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Adaptive robust economic
dispatch and real-time control
of distribution system
considering controllable
inverter air-conditioner clusters

Guanhong Chen and Dong Liu*

Department of Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China

With a tremendous number of renewable energy sources (RES) integrated

into the distribution system, the inherent uncertainty of RES power generation

brings about significant challenges in distribution and power balance within

the distribution system. This article proposes an adaptive robust economic

dispatch (ARED) model and a real-time control strategy for distribution

systems as countermeasures, whichmake full use of the adjustable capabilities

of controllable inverter air-conditioner (IAC) clusters. Firstly, the concept

of the adjustable capacity curve (ACC) is developed to accurately quantify

the adjustable capacity of an IAC cluster. Afterward, a two-stage adaptive

robust optimization is formulated for ARED, which comprehensively takes

the adjustable capacity of the IAC cluster and the uncertainty of RES into

consideration. Meanwhile, the solution methodology of ARED is also designed

based on the column and constraint generation (C&CG) algorithm, where

the master problem is quadratic programming with quadratic constraints

(QCQP), and the max-min sub-problem is reformulated to a mixed integer

linear programming (MILP) form by taking advantage of linear duality theory

and big-Mmethod. Finally, a novel real-time decentralized control strategy for

IAC clusters is also proposed for purpose of hedging against stochastic RES

power fluctuation after every round of ARED decisions. The results of the case

study validate the effectiveness of ARED model and real-time control strategy

under different uncertainty scenarios of RES power generation.

KEYWORDS

adaptive robust economic dispatch, column and constraint generation, controllable load,

distribution system, inverter air-conditioner, real-time control, uncertainty

1 Introduction

In recent years, in order to suppress fossil energy depletion and extreme climate
change, innovative technologies and applications of energy and power in industry are
going through a highly active period (Dai et al., 2017). Clean and low-carbon energy
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utilization technologies have attracted broad attention from
all countries, emphasizing the dominant position of renewable
energy sources (RES) in future power system (Lu et al., 2017).

However, with the growing proportion of RES engaging in
distribution system operation, significant challenges are brought
about to distribution system operators (DSOs). On the one
hand, during the power dispatching stage, traditional prediction
value-based deterministic economic dispatch may suffer from
suboptimality (Li et al., 2015) due to the inevitable prediction
errors for RES power generation. Therefore, an uncertainty-
based economic dispatchmodel is required, aiming to determine
a relatively cost-efficient reference point for all dispatchable
units. Stochastic optimization (SO) (Chen et al., 2018;
Ye et al., 2018; Roldán et al., 2019; Shuai et al., 2019), chance-
constrained programming (Zhou et al., 2018; Yang et al., 2021)
and robust optimization (RO) (Gao et al., 2018; Liu et al., 2018;
Chen et al., 2021) are three leading paradigms adopted widely in
previous studies (Ning and You, 2018). Among these paradigms,
SO is mainly formulated based on finite typical scenarios and
corresponding discrete probability distribution after scenario
generation and reduction. In the work of Ye et al. (2018), authors
propose an optimal dispatch method for a power system with
high penetration of wind power. Typical scenarios are generated
by assuming the prediction error obeys the Gaussian probability
density function. In the work of Chen et al. (2018), a generative
adversarial network based data-driven approach is adopted to
generate typical scenarios of RES power generation. A SO-
based optimization model usually contains a relatively large
number of constraints, and the applicability of the solution
depends on the accuracy of the probability distribution. Distinct
from SO, the two-stage adaptive RO does not require accurate
probability distribution of uncertainty variables, thus is more
practicable for systems with limited knowledge of stochastic
RES characteristics (Zhang et al., 2019). Liu et al. (2018) develop
a two-stage RO model to minimize the operation cost of the
microgrid, in which uncertainties of RES and load are modeled
by box constraints. In the study of Chen et al. (2021), a robust
dynamic economic dispatchingmodel of integrated transmission
and distribution system is established, in which uncertainty set
is decided according to conditional value-at-risk rather than
manually assigned. Gao et al. (2018) explore the coordinated
energy management among distribution systems and networked
microgrids, in which a tractable typical budget set is adopted.
To improve the conservativeness of RO’s solution, in these
works, different uncertainty sets with adjustable uncertainty
budgets are employed, such as polyhedron uncertainty set
(Gao et al., 2018; Liu et al., 2018; Chen et al., 2021), ellipsoid
uncertainty set (Roldán et al., 2019). In addition, drawing
advantages of both RO and SO, distributionally robust
optimization (DRO) also attracts growing attention in recent
years, which builds an ambiguity set of uncertainty variables
based on statistical moments information and optimizes the

system’s expected cost under the worst distribution. In the
work of Ruan et al. (2019), the ambiguity set is developed
by 1-norm and ∞-norm constraints of the distance between
stochastic probability distribution and historical statistical
distribution. Zhou et al. (2018) develop a distributionally robust
dispatch model considering generalized moments uncertainty
of wind power and equivalently transform it to deterministic
quadratically constrained quadratic programming (QCQP)
problem.

On the other hand, during the real-time operation stage,
actual RES power generation deviates from the predicted
value with stochastic amplitude and high variation frequency,
which may lead to fierce fluctuation of exchange power
between the distribution system and transmission system.
Due to this reason, more ancillary resources are required for
the transmission system to ensure real-time power balance
(Kalantar-Neyestanaki et al., 2020). However, under severe
operation scenarios such as a contingency state, the regulatable
capacity of the transmission system may become extremely
limited to meet the requirements, which greatly stimulates the
need for ancillary resources from the distribution system side
(Tan et al., 2020). To release the power balance burden of the
transmission system, demand-side controllable load clusters
have been considered to be important regulatory resources with
great potential. Among different types of controllable loads,
a thermostatically controllable load such as heat pumps and
inverter air-conditioners (IAC) are the most characteristic types,
due to their large scale, low cost, and fast response speed (Yao and
Zhang, 2018). In the work ofWei et al. (2016), a hierarchical and
distributed control strategy of heat pumps is proposed to balance
the fluctuations caused by RES, in which each pump’s target
power is determined by solving the optimal setting temperature.
Ding et al. (2021) also propose a game-theoretic demand side
management strategy, which is capable of guiding users to make
optimal power consumption schedules and smooth the tie-line
power of microgrids simultaneously. Hui et al. (2019) propose
equivalent modeling of IAC to provide frequency regulation
service and verify the aggregation of IACs can be controlled
in a similar way to traditional generators. Based on networked
information interaction between each IAC aggregator, Jiang
and Wei (2018) presents adistributed cooperation model and
optimal control strategy for an IAC cluster and the power
grid to avoid the occurrence of a new load peak. Based on a
transactive control framework, Yao and Zhang (2018) propose
a decentralized control strategy of the IAC cluster to provide
peak shaving service, and furtherly explore the coordination
of heterogeneous thermostatically controlled loads to provide
real-time ancillary services in their follow-up study (Yao and
Zhang, 2020).

Actually, the power-adjustable capability of thermostatic load
and user’s comfort experience is highly related to its temperature
state, hence very sensitive to power adjustment instructions of
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both economic dispatch stage and real-time control stage. In
most of the previous studies of economic dispatch, controllable
loads are scheduled like normal generators according to their
power-adjustable capacity, without exploring the effect on users’
comfort experience and variation of adjustable capability. In
addition, the issues of how to reduce communication costs
and protect users’ private information should also be subtly
considered when aggregating large-scale controllable loads. To
address these issues, this paper first develops the concept of
an adjustable capacity curve, which is capable of quantifying
the exact adjustable capacity of each IAC cluster within a
certain time period. Then, for the power dispatch stage, we
propose an adaptive robust economic dispatch (ARED) model
to achieve cost-efficient dispatching of all generation units by
taking IAC clusters’ adjustable capability and RES uncertainty
into consideration. Afterward, for the real-time operation stage,
a real-time control strategy is designed, where IAC clusters
function as ancillary resources to hedge against the actual
power fluctuation of RES based on decentralized control.
Variation of power exchange between the transmission system
and distribution system is effectively eliminated. The main
contributions of this paper are summarized by the following
aspects:

1) Sophisticated IAC model is first proposed in this paper,
which not only contains common operation constraints in
existing works (Yao and Zhang, 2018; Hui et al., 2019) but
also takes the nonlinear relationship of IAC’s compressor
operation frequency and IAC’s electrical/cooling power into
consideration. More accurate quantification of IAC’s power
adjustable capacity and tractable decentralized control can be
realized based on this model.

2) A two-stage adaptive robust optimization model is
formulated for ARED in this paper by drawing the advantages
of RO,where the uncertainty of RES is addressed by adjustable
box constraints rather than by discrete scenarios in the
work of Ye et al. (2018). ARED model also considers the IAC
cluster as a dispatchable unit whose adjustable capability is
dynamically updated along with real-time control processes
of the IAC cluster. In addition, different from most literature
such as Chen et al. (2021); Gao et al. (2018) where upward
and downward power adjustment are modeled by two
independent positive-define variables, we propose an
equivalent formation by only one variable, which can simplify
the expressions of objective function and constraints.

3) A decentralized real-time control strategy capable of
aggregating and cooperatively controlling IACs is proposed
for the purpose of compensating power deviation caused
by stochastic RES power fluctuation. IAC clusters’ power
adjustable capacity can be quantified and updated rapidly
during real-time control, which also functions as a constraints
boundary in ARED model. Most of the computation is
conducted locally, and less remote communication cost

is required compared with the work of Wei et al. (2016);
Ding et al. (2021). Privacy protection of IACs’ parameters
and users’ preference information can also be guaranteed
under the designed strategy.

The remaining content of this paper is organized as follows.
Section 2 introduces the model of IAC and the quantification
method of the IAC cluster’s adjustable capability. In Section 3,
a two-stage adaptive robust optimization model for ARED
considering IAC adjustable capacity is formulated and a C&CG
algorithm-based solution methodology of ARED is elaborated
as well. In Section 4, the real-time control strategy of the IAC
cluster is proposed to hedge against RES power fluctuation
during the real-time operation stage of the distribution system.
In Section 5, a case study is explored to verify the effectiveness
of AREDmodel and real-time control strategy of the IAC cluster.
Section 6 concludes this paper.

2 Inverter air-conditioner modeling
and adjustable capability
quantification

2.1 IAC model

For a room equipped with an IAC, the first-order equivalent
thermal parameter (ETP) dynamic model of room temperature
Ta in continuous form can be expressed by (1):

dTa

dt
= −

UoaAroom + caρaVroomξ
caρaVroom

(Ta −Tout) −
1

caρaVroom
qac (1)

In (1), ca and ρa stand for heat capacity and density
of air; Aroom and Vroom stand for area and volume of the
room; Uoa is heat transfer coefficient of the room; ξ is the
number of air exchange times per hour; Tout is outdoor ambient
temperature; qac is cooling power of IAC. For specific sampling
and control period τ, the discrete-time formulation of (1) is
derived and applied in this paper, where we introduce equivalent
heat dissipation coefficient σ = (UoaAroom + caρaVξ)/caρaV for
simplicity of expression. The room temperature at discrete time
point kτ = 0,τ,2τ,… can be calculated by:

Ta (k+ 1) = e
−στTa (k) +

e−στ − 1
caρaVσ

qac (k) + (1− e
−στ)Tout (2)

For one IAC, the consumed electrical power pac and
produced cooling power qac are actually adjusted by operation
frequency fac of IAC compressor. However, the relationship
between pac,qac and frequency fac are usually nonlinear, which
means the adjustment sensitivity ∂pac/∂fac,∂qac/∂fac are diverse
at different operation frequency point. In this paper, we adopt
piecewise linearization technology to approximate the original
nonlinear functions, as shown inFigure 1. Suppose the operation
frequency fac is segmented into N intervals according to
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FIGURE 1
Piecewise linearization of nonlinear pac—fac function.

(N+1) segmentation points ( f 1, … , f N+1), and so are pac
and qac. Then, the slope vectors kpseg = (kip)N×1,kqseg = (k

i
q)N×1

concerning segment i can be calculated. Meanwhile, let fsegF =
(f 1ac,…, f

N
ac)

T be the vector of the forward N segmentation
points of fac, and fsegB = (f 2ac,…, f

N + 1
ac )

T be the backward N
segmentation points. In a similar way, we can as well define psegF
and qsegF. Drawing support from these definition of necessary
coefficient vectors, the relationship between pac,qac and fac can
be formulated in a compact form by a set of equalities and
inequalities:

qac (k) = qsegF
Tω (k) + kTqsegλ (k) (3)

pac (k) = psegF
Tω (k) + kTpsegλ (k) (4)

0 ≤ λ (k) ≤ (ΛB −ΛF)ω (k) (5)

1Tω (k) = 1 (6)

fac (k) = f
T
segFω (k) + 1

Tλ (k) (7)

fmin
ac ≤ fac (k) ≤ f

max
ac (8)

|fac (k+ 1) − fac (k)| ≤ r (9)

In (3)-(7), binary vector ω(k) = (ωi(k))N×1 and continuous
auxiliary vector λ(k) = (λi(k))N×1 are introduced to transform
nonlinear equalities pac = gp( fac),qac = gq( fac) to mixed integer
linear equalities and inequalities. ω(k) contains only one element
1, whose position indicates the segment where the operation
frequency fac (k) locates.ΛF = diag(fsegF) andΛB = diag(fsegB) are
two diagonal matrix, and (ΛB −ΛF)ω (k) determines the upper
bound of auxiliary vector λ(k). Constraint (8) represents the
upper and lower bound of fac (k), and constraint (9) represents
frequency regulation limitations during discrete control interval.

FIGURE 2
Adjustment capability curve (ACC) of one IAC.

2.2 Adjustable capability of one IAC

For each room equipped with an IAC, suppose there always
exists an acceptable room temperature range [Tmin,Tmax] and a
most satisfactory temperature Tfit according to user’s personal
preference. So, electrical power pac of IAC can be regulatedwithin
a certain range without violating the user’s comfort limitations,
which provides substantial flexible power adjustment capability
to the distribution system after aggregating.

To evaluate the power adjustment capability of one IAC and
an IACs cluster, we firstly introduce a piecewise linear mapping
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φ :ℝ↦ℝ of room temperature Ta:

φ(Ta) = {
(Ta −Tfit)/(Tmax −Tfit) , if Ta ≥ Tfit
(Ta −Tfit)/(Tfit −Tmin) , if Ta < Tfit

(10)

Thus, the mapping result s = φ(Ta)will be a scalar within the
range of [−1,1], which will be positive if room temperature Ta is
above Tfit, and be negative if Ta is below Tfit. Meanwhile, smaller
absolute value of s indicates that Ta is closer to Tfit, hence |s| can
be regarded as an index to quantify user’s “unsatisfactory degree”
[15] of current room temperature Ta.

Then, we define a monotonically decreasing function
pac = dac(s) termed adjustment capability curve (ACC) of one
IAC according to user’s preference information, which is
illustrated in Figure 2. The horizontal axis represents the target
“unsatisfactory degree” s(k+ 1) after current round of control,
and vertical axis represents the electrical power pac required to
transfer s(k) to s(k+ 1). Intuitively, image of ACC is uniquely
determined according to 4 characteristic points (F,A,B,C) and 2
horizontal power boundary values pmax_opt

ac ,pmin_opt
ac . For point F,

its abscissa value indicates target “unsatisfactory degree” s(k+ 1)
is fixed to current s(k), and its ordinate value pfixac represents
the required electrical power to guarantee s(k+ 1) = s(k) after
control period τ. Similarly, for point A, it indicates the electrical
power pmax_cft

ac required to ensure s(k+ 1) = −1; for point B, it
indicates the electrical power pmin_cft

ac to satisfy s(k+ 1) = +1;
for pointC, it indicates the electrical power psatac to guarantee
s(k+ 1) = 0. Except for these 4 characteristic electrical power
values {pfixac ,p

max_cft
ac ,p

min_cft
ac ,p

sat
ac }, pac is also restricted by IAC’s

upper and lower bound of electrical power {pmax_opt
ac ,pmin_opt

ac }
due to physical operation limitations. Consequently, pac = dac(s)
presents to be a monotonically decreasing piecewise linear
function.

To obtain adjustable capacity of one IAC, firstly we should
calculate corresponding characteristic cooling power values
{qfixac ,q

max_cft
ac ,q

min_cft
ac ,q

sat
ac } according to discrete ETP Equation 2:

qfixac (k) = caρaVroomσ(Tout −Ta (k)) (11)

qmax_cft
ac (k) = caρaVroomσ(Tout −

Tmin − e−στTa (k)
1− e−στ

) (12)

qmin_cft
ac (k) = caρaVroomσ(Tout −

Tmax − e−στTa (k)
1− e−στ

) (13)

qsatac (k) = caρaVroomσ(Tout −
Tfit − e−στTa (k)

1− e−στ
) (14)

Then, by referring to aforementioned segmentation of
IAC power and operation frequency, binary vector ω(k)
and continuous auxiliary vector λ(k) can be determined
according to current cooling power qac(k) via constraints
(3)–(7). Afterward, characteristic power p•ac (k) (• stands for
{fix,max_cft,min_cft, sat}) can be calculated:

p•ac (k) = psegF
Tω (k) +

kTpsegω (k)

kTqsegω (k)
[q•ac (k) − qsegF

Tω (k)] (15)

Finally, adjustable electrical power pΔac(k) of one IAC is
quantified by:

{
pΔac (k) ≥max{pmin_cft

ac (k) ,pmin_opt
ac (k)} − pac (k)

pΔac (k) ≤min{pmax_cft
ac (k) ,pmax_opt

ac (k)} − pac (k)
(16)

2.3 Adjustable capability of IAC cluster

During system-level dynamic economic dispatching and
real-time control processes, the IAC cluster is the basic unit
participating in power balance. So, an IAC cluster is working
like a virtual power plant (VPP) to some extent, which is ought
to provide its power-adjustable capacity and current operation
power to DSO.

To achieve this goal, in this paper, we require all IACs
belonging to the same cluster to follow a unified control
signal s∗(k+ 1). The advantages are twofold: (1) Unified
“unsatisfactory degree” ensures fairness of different users’
comfort experience without violating their personal preference,
because s∗(k+ 1) ∈ [−1,1]; (2) This requirement is sufficiently
simple and tractable, which brings great convenience to decision-
making process even if the number of IACs in one cluster is very
large. Once the requirement is satisfied, the adjustment capability
of the IAC cluster can be easily computed by simply aggregating
(adding up) each IAC’s ACC as an equivalent ACC of the IAC
cluster:

pcluster = dcluster (s)
Δ
= ∑
i∈cluster

dac,i (s) (17)

So, (17) indicates that pcluster is also a monotonically
decreasing piecewise linear function concerning cluster’s unified
control signal s. Suppose pcluster ∈ [p

min
cluster,p

max
cluster], the adjustable

capacity pΔcluster of IAC cluster can be quantified similarly with
(16):

{{
{{
{

pΔ,min
cluster ≤ p

Δ
cluster ≤ p

Δ,max
cluster

pΔ,min
cluster =min{0,pmin

cluster − pcluster (k)}
pΔ,max
cluster =max{0,pmax

cluster − pcluster (k)}
(18)

where pcluster(k) = ∑
i
pac,i(k) is the electrical power demand

of IAC cluster at current time point kτ. That’s to say, once
pcluster(k) and cluster’s ACC are determined, adjustable capacity
[pΔ,min

cluster,p
Δ,max
cluster] of IAC cluster can be quickly determined

according to (17) (18).

3 Adaptive robust economic
dispatch optimization and solution
methodology

Due to the lack of uncertainty modeling of RES, under some
extreme operation scenarios, the decision results of a traditional
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deterministic economic dispatching model based on predicted
values may lead to high adjustment costs during real-time power
balance. To remedy this defect, in this section, we propose
a two-stage adaptive robust economic dispatch optimization
model ARED in (19), which takes both uncertainty of RES and
adjustable capability of IAC clusters into consideration:

min
yf

Qf +max
u

min
ys

Qs (19)

The object function of ARED is composed of two parts:
normal-state operation cost Qf (first stage decision) and re-
dispatch cost Qs under worst operation scenario (second stage
decision). The decision variables of these two stages are defined
by yf,ys respectively, and u denotes uncertainty variables, which
is modeled within an adjustable uncertainty set.

3.1 First stage decision

3.1.1 Decision variables definition
In the first stage decision, the decision variables are:

yf =
{{
{{
{

vj|∀j ∈ V
pij;qij; lij|∀(i, j) ∈ ξ
pg,j;qg,j|∀j ∈ G

}}
}}
}

(20)

where V stands for the set of all busbars, ξ stands for the set of all
distribution lines, andG represents the set of all power generation
units (generators and wind plants); Decision variable v is the
square of busbar voltage, {pij;qij; lij} stands for active power,
reactive power and square of current magnitude of directed
distribution line (i, j), and pg is active power generation of power
generation unit.

3.1.2 Objective function
The object of the first stage decision is to minimize power

generation cost and wind curtailment punishment according to
predicted power generation of wind plants we

g:

minQf = ∑
j∈{G\W}
(c2,jp

2
g,j + c1,jpg,j + c0,j) + ∑

j∈W
ρcr (w

e
g,j − pg,j)

(21)

where c2,c1,c0 are coefficient of generator’s quadratic generation
cost function; ρcr is punishment coefficient of wind curtailment;
W is the set of wind plants, which is a subset of G.

FIGURE 3
Local rolling MPC of IAC controller.

3.1.3 Constraints

pg,j − pd,j + ∑
(i,j)∈ξ
(pij − rijlij) = ∑

(j,k)∈ξ
pjk + gjvj (22)

qg,j − qd,j + ∑
(i,j)∈ξ
(qij − xijlij) = ∑

(j,k)∈ξ
qjk + bjvj (23)

vj = vi + (r2ij + x
2
ij) lij − 2(rijpij + xijqij) (24)

‖2pij;2qij; lij − vi‖2 ≤ lij + vi (25)

(Vmin
j )

2 ≤ vj ≤ (V
max
j )

2 (26)

{
pmin
g,j ≤ pg,j ≤ p

max
g,j

qmin
g,j ≤ qg,j ≤ q

max
g,j

j ∈ G

{
0 ≤ pg,j ≤ w

e
g,j

pg,j tanϕ
min ≤ qg,j ≤ pg,j tanϕ

max j ∈W
(27)

{{{{{{{
{{{{{{{
{

−pmax
ij ≤ pij ≤ p

max
ij

−pmax
ij ≤ pij − lijrij ≤ p

max
ij

−qmax
ij ≤ qij ≤ q

max
ij

−qmax
ij ≤ qij − lijxij ≤ q

max
ij

lij ≥ 0

(28)

For ∀j ∈ V, constraints (22) (23) stand for nodal active power
and reactive power balance equations respectively; For ∀(i, j) ∈ ξ,
we specially use second-order cone relaxation (SOCR) inequality
(25) to substitute original quadratic equation vilij = (pij)

2 + (qij)
2,

which is widely used in modeling radial distribution network
(Farivar and Low, 2013); Constraint (26) restricts upper and
lower bound of busbar voltage; Boundary constraints of all power
generation units and power factor constraints of wind plants
are presented in (27), where ϕ ∈ [ϕmin,ϕmax] is allowable power
factor angle. Constraints (28) represents bidirectional power flow
limitations.
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FIGURE 4
Schematic of ARED and real-time control processes.

FIGURE 5
Case study: a modified IEEE 33-busbar system.

3.2 Second stage decision

3.2.1 Decision variables definition
In the second stage decision, to ensure power balance, re-

dispatch of all generation units, controllable load clusters (i.e.,
IAC clusters in this paper), wind power curtailment, and load
shedding are deployed according to actual RES power generation
during real-time operation.This stage is regarded as a “corrective
stage” based on the first stage decision results. The decision

variables are listed in (29), where we use superscript Δ to indicate
the variation of the corresponding decision variable, which can
be positive or negative. In addition, two non-negative variables
pΔ,absg,j and pΔ,absd,j are introduced, which equal the absolute values
of pΔg,j and pΔd,j.

ys =

{{{{{{{{
{{{{{{{{
{

vΔj ; |∀j ∈ V
pΔij ;q

Δ
ij ; l

Δ
ij |∀(i, j) ∈ ξ

pΔg,j;q
Δ
g,j;p

Δ,abs
g,j |∀j ∈ G

wcr
g,j |∀j ∈W

pΔd,j;q
Δ
d,j;p

Δ,abs
d,j |∀j ∈ L

}}}}}}}}
}}}}}}}}
}

(29)

3.2.2 Objective function

max
u

min
ys

Qs = ∑
j∈{G\W}

ρad,jp
Δ,abs
g,j + ∑

j∈W
ρcr,jw

cr
g,j

+ ∑
k∈CL

ρd,jp
Δ,abs
d,k + ∑

k∈{L\CL}
ρls,jp

Δ,abs
d,k

(30)

The object function is to minimize the total cost of corrective
actions under the worst uncertainty scenario u ∈ U, where U
is the adjustable uncertainty set. CL stands for the set of all
controllable IAC clusters. Coefficient {ρad,ρcr,ρd,ρls} represents
power adjustment cost of generation units, curtailment cost of
wind plants, power adjustment cost of controllable IAC clusters
and load shedding cost of normal loads.
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3.2.3 Constraints

pΔg,j + p
Δ
d,j + ∑
(i,j)∈ξ
(pΔij − rijl

Δ
ij) = ∑
(j,k)∈ξ

pΔjk + gjv
Δ
j (31)

qΔg,j + q
Δ
d,j + ∑
(i,j)∈ξ
(qΔij − xijl

Δ
ij) = ∑
(j,k)∈ξ

qΔjk + bjv
Δ
j (32)

vΔj = v
Δ
i + (r

2
ij + x

2
ij) l

Δ
ij − 2(rijp

Δ
ij + xijq

Δ
ij) (33)

2pijp
Δ
ij + 2qijq

Δ
ij − lijv

Δ
i − vil

Δ
ij = 0 (34)

{
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g,j ≤ pg,j + p

Δ
g,j ≤ p

max
g,j
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Δ
g,j ≤ q

max
g,j
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{{{{{
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{
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Δ
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Δ
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(35)
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2 ≤ vj + vΔj ≤ (V
max
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Δ
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Δ
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(36)

{
βminpd,j ≤ p

Δ
d,j ≤ β

maxpd,j
βminqd,j ≤ q

Δ
d,j ≤ β

maxqd,j
(37)

{
wg
g,j = w

e
g,j + (θ

+
g,j − θ
−
g,j)Δwg,j

0 ≤ θ+g,j,θ
−
g,j ≤ 1

(38)

{
−pΔ,absd,j ≤ p

Δ
d,j ≤ p

Δ,abs
d,j

−pΔ,absg,j ≤ p
Δ
g,j ≤ p

Δ,abs
g,j

(39)

In these constraints, {pg,qg,pij,qij, lij,v} are derived by the
solutions of first stage decision model, and should be considered
as constant known values during second stage decision.
Constraints (31)–(36) basically inherit first stage constraints
(22)–(28), but are presented in form of incremental expressions.
(34) is derived through deploying first-order Taylor expansion
on original constraints vilij = (pij)

2 + (qij)
2 at the operation point

determined by first stage decision, which becomes a linear
equation. (37) represents the adjustable capacity of IAC clusters
or load shedding capacity of normal loads, where βmin,βmax

are two scale factors representing adjustable capacity (18) with
their absolute value smaller than 1. For IAC clusters, they
can not only reduce power demand, but also increase power
demand, so βmin ≤ 0,βmax ≥ 0; For normal loads, they can only
reduce power demand (load shedding), hence βmin = 0,βmax ≥ 0.
(38) establishes a box-style uncertainty set to depict the
relationship between actual power generation of wind plant
wg
g and predicted value we

g. The maximum deviation Δwg is
adjustable, which can be used to obtain and compare solutions
under different conservative levels. Auxiliary constraint (39)
implicitly establishes non-negative restriction of variables pΔ,absg,j ,
pΔ,absd,j , and guarantees pΔg,j = p

Δ,abs
g,j ,pΔd,j = p

Δ,abs
d,j at optimal solution.

Different from the model formulation in previous work
(Gao et al., 2018), the model in this paper not only requires

fewer decision variables but also eliminates integer variables
indicating upward or downward power adjustment states, which
contributes to the simplification of ARED solution.

3.3 C&CG algorithm based ARED
solution method

In our two-stage ARED optimization problem, the first stage
decision is a QCQP problem due to SOCR of branch power
flow equations.The second stage decision is a max-min problem,
which can be regarded as a linear programming problem (LP)
concerning decision variable ys for given yf and uncertainty
scenario u. Considering the problem structure of ARED,we draw
experience from column and constraints generation (C&CG)
algorithm (Zeng and Zhao, 2013) to solve it, which iteratively
solves the master problem (MP) and sub-problem (SP) to
approximate the optimal solution. The compact form of MP and
SP are:

MP : min
yf,η,ys,l

Qf + η

s.t.
{{{{
{{{{
{

η ≥ bTys,l

Eiey
f +Giey

s,l ≤ hie −Mieu
l

Eey
f +Gey

s,l = he −Meu
l
, l = 1,…,k

yf ∈Ωf

(40)

SP : max
u

min
ys

Qs = bTys

s.t.
{{
{{
{

Qu ≤ q
Giey

s ≤ hie −Eieyf −Mieu
Gey

s = he −Eeyf −Meu

(41)

In MP, yf ∈Ωf stands for feasible region of yf generated by
constraints (22)–(28); The first three constraints are gradually
appended to MP after solving SP during each iteration, and k is
current iteration times. In SP, u

Δ
=((θ+)T, (θ+)T)T, and constraint

Qu ≤ q stands for adjustable uncertainty set (38), and two
remained equality and inequality correspond to constraints
(31)–(37), (39).

To solve max-min problem SP, we firstly reformulate it to a
single max-problem by deriving the dual problem of inner min-
problem, which is named by DSP1:

DSP1 : max
u,π,μ

J = (hie −Eieyf −Mieu)
Tπ+ (he −Eeyf −Meu)

Tμ

s.t.
{{
{{
{

Qu ≤ q, π ≤ 0

[
Gie
Ge
]
T

(
π
μ
) = b

(42)

where π,μ are Lagrange multiplicators corresponding to
inequality and equality constraints in (41). Notice that bilinear
terms uTMe

Tμ and uTMie
Tπ are incorporated in objective

function of DSP1, which hinder DSP1 from being directly solved
due to nonconvexity. Fortunately, by checking ARED model, it
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can be deduced that:

uTMe
Tμ = ((θ+)T (θ−)T)(

O −Λwg
O Λwg

)(
μ¬wg
μwg
)

= −(θ+)TΛwgμwg + (θ
−)TΛwgμwg (43)

uTMie
Tπ = 0 (44)

where Λwg = diag(Δwg), μwg is the multiplicator related with
equality constraint (45) synthetized from equations in (35) and
38 by eliminating intermediate variable wg

g, and μ¬wg is the rest
multiplicator of μ.

pg,j + p
Δ
g,j = w

e
g,j + (θ

+
g,j − θ
−
g,j)Δwg,j −w

cr
g,j j ∈W (45)

According to the work of Shao et al. (2017), max-min RO
always derives its optimal solution at one vertex of the
uncertainty set, so u can be regarded as a binary vector
without loss of optimality. Considering this, we can furtherly
eliminate bilinear terms in (43) by introducing auxiliary variable
z+ = θ+◦μwg, z− = θ−◦μwg and applying big-M method:

{{{{{{{
{{{{{{{
{

uTMe
Tμ = −1TΛwgz

+ + 1TΛwgz
−

μwg +M (θ
+ − 1) ≤ z+ ≤Mθ+

−Mθ+ ≤ z+ ≤ μwg −M (θ
+ − 1)

μwg +M (θ
− − 1) ≤ z− ≤Mθ−

−Mθ− ≤ z− ≤ μwg −M (θ
− − 1)

(46)

where M is a big constant, ◦ stands for the Schur-Hadamard
product of two matrices sharing the same size. Finally, DSP1
can be exactly linearized to an equivalent mixed integer linear
programming (MILP) problem DSP2, which can be directly
solved by commercial solvers:

DSP2 : max
u,π,μ,z+,z−

J =

(hie −Eieyf)
Tπ+ (he −Eeyf)

Tμ− 1TΛwgz
+ + 1TΛwgz

−

s.t.

{{{{{{{{{{{{
{{{{{{{{{{{{
{

Qu ≤ q,π ≤ 0

[
Gie
Ge
]
T

(
π
μ
) = b

μwg +M (θ
+ − 1) ≤ z+ ≤Mθ+

−Mθ+ ≤ z+ ≤ μwg −M (θ
+ − 1)

μwg +M (θ
− − 1) ≤ z− ≤Mθ−

−Mθ− ≤ z− ≤ μwg −M (θ
− − 1)

(47)

To sum up, we use pseudo code to demonstrate the detailed
solution process of ARED based on the C&CG algorithm.

4 Real-time control for
compensation of res power
fluctuation

The actual power generation of RES is revealed during
real-time operation, which is very likely to deviate from the

Initialization:

Set LB(0) = −inf, UB(0) = +inf, tolerance ε,

iteration counter k = 1.

Iteration:

1) Solve MP (40) and obtain yf(k), η (k) and

Qf(k).

2) Update LB(k) = max{LB(k−1),Qf(k)}.

3) Solve DSP2 (47) and obtain Qs(k) and

worst scenario uk = u(k).

4) Update UB(k) = min{UB(k−1),LB(k)− η (k)+

Qs(k)}.

Stopping Criteria:

If:|[UB(k) −LB(k)]/LB(k)| ≤ε,stop;

Else:append first three constraints in (40)

to MP, and set k = k+1, go back to

Iteration part.

Algorithm 1. C&CGAlgorithm for Solving ARED.

predicted value due to RES power fluctuation. Hence, DSO
distributes the power deviation to each generation unit and IAC
cluster according to a proportion of their adjustable capacity.
However, unlike distributed generators, the IAC cluster is
unable to constantly generate and regulate a certain amount of
power by itself, and it can only provide power adjustment by
affecting the user’s comfort experience (namely, by changing
room temperature).Therefore, in this section, we propose a novel
control strategy for IAC clusters to achieve power adjustment for
compensation of RES power fluctuation without violating IAC
users’ comfort preferences.

4.1 Real-time control of IAC cluster

Suppose one IAC cluster’s target power adjustment is
pΔ,∗cluster(k). Hence, the immediate work of IAC cluster is to
decompose pΔ,∗cluster(k) to every IAC, which turns out to find out
the unified target s∗(k+ 1) for all IACs to follow. Firstly, we
calculate the target (reference) power of the IAC cluster by:

p∗cluster (k+ 1) = p
Δ,∗
cluster + pcluster (k) (48)

Next, according to IAC cluster’s ACC, the unified control
target s∗(k+ 1) can be determined by:

s∗ (k+ 1) = d−1cluster (p
∗
cluster (k+ 1)) (49)

where d−1cluster is the inverse function of dcluster. Intuitively,
s∗(k+ 1) can derived by the intersection point of function curve
pcluster = dcluster(s) and horizontal line pcluster = p

∗
cluster(k+ 1).

Finally, each IAC local controller conduct autonomous
control of IAC to follow the target signal s∗(k+ 1). Thus,
this process can be carried out in a decentralized style. It is
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TABLE 1 Parameters of power generation units.

Bus ID Active Power Range (MW) Reactive Power Range (MVar) Cost Coefficient

c2 c1 c0

  1 [0, 10] [−10,10] 0 25 0
  9 [0, 0.8] [−0.8, 0.8] 0 20 0

0.5 Predicted ϕ ∈ [0.1π,0.2π]
  19 [0, 0.8] [−0.8, 0.8] 0 20 0

0.45 Predicted ϕ ∈ [0.1π,0.2π]
  24 [0, 0.8] [−0.8, 0.8] 8 11.5 240
  27 [0, 0.8] [-0.8, 0.8] 5 12.1 220

TABLE 2 Random initialization of iac operation condition and user
preference parameters.

Parameters Distribution

IAC Operation Conditions Tout(°C) U(31.5,32.5)
Ta(0)(°C) N(25.0,2.0)
fac(0)(Hz) U(30.0,90.0)

User Preference Tfit(°C) N(25.4,0.3)
Tmin(°C) Tfit −U(1.0,2.0)
Tmax(°C) Tfit +U(1.0,2.0)

noteworthy that during local IAC control, to ensure accuracy and
exactness of control, the sampling and control period is usually
chosen to be smaller than that of determining the target signal.
Therefore, a local model predictive control (MPC) optimization
is developed to model and optimize the local process of tracking
s∗(k+ 1) with discrete time micro step τ = τmpc:

minJac = (Ta −T∗a )
TΛT (Ta −T∗a )

+ (pac − p
∗
ac)

TΛp (pac − p
∗
ac)

s.t.
{{
{{
{

T∗a = φ
−1 (s∗ (k+ 1)) × 1Nmpc×1

p∗ac = dac (s
∗ (k+ 1)) × 1Nmpc×1

constraints (2) − (9) hold

(50)

where Nmpc is the number of micro steps when applying
MPC, which is also termed “prediction horizon” in some
existed literature;Ta = [Ta(1),Ta(2), ..Ta(Nmpc)]T ∈ ℝ

Nmpc is the
room temperature at the end of each MPC micro step, and
similarly pac ∈ ℝ

Nmpcis IAC electrical power of each micro step;
ΛT and Λp are two diagonal coefficient matrix; Constraints
(2)–(9) are also required to be satisfied for each micro step.
During the time period before receiving the next target signal,
each IAC will repeatedly execute local MPC in a rolling manner,
as shown in Figure 3. After each round of MPC, only the first
micro step’s control variable (namely, fac(1)) result is adopted by
IAC controller (Chen and Liu, 2021).

4.2 Overall processes of ARED and
real-time control

Now, we integrate ARED and real-time control together.
The entire processes of conducting ARED and real-time
control of IAC clusters are illustrated in Figure 4. The
processes colored green, gray, and yellow are carried out
by local IAC controllers, IAC load aggregators, and DSO
respectively.

Firstly, each IAC aggregator computes the ACC of the
IAC cluster and uploads its adjustable capacity to DSO every
τARED = 5 min, which determines the lower and upper bound
of load power adjustment in constraint (37). Based on IAC
cluster adjustable capacity and predicted power generation of
RES, DSO solves ARED optimization model and determines
the optimal setting point for each power generation unit, which
minimizes the total operation cost under the worst uncertainty
scenario.

Afterward, real-time control processes are executed
with a time cycle of τRC = 1 min to ensure the minute-
level power balance of the distribution system against RES
power fluctuation. Concretely speaking, IAC aggregator
determine its target “unsatisfactory degree” signal s∗

according to (49), and broadcast s∗ to its downstream
IACs.

Finally, to track the target power indicated by s∗, each IAC
will then execute rolling MPC locally and autonomously, which
is conducted every τmpc = 15 s with coefficient ΛT set to zero
matrix andΛp set to identity matrix.Therefore, to minimize cost
function of MPC model (50), pac is forced to approach target
value p∗ac as quickly as possible during investigated prediction
horizon, which ensures the accuracy of tracking target value.
Although temperature Ta is not explicitly forced to track the
target valueT∗a in objective function, its value is still located in the
range of [Tmin,Tmax] due to s ∈ [−1,1], which guarantees good
comfort experience of IAC user.
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TABLE 3 Results of ared’s first and second stage decision.

Dispatchable Units First Stage Decision Second Stage Decision

pg(MW) qg(MVar) pΔ(MW) qΔ(MVar)

  S1 1.605 0.464 0.00 -0.071
  W9 0.500 0.329 -0.200 -0.111
  W19 0.400 0.291 -0.200 -0.145
  G24 0.524 0.654 0.274 0.093
  G27 0.745 0.606 0.055 0.110
  IACs – – 0.066 0.065

TABLE 4 Per-hour cost comparison of ed and ared.

Method 1st Stage Cost ($) 2nd Stage Cost ($) Total Cost ($)

ED 536.82 16.78 553.60
ARED 538.14 13.84 551.98

TABLE 5 Cost under different uncertaintymagnitude.

Δwg(MW) 0 0.05 0.1 0.15 0.2 0.25 0.3

1st Stage Cost ($) 536.82 536.92 537.16 537.57 538.14 538.78 539.48
2nd Stage Cost ($) 0 3.31 6.83 10.34 13.84 17.35 21.08
Overall Cost ($) 536.82 540.23 543.99 547.92 551.98 556.12 560.57

FIGURE 6
Compensation of wind power fluctuation.

5 Study case

5.1 Case description

A modified IEEE 33-busbar distribution network is adopted
in this paper, the topology of which is shown in Figure 5. Two

distributed generators and two wind plants are added to busbars
9, 19, 24, 27, and four IAC clusters with 15, 15, 30, and 15 IACs
individually are also integrated into busbars 7, 8, 25, and 30. In
this study case, wind plants account for 50% of the total installed
capacity of the explored distribution system, and can undertake
43% of the total load at maximum power generation.
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FIGURE 7
Evoluton of (A), (B) room temperature and (C) unsatisfactory degree.

For the first stage decision of ARED, parameters of all
dispatchable power generation units are listed in Table 1. For
second stage decision of ARED, cost coefficients of wind
curtailment and load shedding {ρcr,ρls} are set to 40, 60$/MW
respectively. Power adjustment cost coefficient ρad of the
transmission system is set to 45$/MW, and that of distributed

generators is set to 35$/MW. IAC clusters in this paper
are assumed to participate in power adjustment by incentive
contracts, and the contract price (i.e., cost coefficient ρd) is set
to 35$/MW.

The parameters of IAC are inherited from the literature
[18], and for each room equipped with IAC, the initial
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FIGURE 8
Adjustable capability of IAC cluster.

room temperature, initial IAC compressor operation frequency,
and ambient temperature are randomly generated according
to distributions in Table 2 where N,U stands for Gaussian
distribution and uniform distribution. We also simplify each
room’s structure to be a cuboid with length 12.5m, width 8m, and
height 2.5 m.

5.2 Anaysis of ARED results

5.2.1 Results of ARED
Without losing generality, we firstly demonstrate ARED

results with uncertainty budget set to Δwg,j = 0.2 MW, which are
listed in Table 3. For the results of the first stage decision, the
operation power of wind plants at busbar 9 and 19 are scheduled
to the same values as the predicted ones, which maximize the
use of wind power. The second stage decision reveals the worst
uncertainty scenario: the power generation of wind plants 9 and
19 simultaneously deviate -0.2 MW frompredicted values, which
causes an 0.4 MW power deficiency in total. To compensate for
this deviation, distributed generators 24 and 27 increase their
power generation by 0.274 and 0.055 MW, and controllable
IAC clusters at busbar 7, 8, 25, and 30 decrease their power
demand by 0.066 MW in total as well, which undertakes 16.5%
of required power adjustment capacity. Meanwhile, the 0 MW
power adjustment of the substation indicates that uncertain
power fluctuation of RES is completely compensated within
the distribution system itself, which stabilized power exchange
between the distribution system and transmission system.

5.2.2 Comparison of ARED and traditional ED
In traditional ED, only the first stage decision is carried out

to minimize total operation cost under predicted RES power
generation, which is a deterministic optimization problem. As
shown in Table 4. The cost of the first stage decision ($536.82/h)
is lower than that of ARED ($538.14/h). However, under the

worst uncertainty scenario, ED’s cost of corrective regulation
in the second stage ($16.78/h) is contrarily higher than ARED
($13.84/h), which simultaneously causes a higher total cost
($553.60/h). The results also demonstrate the mechanism of
ARED: by deviating the solution of the first stage decision from
that of a deterministicmodel (which actually causes a suboptimal
solution of the first stage), a smaller cost of the second stage under
the worst operation scenario can be achieved, which leads to a
lower total cost as well.

5.2.3 Influence of uncertainty budget
By adjusting uncertainty budget Δwg,j from 0 to 0.3 MW

(interval 0.05 MW), ARED with different uncertainty budget
are also solved to derive different robust optimal solutions
under distinct conservative level. The results are shown in
Table 5.

When Δwg,j = 0, two-stage ARED model becomes a
deterministic one with optimal first stage cost and 0 s stage cost.
It is noteworthy that the optimal solution of the deterministic
ARED model must be a feasible solution to other general
ARED models with nonzero. Therefore, the optimal values
of the objective function of other general ARED models are
sure to be no less than that of the deterministic ARED model.
Additionally, with the increase in the uncertainty budget, the
cost of both two stages tends to increase simultaneously. This
indicates that the more conservative the AREDmodel is, the less
cost-effectiveness the results will be. So, the tradeoff between
cost-effectiveness and robustness of ARED should be considered
in practical situations by selecting an appropriate uncertainty
budget.

5.3 Analysis of real-time control results

During real-time control, the deviation between RES actual
and predicted power are distributed to dispatchable units for
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FIGURE 9
Results of real-time control with negative biased RES prediction error. (A) Adjustable capacity evolution. (B) Power compensation results. (C)
Unsatisfactory evolution.

power compensation. Within these units, the IAC cluster is the
most distinct because it works more like energy storage that
is incapable of constantly generating and regulating a certain
amount of power by itself. Hence, in this part, we focus on
making an analysis of real-time control of IAC clusters.

5.3.1 Compensation of wind power fluctuation
Figure 6 demonstrates the power compensation effect of

controllable IAC cluster at busbar 25 under the aforementioned
control strategy. The yellow dotted line illustrates the fluctuation
of the actual power of RES, which is sampled every 4 micro
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FIGURE 10
Results of real-time control with large power adjustment signal. (A) Adjustable capacity evolution. (B) Power compensation results. (C)
Unsatisfactory evolution.

steps (τRC = 1 min), and indicates the latest power adjustment
IAC cluster should undertake. By applying our control strategy,
the target power of the IAC cluster is correspondingly calculated
according to (48), as shown by the blue dotted line. Then, IACs

execute autonomous and local MPC control to track a unified
target “unsatisfactory degree” signal translated from target power
according to (49). The actual power response of IACs is shown
by red line, which is updated every micro step (τmpc = 15 s).
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It is clearly shown that the actual power of the IAC cluster
perfectly follows the target power. Once the target power is
updated, the actual power will start to vary towards the target
value.

For a more intuitive presentation, we define the residual
between target power and actual power by “compensation
residual”, which is presented by the purple line. The residual
signal actually indicates the “unrealized” power adjustment to
be undertaken by the transmission system. It can be found that
the residual is a nonzero value at the beginning 1 micro-step of
each τRC control interval (4micro steps) due to updating of target
power, but is gradually eliminated during the sequential 3 micro
steps. This means power compensation can be fully achieved
within the distribution system, and no more ancillary power
adjustment is required in the transmission system.

5.3.2 Evolution of room temperature
The scaled adjustable capability of the IAC cluster is based

on each IAC’s minor contribution of power adjustment, which
changes the temperature of a room. Figure 7 demonstrates room
temperature evolution of the 30 controllable IACs at busbar
25. In Figure 7A, we can find that initial values of room
temperature are scattered in a wide range due to our random
initialization. But these temperature values gradually converge to
a narrow range after around 20 micro-steps and evolve following
a similar tendency. This is the effect of adopting a unified target
signal s∗, as shown in Figure 7C. It can be found that the
“unsatisfied degree” of each room gradually converges to the
same value. Thus, high similarity can be observed concerning
the evolution of different rooms’ target temperature and actual
temperature.

As real-time control proceeds, the room temperature is still
within the range determined by each user’s preference. For
ease of explanation, we randomly choose 6 rooms and plot
their individual temperature curve together with preference
temperature levels in Figure 7B. It is clearly shown that after the
initial 20 micro-steps, all rooms’ temperature gradually locate
within their individual allowable interval indicated by Tmax (red
horizontal line) and Tmin (yellow horizontal line), and varies
around Tfit (purple horizontal line). In fact, target signal s∗ is
bounded to [-1,1], as shown in Figure 7C, so room temperature
will not violate user’s preference constraints.

5.3.3 Adjustable capacity of IAC cluster
ACC of IAC cluster is updated for calculation of IAC cluster’s

adjustable capacity before conducting ARED, so its updating
period is τARED = 5 min, which equals 20 micro-steps. Figure 8
demonstrates adjustable capacity evolution of the IAC cluster at
busbar 25. The upward adjustable capacity of the IAC cluster
can be intuitively comprehended by the gap between maximum
allowable power and actual power of IAC, and so is downward
adjustable capacity similarly.

It can be observed that the maximum and minimum
allowable power of IAC are time-variant, and this is the most
prominent feature that distinguishes controllable IAC clusters
from other dispatchable units such as distributed generators.
The mechanism of this feature can be explained through ACC
we proposed in Section 2: Firstly, higher room temperature
will lead to larger maximum and minimum allowable power of
IAC according to (12) and (13), which can be comprehended
by shifting ACC curve upward along the vertical pac -axis;
Meanwhile, “unsatisfactory degree” s is also monotonically
increasing with respect to room temperature according to (10).
Consequently, we can deduce that a bigger s corresponds to a
higher value of the maximum and minimum allowable power
of the IAC cluster. Referring to evolution of “unsatisfactory
degree” s in Figure 7C, s = −0.354, 0.116. −0.163, −0.421, -0.535
at the 20th, 40th, 60th, 80th, and 100th micro-steps. Hence,
the variation rule of the IAC cluster’s maximum and minimum
allowable power can be explained.

5.4 Influencing factors of real-time
control performance

In this part, we discuss influencing factors of real-time
control from two aspects: bias of prediction error and fluctuation
amplitude of RES stochastic deviation from the predicted value.

5.4.1 Bias of prediction deviation
Under normal circumstances, the deviation between the

predicted value and actual value of RES power generation
obeys Gaussian distribution with a mean value of 0. The
aforementioned results of real-time control are all obtained
based on this assumption.However, positive-definite or negative-
definite deviation may occur due to incorrect RES power
prediction algorithm or other system failures, which is termed
“bias” in this part.

Figure 9 demonstrates real-time control results of the IAC
cluster at busbar 25 with a negative-definite bias of -4.5 kW
superposed to its power adjustment signal, which requires the
IAC cluster to increase power demand by an extra 4.5 kW. It
can be noticed that curves of “unsatisfactory degree” are shifted
downwards compared with those in Figure 7C. This means the
power adjustment is achieved with lower room temperature,
which affects the user’s comfort experience. Meanwhile, the
actual power of the IAC cluster is shifted upward and reaches the
maximum allowable power boundary more frequently. On this
occasion, the upward capacity of the IAC cluster is squeezed to 0,
and the power adjustment signal may not be fully compensated,
as shown at 60th and 90th micro-step in Figure 9B.

Consequently, the bias of prediction deviation will lead
to orientated increasing or decreasing of IAC cluster power,
which also shifts the variation range of room temperature.
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The bias should be avoided as far as possible by improving
the RES power prediction algorithm or eliminating system
faults.

5.4.2 Amplitude of fluctuation
In this part, we amplify the power adjustment signal by 1.88

times to simulate violent RES power fluctuation. The results are
calculated and shown in Figure 10.

Comparing Figure 10A with Figure 8, we can find that the
actual power of IACwill reachmaximum orminimum allowable
boundary much more frequently under large fluctuation. When
this happens, the upward capacity or downward capacity of the
IAC cluster will be alternately squeezed to 0, and the power
adjustment signal may not be fully compensated, as shown
at the 55th, 70th, and 90th micro-steps in Figure 10B. For
room temperature or “unsatisfactory degree” in Figure 10C, it
is not shifted like the results under the biased situation of RES
prediction, but the variation range becomes relatively wider
compared with Figure 7C.

In fact, the actual power fluctuation of RES is usually
bounded within a maximum range of 20% deviation from the
predicted value. Therefore, the power adjustment signal can be
fully compensated by the IAC cluster by aggregating a sufficient
number of IACs or selecting the appropriate coefficient of
distribution proportion.

6 Conclusion

This work proposes an adaptive robust economic dispatch
(ARED) and real-time control scheme of the distribution
system, which comprehensively takes the uncertainty of RES
and flexibility of controllable IAC clusters into consideration.
Firstly, the concept of the adjustable capacity curve (ACC) is
developed to quantify the exact adjustable capacity of the IAC
cluster within a certain time period and guide each IAC to carry
out decentralized local model predictive control. Afterward,
ARED model for the power dispatch stage is formulated, which
incorporates the adjustable capacity of IAC and uncertainty
set of RES power generation in the constraints. An iterative
solution methodology of ARED is also designed by drawing
the experience of the C&CG algorithm, of which the master
problem is formulated as aQCQPand themax-min sub-problem
is reformulated to a MILP via linear duality theory and big-
M method. Finally, to hedge against stochastic RES power
fluctuation, a real-time control strategy is also proposed, where
IAC clusters provide ancillary power adjustment service based on
decentralized control.

A case study on a modified IEEE 33-bus system verifies that
ARED model can better guarantee the economic efficiency of

the distribution system against the worst uncertainty scenario
under different uncertainty budgets. Meanwhile, the real-time
control strategy of the IAC cluster is also proved to be effective in
eliminating RES power fluctuation without violating the comfort
preferences of IAC users. In addition, the influence of biased
prediction error and fluctuation amplitude is also analyzed
in detail, which can provide a reference for enhancing the
operation stability of the IAC cluster under our control strategy.
In the future, we will furtherly investigate adjustable capability
quantification and real-time control of IAC clusters based on
price-based demand response.
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