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A deep reinforcement
learning-based bidding strategy
for participants in a
peer-to-peer energy trading
scenario
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An efficient energy trading strategy is proven to have a vital role in reducing

participants’ payment in the energy trading process of the power grid, which

can greatly improve the operation efficiency of the power grid and the

willingness of participants to take part in the energy trading. Nevertheless,

with the increasing number of participants taking part in the energy trading,

the stability and efficiency of the energy trading system are exposed to

an extreme challenge. To address this issue, an actor-critic-based bidding

strategy for energy trading participants is proposed in this paper. Specifically,

wemodel the bidding strategywith sequential decision-making characteristics

as a Markov decision process, which treats three elements, namely, total

supply, total demand, and participants’ individual supply or demand, as the

state and regards bidding price and volume as the action. In order to address

the problem that the existing value-based reinforcement learning bidding

strategy cannot be applied to the continuous action space environment, we

propose an actor–critic architecture, which endows the actor the ability of

learning the action execution and utilizes the critic to evaluate the long-

term rewards conditioned by the current state–action pairs. Simulation results

in energy trading scenarios with different numbers of participants indicate

that the proposed method will obtain a higher cumulative reward than the

traditional greedy method.

KEYWORDS

energy trading in smart grid, double-auctionmechanism, continuous action space, reinforcement

learning method, actor–critic architecture

1 Introduction

As a typical cyber-physical system, the smart grid is gradually becoming a research
hotspot due to its safe, economical, efficient, and environmentally friendly benefits
(Gao et al., 2012). However, in the traditional retail energy market of smart grid, most
buyers and sellers that have local electricity shortage and surplus could only choose
to trade with the main grid utility company while suffering from some price gap
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(Chen and Su, 2019). The key to designing the next-generation
retail electricity market is to grant trading participants the
freedom to independently choose trading partners. The peer-to-
peer business system is being pursued by the current research
community, which fully considers the consumers’ willingness
to choose the transaction partner and endows all customers an
equal opportunity to individually and actively participate in the
trading market (Cui et al., 2020; Anoh et al., 2020).

The double-auction mechanism is a key component
to improving the energy trading efficiency of the power
grid, which can determine the trading price and volume
for multiple participants in the energy trading market
(Vytelingum et al., 2008). Recently, the research efforts of
double-auction mechanism can be divided into two ways: one
is designing a novel energy auction framework (An et al., 2018;
Ma et al., 2014), another is determining the optimal bidding
strategy through optimization methods to reduce the payment
and improve the satisfaction of energy trading participants
(PankiRaj et al., 2019; Ramachandran et al., 2011). For the
energy auction framework design, Xu et al. (2021) proposed
a Vickrey–Clarke–Groves (VCG)-based double-auction to
maximize the social welfare of the energy tradingmarket. For the
optimization of bidding strategy, Singh et al. (2022) presented a
bidding model of the virtual power plant units participating in
the carbon-integrated day-ahead energy trading market.

Although the double-auction mechanism in the
energy trading market has been widely investigated, the
abovementioned research efforts are often challenged by the
dynamic and uncertain environment (e.g., buyer’s demand
and seller’s supply), and the resulting traditional optimization
methods, which need to obtain precise variable information,
are hard to be deployed to optimize the bidding strategy of
energy trading participants. Motivated by the advantages of
the reinforcement learning (RL) method, which can search
for the optimal strategy of decision-making problems without
obtaining the precise environment dynamics (Mnih et al., 2015;
Lillicrap et al., 2015; Galindo-Serrano and Giupponi, 2010),
RL-based methods have been widely utilized to solve the
optimization problem of energy trading participants’ bidding
strategies (Xu et al., 2019; Wang et al., 2017; Wang et al., 2019).
For instance, Wang et al. (2019) formulated the continuous
double-auctionmechanism as aMarkov decision process (MDP)
and then proposed a learning architecture based on Q-learning
to reflect personalized bidding preferences.

Although the existing literature studies prove the
effectiveness of the reinforcement learning algorithm in the
double-auction mechanism field, there are still several problems
that need to be addressed: 1) the existing RL-based trading
approaches discretized the system states (e.g., the Q-learning-
based bidding strategy in Wang et al. (2019)), which totally
ignores the continuously changing characteristics of the power
grid. 2) The abovementioned research efforts only use the state

information at the current time step to determine the optimal
bidding strategy (e.g., the DDPG-based electric vehicle charging
strategy in Tao et al. (2022)), ignoring the relationship among
states at multiple time steps.

In order to address the limitations mentioned earlier, in
this study, we first designed a double-auction mechanism to
determine the trading price and trading volume for energy
trading participants. Then, we propose an actor–critic-based
bidding algorithm to maximize the cumulative reward of
participants in the energy trading market.The proposed method
utilizes an actor network to generate continuous action and
integrates the recurrent neural network to process the sequential
state information of the power grid. Finally, we perform
the simulations to illustrate the effectiveness of the proposed
method, and the simulation results prove that the proposed
method will obtain a higher cumulative reward than the
traditional greedy method in energy trading scenarios with
different numbers of participants.

Part of this work was published in Zhang and Yang (2020).
Differently, in order to address the problem that the DQN-
based approach in the conference version cannot explore the
continuous action space, we utilize an actor–critic architecture to
endow the actor the ability of generating the continuous action.
In addition, we have added an additional component, namely,
the main grid, to the system model and the MDP model, which
makes the system model closer to reality. Finally, we perform
the expanded simulations to illustrate the effectiveness of the
proposed method compared with the existing scheme in energy
trading scenarios with different numbers of participants. The
remainder of this paper is arranged as follows: In Section 2, we
briefly review the literature studies that are related to this paper.
In Section 3, we present the system model and the designed
double-auction mechanism. In Section 4, we model the bidding
strategies of the buyer and seller asMDP. In Section 5, we present
the actor–critic-based bidding strategy in detail. In Section 6, we
perform simulations and present the results. Finally, in Section 7,
we conclude this study.

2 Related work

The research on bidding strategies for energy trading
can be divided into two categories: traditional modal-
based optimization approaches (Fooladivanda et al., 2018;
Herranz et al., 2012; Fang et al., 2016; Dou et al., 2020;
Wu et al., 2016) and intelligent learning methods
(Kim et al., 2016; Wang et al., 2019; Zhou et al., 2017;
Xu et al., 2019). The former obtains the optimal bidding strategy
of energy trading participants by constructing and solving
mathematical optimization models.

Existing literature studies of traditional modal-
based approaches are mostly concentrated on the
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bidding optimization problem (Fooladivanda et al., 2018;
Wu et al., 2016; Fang et al., 2016), in which the optimal bidding
functions were developed for the individual demand. In
Fang et al. (2016), authors proposed a bi-level optimization
model for the strategic bidding problem of load serving
entities (LSEs), with the objective of maximizing the LSE’s
revenue and minimizing the generation cost. In the work of
Wu et al. (2016), optimal bidding strategies for the electric
vehicle were formulated as the mathematical programming
model with equilibrium constraints and a game theory approach
was utilized to analyze the competition among the electric
vehicles. Herranz et al. (2012) designed a genetic algorithm to
optimize the parameters that define the best bidding strategy
for an energy retailer who supplies energy. However, most of
the aforementioned algorithms require us to iteratively solve the
optimizationmodels, which are time-consuming and impractical
for practical applications.

Applying reinforcement learning algorithms to address the
optimal bidding problem of energy trading fields has become a
research hotspot.The fundamental reason behind this prosperity
is that RL methods can obtain the optimal strategy through trial
and error without requiring the exact environment model. For
instance, Wang et al. (2019) formulated the sequential energy
bidding problem as a Markov decision process (MDP) and
utilized the classic Q-learning method to reflect personalized
bidding preferences. Liu et al. (2021) used the multi-agent deep
deterministic policy gradient (MADDPG) algorithm to address
the non-cooperative and cooperative energy trading games
between power companies. Tao et al. (2022) utilized the deep
deterministic policy gradient (DDPG) method to generate
the bidding price and bidding volume for an electric vehicle
aggregator, which reduced the reliance of algorithmperformance
on the stochastic model. Zhu et al. (2022) proposed an online
reinforcement learning algorithm to obtain the optimal bidding
policy of distributed micro-grids and the optimal dispatching
model of the distribution system operator.

3 System model and the
double-auction mechanism

In this section, we first introduce the basic principle of deep
reinforcement learning.Then, we will present the energy trading
model used in this study and the double-auction mechanism for
determining the valid price and allocations of trading.

3.1 Deep reinforcement learning

Recently, the reinforcement learning (RL) technique
(Mnih et al., 2015) has been proven to be effective in addressing
the sequential optimization problem through the interaction
between the agent and environment.The fundamental operation

process of deep reinforcement learning is described as follows:
at each time step t, the agent first takes an action at conditioned
on the state of the environment st and the policy π, denoted as
at = π(st). Then, the environment will respond with a reward
rt to the agent and step into the next state st . It is to be noted
that the purpose of the agent is to optimize the policy π that can
maximize the cumulative reward, denoted as follows:

Rt =
T

∑
i=t

γ(i−t)ri, (1)

where T is the stopping time step of the agent and γ stands for the
discount factor. In order to estimate the cumulative reward, the
RL-based method will estimate the Q value conditioned on the
state st and action at , denoted as Q(st,at) = 𝔼[Rt|st,at] (RS and
AG, 1998).

As a typical RL approach, the Q-learning method (RS and
AG, 1998) utilizes a table to store and update theQ value of each
state-action pair. The policy of the agent is to select the action
that canmaximize the Q value in the look-up table, which can be
expressed as follows:

at = argmax
a

Q(st,a) . (2)

The deep Q-learning (DQL) method (Fang et al., 2016),
which utilizes the deep neural network (DNN) parameterized
by θ to store and update the Q value, greatly addresses
the dimensional explosion challenge raised when the state is
continuous and high-dimensional. The parameters of the deep
Q network are updated through the back-propagation of the loss
function described in the following:

Lθ = (Qtar −Q(st,at))
2, (3)

where Qtar is the target Q value, denoted as

Qtar = rt + γmax
a′

Q(st+1,a′) . (4)

3.2 Energy trading market

The energy trading market, which is illustrated in Figure 1
includes four categories of participants: the micro-grid operators
(MGO), the main grid, buyers, and sellers Li et al. (2020). The
micro-grids equipped with energy generation equipment (e.g.,
photovoltaics and diesel generators) that have surplus energy for
sale are considered sellers, and the micro-grids with insufficient
energy act as buyers. The MGO acts as the auctioneer that
regulates the energy trading among buyers and sellers.TheMGO
first collects the demand and supply from buyers and sellers;
then, it determines the payment and allocation rules to guarantee
the supply–demand balance. It should be noted that the energy is
transacted based on a double-auction mechanism through peer-
to-peer (P2P) technologiesWang et al. (2014).When the trading

Frontiers in Energy Research 03 frontiersin.org

https://doi.org/10.3389/fenrg.2022.1017438
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles


Zhang et al. 10.3389/fenrg.2022.1017438

FIGURE 1
Market structure.

participant cannot purchase/sell satisfactory energy volume in
the P2P market, it could trade with the main grid through
peer-to-grid (P2G) technologies (Chen and Su, 2019) at an
unfavorable price.

3.3 Double-auction mechanism

In this study, a typical double-auction mechanism is utilized
to determine the trading price and trading volume of micro-
grids in the P2P market. We denote B and S as the sets of buyers
and sellers, respectively. (vb,i,pb,i) is the bidding information of
buyer i, in which vb,i denotes the volume of energy that buyer
i is willing to obtain and pb,i represents the bidding price that
buyer i is willing to pay for an unit of energy. Similarly, (vs,j,ps,j)
represents the bidding information of seller j that is willing
to accept. Valid price pvt is a boundary value that determines
whether a participant will win the bid at time t. Based on the
aforementioned definitions, we present the operation process of
the double-auction mechanism as follows:

1. Each buyer from set B and each seller from set S report their
respective demand and supply to the MGO.

2. The MGO collects the demand and supply from buyers and
sellers and declares the total demand and total supply to all
participants.

3. Each buyer submits the (vb,i,pb,i), and each seller submits the
(vs,j,ps,j) to the MGO.

4. The MGO announces the valid prices pvb,t and pvs,t for micro-
grids in the energy trading market. It should be noted that
pvb,t is the valid price of the buyer, and any buyer that has the
bidding price higher than pvb,t can win the bid. pvs,t is the valid
price of the seller, and any seller that has the bidding price
lower than pvs,t can win the bid.

5. The MGO determines the allocation rule for winning
participants. The allocation rule is derived based on the
following two cases of comparing the total bidding volume
of winning buyers and the total bidding volume of winning
sellers:

Case A: ∑
i∈Bw

t

vb,i ≤ ∑
j∈Swt

vs,j:

V (b, i) = vb,i,

V (s, j) = vs,j −
Δ
|St|
.

(5)

Case B: ∑
j∈St

vs,j ≤ ∑
i∈Bt

vb,i:

V (b, i) = vb,i −
Δ
|Bt|
,

V (s, j) = vs,j,
(6)

where Bw
t and Swt represent the winning set of buyer and seller,

respectively. |Bt| represents the number of winning buyers at
the time step t and |St| represents the number of winning seller
and buyer sets at the time step t. V (⋅, ⋅) is the actual energy
trading volume of a participant. Δ = | ∑

i∈Bw
t

vb,i − ∑
j∈Swt

vs,j| represents

the absolute value of the difference between the total demand of
winning buyers and the total supply of winning sellers.

The valid price effectively ensures the truthfulness of the
auction process (detailed proof is presented in our previous paper
(Li et al., 2020)). In this paper, we only present the overall process
of calculating the valid price.

1. Sort the bidding price of the winning buyer i ∈ Bt in
descending order and sort the bidding price of the winning
seller j ∈ St in ascending order, as follows:
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pb,1 > pb,2 >… > pb,n
ps,1 < ps,2 <… < ps,m.

(7)

2. Thevalid price determination is derived based on the following
four cases:

Case A: ps,1 ≤ pb,1: this case means that the minimum
bidding price of sellers is smaller than or equal to the maximum
bidding price of buyers. In this case, the transaction is denied;
both buyers and sellers need to purchase/sell energy with the
main grid to meet the needs of their transaction.

Case B: ps,m ≤ pb,n: this case means that the maximum
bidding price of sellers is smaller than or equal to the minimum
bidding price of sellers.

pvb = pb,n
pvs = ps,m.

(8)

Case C: pb,l ≥ ps,k ≥ pb,l+1 and
k−1
∑
1
vs,j≤

l
∑
1
vb,i≤

k
∑
1
vs,j: this case

means that the bidding price of the seller k is within the bidding
price of the buyer l and l+ 1. In addition, the sum of energy
demand frombuyer 1 to l is within the sumof energy supply from
seller 1 to k− 1 and the sum of energy supply from seller 1 to k.

pvb = pb,l
pvs = ps,k.

(9)

Case D: ps,k+1 ≥ pb,l ≥ ps,k and
l−1
∑
1
vb,i≤

k
∑
1
vs,j≤

l
∑
1
vb,i: this case

means that the bidding price of the buyer l is within the bidding
price of the seller k and k+ 1. In addition, the sum of energy
supply from seller 1 to k is within the sum of energy demand
from buyer 1 to l− 1 and the sum of energy demand from buyer
1 to l.

pvb = pb,l
pvs = ps,k.

(10)

4 MDP model of the bidding strategy

We use a finite Markov decision process (MDP) model with
discrete time steps to formulate the bidding behaviors of energy
trading participants (including buyers and sellers). Specifically,
we use t ∈ T to illustrate the discrete time step for the trading
process. Buyers and sellers participating in energy trading are
regarded as agents whose objectives are to pay the least cost and
get the most profit, respectively. According to the characteristic
of the MDP model, the state st at the current time step t is only
related to the state st−1 and action at−1 at the previous time step
t− 1. The MDP model consists of four elements (S,A,ζ and R),
and the detailed descriptions are summarized as follows:

S is the state space of the MDPmodel, and st ∈ S denotes the
environment state at time step t. sbi and s

s
j denote the states of the

buyer i and seller j, respectively. Specifically, the state of the buyer
i at the time step t is defined as follows:

sbt,i = [D,P,di] , (11)

where D is the total demand of buyers, P is the total supply of
sellers, and di is the buyer i’s own demand. It should be noted that
D and P reflect the demand and supply relationship in the energy
trading market, which greatly impacts the bidding strategies of
energy trading participants. Specifically, when the total supply
exceeds the total demand in the energy trading market, buyers
are more willing to purchase the energy at a lower energy price.
When the total demand exceeds the total supply, buyers will raise
the bidding price in order to win the bid. Similarly, we define the
state of the seller j at time t as follows:

sst,j = [P,D,ej] , (12)

where ej is the seller j’s own produce.
at ∈ A represents the action of the trading participants at

time slot t, where A is the action space containing the available
actions of the agent. In our trading scheme, we define the bidding
action as a two-dimensional tuple.

at = [pt,vt] , (13)

where pt is the bidding price for a unit of energy and vt is
the bidding volume. In order to make the bidding prices more
realistic, we impose the following restrictions on the bidding
prices of both buyers and sellers:

psmain + ν ≤ p
b
t ≤ p

b
main,

psmain ≤ p
s
t ≤ p

b
main − ν,

(14)

where ν≪ 1 is a small coefficient to restrict the bidding prices of
energy trading participants. For buyers, on one hand, the bidding
prices should be greater than the sellers’ price of directly selling
the energy to themain grid to ensure the bid can be accepted. On
the other hand, the bidding prices should be less than or equal to
the buyers’ price of directly buying energy from the main grid
to ensure the utilities obtained by the buyers participating in the
P2P energy trading market are greater than directly trading with
the main grid. Similarly, for sellers, the bidding prices should
be lower than the buyers’ price of directly buying energy from
the main grid and greater than or equal to the sellers’ price of
directly selling the energy to the main grid.The abovementioned
restrictions greatly encourage buyers and sellers to participate
in the P2P trading market and grant trading participants the
freedom to independently choose trading partners.

Due to the limitation of energy transmission, we assume that
the bidding volume at time step t cannot exceed its maximum.

vt ≤ v
max
t , (15)

where vmax
t is the maximum transmission volume at time t. In

order to simplify the trading model, we assume vmax
t as a fixed

value during the entire trading process.
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ζt is the transition function, which represents the state
transition probability from the state st at time step t to the state
st+1 at time step t+ 1 conditioned on the action at .

rt is the immediate reward obtained by an agent at time step t.
For the buyer i, the reward consists of two ingredients: profits in
the P2P trading market and losses in trading with the main grid.

rbi,t = (p
b
i,t − p

v,b
t )*V (i, t) − (p

b
main − p

b
i,t)*(v

b
i,t −V (i, t)) , (16)

where V (i, t) represents the actual trading volume of buyer i in
the P2P trading market. The first term of the equation utilizes
the difference between the actual trading price and the bidding
price to represent buyers’ profits in the P2P tradingmarket. Also,
the second term illustrates the buyers’ loss in trading with the
main grid by the difference between the main grid price and the
bidding price.

Similarly, we define the immediate reward of the seller j as
follows:

rsi,t = (p
v,s
t − p

s
j,t)*V (j, t) − (p

s
main − p

s
j,t)*(v

s
j,t −V (j, t)) . (17)

5 DRL-based bidding strategy

It should be noted that in the considered P2P energy trading
market, it is hard for both buyers and sellers to determine
their optimal bidding strategy through typical optimization
methods (e.g., robust optimization), due to the difficulty
of constructing the optimization model and the dynamic
environment characteristics. In recent years, deep reinforcement
learning has been deemed an effective method to obtain optimal
strategies through trial and error without modeling the exact
environment.Thus, we propose a DRL-based approach to search
for the optimal bidding strategy for energy trading participants.
The structure of the proposed DRL-based bidding scheme
is illustrated in Figure 2. Specifically, the trading participants
are regarded as the agents that repeatedly interact with the
environment and continuously update the bidding strategies
by environmental rewards. Before presenting the proposed
algorithm, the neural network architecture is first introduced.

5.1 Deep neural network architecture

Traditional value-based DRL methods, such as DQN
(Mnih et al., 2015), utilize the deep neural network to output
the probability of executing each action. However, this kind of
algorithm is impractical to be applied in the continuous action
space environment due to the fine discretization of the action
space leads to high computational overhead. To address that
issue,we use the actor–critic-based paradigm, including the actor
network π(s) to execute the action conditioned on the state and

the critic networkQ (s,a) to estimate theQ value conditioned on
the state and action.

Specifically, the actor network πη(s), which is parameterized
by η, is a non-linear mapping from the partial state si of each
agent to its individual action ai. The structure of the actor
network is presented in Figure 3. In order to endow the agent
the ability of selecting the action condition on its entire state-
action history, the actor network is built as the multi-layer
perceptron (MLP) prefixed by a gate recurrent unit (GRU)
network (Chung et al., 2014). GRU is a type of recurrent neural
network (RNN), which has better performance in processing
sequential data than RNN and long short-termmemory (LSTM)
(Gers et al., 1999). The GRU applies a gate structure, which
calculates the hidden state information ht , to memorize the
sequential state information. It is to be noted that the input
of the GRU at time step t− 1 contains the state si and the
previous hidden state ht−1. Thus, the output of GRU ht contains
information about the previous state, which is then transmitted
to the MLP of the actor network for action selection.

ai,t = πη (si,t,hi,t−1) . (18)

The critic network Qϕ(s,a), which is parameterized by ϕ,
estimates the value function with a non-linear mapping function
from state si and action ai of each agent to its value function Qi,
which is an approximate estimate of the cumulative reward R for
a given state si by taking action ai.

Qi = Qϕ (si,ai) ≈ 𝔼[R|si,ai] . (19)

It should be noted that for the structure of the critic
network, we first utilize an embedding network to extract the
characteristics of the input information and then use the MLP
to output the value function.

5.2 Procedure of the proposed algorithm

5.2.1 Interaction and replay
In the reinforcement scheme, agents learn their optimal

bidding strategy from continuously interacting with the
environment and observing the environment reward. At a
specific time step t, the agent first observes the total supply, total
demand, and individual demand/supply from the environment
to obtain the state value s(t) as described in Section 4.Then, each
agent selects the bidding policy as an action a(t) = {pt ,qt} based
on the output of the actor network. For exploration, we apply the
ϵ− greedy strategy to select an agent’s action (RS and AG, 1998),
that is, randomly selecting an action with the probability 1− ϵ
or taking an action that corresponds to the output of an actor
network conditioned on the current state with the probability ϵ.

at = {
Random[ai,t ∈ A] with probability 1− ϵ,

ai,t = πη (si,t,hi,t−1) with probability ϵ.
(20)
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FIGURE 2
Deep reinforcement learning structure.

FIGURE 3
Structure of the actor network.

It is worth mentioning that we set ϵ to 0 at the beginning of
training in order to endow the agent the ability to explore the
entire action space, while as the training progresses, the agent
will gradually obtain information about the environment. Thus,
we let ϵ increase a small value every training step. Next, MGO
will calculate the valid price and determine energy allocation
rules for each trading participant. Finally, the environment steps
into the next state s (t+ 1) based on the new total demand, total
supply, and individual demand/supply after the transaction and
generates a reward r(t) for each agent at the same time, reflecting
the immediate evaluation of the action a(t) at the state s(t).

After the interaction, an experience consists of state s(t),
action a(t), reward r(t), and next step state s (t+ 1) will be
stored in the replay buffer. Agents will utilize the experience
[s(t),at , r(t) and s (t+ 1)] in the replay buffer to train the policy.

5.2.2 Network training
In the training process, we use four deep neural networks to

learn the bidding strategy of each trading participant, namely,

the actor network πη, target actor network πη′ , critic network
Qϕ, and target critic network Qϕ′ as shown in Figure 2. At the
beginning, we randomly initialize the hidden state of GRU, the
parameters of the actor network η, and the critic network ϕ. The
target parameters η′ and ϕ′ are copied from themain parameters
η and ϕ everyC time step in order to stabilize the training process
(Lillicrap et al., 2015).

After the replay buffer has collected enough experience
[s(t),at , r(t), s (t+ 1)], we first sample the mini-batch
from the replay buffer as a collection of N experiences
[S(t ) ,At,R(t),S(t+ 1)]. Then, we utilize St and At as the input of
the critic network to obtain the evaluation of the value function.

Qeval = Qϕ (st, st) . (21)

After that, we use the target actor network to acquire the
suggested action at+1 conditioned on the next state st+1.

at+1 = πη′ (st+1,ht+1) . (22)

Next, the suggested action at+1 and the next state st+1 are
input into the target critic network. In this way, we can get the
target value function by adding immediate rewards rt to the
output of the target critic network.

Qtar = rt + γQϕ′ (st+1,at+1) , (23)

in which γ is the discount factor for adjusting the balance of the
future reward and the reward at the current time step. Based on
the two abovementioned value functions, the loss function of the
critic network is defined as the mean square error (MSE) of the
evaluation value function and the target value function.

Lϕ =
N

∑
i=1
(Qtar −Qeval)

2. (24)
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Algorithm 1. Training process for the DRL-based energy bidding strategy.

Finally, the parameters of the critic network ϕ are trained
end-to-end by the back-propagation of the gradients of the critic
network’s loss function.

ϕ = ϕ− α1∇ϕLϕ, (25)

where α1 is the learning rate of the critic network.
Furthermore, the actor network’s parameters η are updated

by the gradient of the action’s performance conditioned on the
state st ; thus, we first obtain the action by the actor network.

a′ = πη (st,ht) . (26)

Then, the evaluation of the current action a′ can be derived
from the critic network.

q = Qϕ (st,a′) . (27)

Finally, the gradient of updating the actor network is given
by

∇ηJη =
N

∑
i=1
∇ηπη (st,ht)∇a′Q. (28)

Similarly, the parameters of the actor network η are trained
by the back-propagation of the gradients with the actor network’s
learning rate α2.

η = η− α2∇ηJη. (29)

The pseudocode of the training process is outlined in
Algorithm 1, where the parameters of four neural networks are
updated by the back-propagation of the gradient of the loss
function and action evaluation. An optimal bidding strategy
can be obtained by continuously updating the neural network
parameters until convergence.

Algorithm 2. Testing process for the DRL-based energy bidding strategy.

5.2.3 Testing
In order to evaluate the effectiveness of the proposed

algorithm, we utilize the trained actor network πη to verify the
performance of the energy bidding strategies. Specifically, the
testing process lasts for E2 epoches. For each episode, at each
time slot t, all the trading agents interact with the environment to
obtain the current state st . Then, each agent regards the state st as
the input of each actor network to obtain the bidding action. It is
to be noted that in the testing phase, the action selection policy is
slightly different from that in the training phase. Particularly, we
ignore the randompolicy (ϵ policy) in the agents’ action selection
phase and directly utilize the output of the actor network as the
chosen action at = πη(st) (greedy policy). Next, the MGO will
determine the collection of the winner, the valid price, and the
energy allocation rules for the trading participants. Finally, the
environment responds to the agent with a reward rt and steps
into the next state st+1.We summarize the pseudocode of bidding
strategy evaluation in Algorithm 2, where it can be seen that
each agent uses its trained actor network to provide an automatic
energy bid.

6 Simulations

In this section, we conduct several experiments to prove
the effectiveness of the proposed energy bidding strategies.
The simulation settings are first presented. Then, we show
the evaluation results of the proposed algorithm compared
with the greedy method. Finally, the impacts of important
algorithmic parameters on the bidding performance are
evaluated.

6.1 Simulation setup

6.1.1 Parameters of the energy trading model
In order to perform the simulation of the energy trading

behavior, we make the following assumptions about the trading
model: the number of buyers is equal to the number of sellers
and is initially set to 10. The training epoch E1 is set to 10,000,
and we assume each epoch contains 24 trading steps. In order
to make the trading model realistic, we adopted a peak-valley
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FIGURE 4
Average cumulative reward of (A) buyers and (B) sellers with the number of both buyers and sellers set as 10.

FIGURE 5
Average cumulative reward of (A) buyers and (B) sellers with the number of both buyers and sellers set as 5.

pricing method for the main grid. The peak period lasts from
10 a.m. to 10 p.m., and the rest is the valley period. The price at
which buyers directly purchase energy from the main grid pbmain
and the price at which sellers directly sell energy to the main
grid psmain obey restricted normal distributions. Specifically, pbmain
is sampled from N (0.45,12) with a limitation in range [0.4,0.5]
during valley periods and is sampled from N (0.55,12) with a
boundary [0.5,0.6] during peak periods. Similarly, we sample
psmain fromN (0.35,12)within the interval [0.3,0.4] during valley
periods and sample fromN (0.45,12)within the interval [0.4,0.5]

during peak periods. According to the actual energy dispatch
data (An et al., 2018), we sample each buyer’s total demand
and each seller’s total supply in one epoch from N (900,12)
with the limit of [600,1,200]. Moreover, we set the maximum
transmission volume qmax to 5 and the balancing coefficient α to
0.1.

6.1.2 Parameters of the RL algorithm
The architecture of all GRU networks has a 64-dimensional

hidden state with a fully connected network layer suffixed and
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FIGURE 6
Average cumulative reward of (A) buyers and (B) sellers with the number of both buyers and sellers set as 15.

FIGURE 7
Average cumulative reward of (A) buyers and (B) sellers with the number of both buyers and sellers set as 20.

prefixed. Exploration is performed in the training phase by the
ϵ− greedy method. ϵ is set to 0.95 initially and decreases by 1e
− 4 per training step, with the minimum ϵ set to 0.05. We set
γ to 0.99. The volume of the replay buffer is set to 5e3, and the
volume of the mini-batch is set to 32. The target networks are
updated after every 10 training epoches. In addition, we apply
the Adam optimizer to update the critic and actor networks, with
the learning rates α1 and α2 set to 1e − 3 and 1e − 4, respectively.
We freeze the training to test the performance every 200 training
epoches, and each testing process contains 20 epoches. It should

be noted that there is no need to explore in the testing phase, and
thus, we set ϵ to 0 during testing.

6.2 Evaluation results

6.2.1 Effectiveness of the proposed method
In order to prove the effectiveness of the proposed method,

we compare the agents’ cumulative reward obtained by the
proposed method with that obtained by the greedy method in
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TABLE 1 Average cumulative reward obtained by agents of different algorithms in the energy trading scenarios with a different number of participants.

Number of participants n = 5 n = 10 n = 15 n = 20

Buyers’ cumulative reward
Random −22.75 −22.01 −24.30 −21.22
Greedy −2.42 ± 0.67 −6.03 ± 2.01 −16.64 ± 1.49 −11.43 ± 2.87
Proposed −1.67 ± 0.35 −1.91 ± 0.63 −2.01 ± 1.11 −4.92 ± 1.00

Sellers’ cumulative reward
Random −27.79 −26.77 −29.64 −26.12
Greedy −2.73 ± 0.82 −5.39 ± 3.04 −20.57 ± 3.90 −9.32 ± 1.16
Proposed −1.78 ± 0.57 −2.38 ± 0.65 −3.95 ± 1.65 −4.41 ± 2.87

FIGURE 8
Average cumulative reward obtained by agents under different
discount factors.

the energy trading scenario where the number of both buyers
and sellers are 10 (Wang et al., 2017). It should be noted that the
greedy method is a learning-based method that draws on the
idea of robust optimization. At each time step t, each agent only
cares about obtaining the maximum reward at the current time
step, ignoring the future reward. Simulation results are provided
in Figure 4, in which red lines represent the average cumulative
reward obtained by the greedy method and blue lines represent
the average cumulative reward obtained by the proposedmethod.
In addition, in order to eliminate the influence of randomness on
experimental results, we perform each simulation five times with
different random seeds and show the deviation of the algorithm
by the shaded area in Figure 4.

We first fix sellers’ bidding strategies as the greedy method
and compare the optimization effect of the proposed algorithm
on the bidding strategies of buyers with that of the greedy
method. From Figure 4A, we can obviously see that buyers’
cumulative reward obtained by the proposed method is higher
than that obtained by the greedy method. Specifically, buyers’
obtained cumulative reward of the proposed method reaches
about −1.91, which is higher than that of the greedy method by
about 68.3%.Then, we fix buyers’ bidding strategies as the greedy

method and compare the optimization effect of the proposed
algorithm on the bidding strategies of sellers with that of the
greedy method. From Figure 4B, we can clearly see that sellers’
cumulative reward obtained by the proposed method is higher
than that obtained by the greedy method. Specifically, sellers’
cumulative reward of the proposed method reaches to −2.38,
which is higher than that of the greedy method by about 55.8%.
Simulation results show that the proposed method is effective in
optimizing the bidding strategies of both buyers and sellers in the
energy trading scenarios.

6.2.2 Robustness of the proposed method
In order to prove the robustness of the proposed method, we

verify the effectiveness of the proposedmethod in energy trading
scenarioswith different numbers of participants.We compare the
performance of the proposed method and the greedy method
as the number of energy trading participants is set to 5, 10,
15, and 20. Simulation results are presented in Figures 5–7, in
which the solid lines represent the average cumulative reward of
different algorithms and the shaded region shows the deviation
of the algorithm for five runs under different random seeds. In
order to intuitively show the results, we summarize the average
cumulative rewards of the last ten training episodes in Table 1.

From Table 1, we can clearly see that the cumulative reward
obtained by the proposed method is higher than that obtained
by the greedy method in all energy trading scenarios tested in
this section. In particular, when sellers’ bidding strategies are
fixed to the greedy method, the buyers’ obtained cumulative
reward of the proposed method converges to about −1.67 in
the energy trading scenario with five participants, which is
higher than that of the greedy method by about 31.0%. In the
energy trading scenario with 15 participants, buyers’ obtained
cumulative reward of the proposed method reaches about −2.01,
which is higher than that of the greedy method by 87.9%.
Furthermore, buyers’ cumulative reward of the proposedmethod
is higher than that of the greedy method by about 57.0%
in the energy trading scenario with 20 participants. When
buyers’ bidding strategies are fixed as the greedy method, sellers’
obtained cumulative rewards of the proposed method are higher
than the obtained cumulative rewards of the greedy method by
34.8%, 80.8%, and 52.7% in the energy trading scenario with
the number of participants being 5, 15, and 20, respectively.
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Simulation results in this section prove that the proposedmethod
is robust given the number of participants in the energy trading
scenarios.

We also perform the comparison between the proposed
RL-based trading method and the random trading method to
verify their effectiveness. Simulation results are provided in
Table 1. From Table 1, we can clearly see that the proposed RL-
based trading method can obtain a higher cumulative reward
than the random trading method. Specifically, buyers’ obtained
cumulative rewards of the proposed method are higher than the
obtained cumulative reward of the random method by 92.7%,
91.3%, 91.7%, and 76.8% in the energy trading scenario with the
number of participants being 5, 10, 15, and 20, respectively. In
addition, sellers’ obtained cumulative rewards of the proposed
method are higher than the obtained cumulative reward of the
randommethod by 93.6%, 91.1%, 86.7%, and 83.1% in the energy
trading scenario with the number of participants being 5, 10, 15,
and 20, respectively.

6.2.3 Impact of the discount factor
Finally, we investigated the performance of the proposed

algorithm at different values of the discount factor in the energy
trading scenario with a total of ten buyers and sellers. Fixing
sellers’ bidding strategies as the greedy method, buyers’ average
cumulative rewards of the proposed method with different
discount factors are illustrated in Figure 8. Each γ in the set
[0,0.1,…,0.9] is tested five times with different random seeds.
The symbols and error bars show the mean and standard
deviation over five runs, respectively. From Figure 8, we can see
that as the value of γ increases, the cumulative reward obtained by
the proposed method will also increase.Themain reason behind
the simulation results is that higher γ means more attention is
paid to future rewards according to (1); as a consequence, the
algorithm will obtain higher cumulative rewards.

7 Conclusion

In this paper, a deep reinforcement learning-based bidding
strategy is proposed for buyers and sellers in the peer-to-
peer energy trading market, in which the bidding strategy
with sequential decision-making characteristics is modeled as
a Markov decision process. In order to address the problem
that existing RL-based trading approaches need to discretize the
action space, we propose an actor–critic-based paradigm that
utilizes the actor network to generate the continuous bidding
price and bidding volume for buyers and sellers. In addition, we
integrate the recurrent neural network into the actor network

to process the sequential state information of the power grid.
We verify the effectiveness of the proposed method in the peer-
to-peer energy trading scenario. Simulation results show that
the cumulative rewards of the proposed method are higher than
those of the traditional greedy method in the energy trading
scenario with a different number of participants.
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