05 0 0 23.1 PD PD

−5% 7,852.7 1,007.95 0 0 20.9 PD PD

24 +5% 157.5 23.1 11.55 63 9.45 T1 T3

−5% 142.5 20.9 10.45 57 8.55 T1 T3

16 +10% 150.7 73.7 114.4 58.3 7.7 D2 D2

−10% 123.3 60.3 93.6 47.7 6.3 D2 D2

21 +10% 52.8 671 0 11 31.9 T1 PD

−10% 43.2 549 0 9 26.1 T1 PD

2 +15% 1,150 575 575 460 1.15 D1 D2

−15% 850 425 425 340 0.85 D1 D2

6 +15% 241.5 25.3 8.05 6.9 6.9 D1 D1

−15% 178.5 18.7 5.95 5.1 5.1 D1 D1

20 +20% 108 33.6 38.4 37.2 9.6 D2 D2

−20% 72 22.4 25.6 24.8 6.4 D2 D2

22 +20% 14.4 21.6 0 4.8 4.8 T2 T2

−20% 9.6 14.4 0 3.2 3.2 T2 T2

Bold values indicate deviation in diagnosis from expected or correct diagnosis.
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method using three senor output gas concentrations as its

input in terms of relative gas concentration, gave an

encouraging diagnosis trend with an accuracy of 80% with

ample scope to improve upon the accuracy with the

elimination of errors. Some errors were introduced in the

process of obtaining the gas concentrations due to

approximations and using equipment of lesser precision.

The accuracy of the setup could certainly be enhanced by

using sensors of higher resolution and interfacing equipment

lesser prone to errors. Other methods such as IEC-599,

Roger’s ratio method and the Doernenberg ratio method

had diagnostic efficiencies lower than the Duval’s triangle

method. Their performance would also be augmented with

the removal of inaccuracies.

This preliminary work does make pathways for a reliable

online transformer incipient fault detection model using an

actual gas-based sensor array as an E-Nose that could be

deployed in the hostile transformer environment. The

improvement in the incipient fault diagnosis of

transformers can be explored by implementing the

incipient fault interpretation methods using machine

learning and deep neural network methodologies. The

hydrocarbon gas sensors used in the E-Nose can be made

more sensitive to a wide range of gas concentration ranging

from sub-ppm levels to thousands of ppm. An ethane gas

sensor having resolution for an appropriate gas range needs to

be fabricated and incorporated into the E-Nose so that gas

ratios of all interpretation methods can be obtained from a

common setup. Furthermore, better precision is required in

interfacing the E-Nose with the online fault identification

system so as to obtain gas concentration values closer to the

true value and more accurate incipient fault diagnosis can be

performed.
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