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Under the strain of global warming and the constant depletion of fossil energy

supplies, the power systemmust pursue a mode of operation and development

withminimal carbon emissions. There aremethods to reduce carbon emissions

on both the production and consumption sides, such as using renewable

energy alternatives and aggregating distributed resources. However, the

issue of how to reduce carbon emissions during the transmission of

electricity is ignored. Consequently, the multi-objective optimal carbon

emission flow (OCEF) is proposed, which takes into account not only the

economic indices in the conventional optimal power flow (OPF) but also the

reduction of unnecessary carbon emissions in the electricity transmission

process, i.e., carbon emission flow losses (CEFL). This paper presents a deep

reinforcement learning (DRL) based multi-objective OCEF solving method that

handles the generator dispatching scheme by utilizing the current power

system state parameters as known quantities. The case study on the IEEE-30

system demonstrates that the DRL-based OCEF solver is more effective,

efficient, and stable than traditional methods.
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Introduction

To combat global warming and excessive consumption of fossil fuels, more and more

renewable energy (RE) sources are being connected to the grid, resulting in a shift in the

energy structure of the power system (Papaefthymiou and Dragoon, 2016). Based on

ensuring the safety and dependability of the power system, many scholars have begun to

focus on reducing the power system’s carbon emissions.

On the production side of electricity, large-scale RE power plants are expanding at an

alarming rate each year. According to statistics, the growth of renewable capacity is

forecast to accelerate in the next 5 years, accounting for almost 95% of the increase in

global power capacity through 2026 (IEA, 2021). Since a large number of RE with

randomness and uncertainty will pose hidden dangers to the operation safety of the power

grid (Bayindir et al., 2016; Alsaif, 2017; Impram et al., 2020), a portion of the thermal
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power generator must be retained to maintain the system inertia.

Consequently, how to improve the efficiency of traditional

thermal power generators and reduce carbon emissions is also

the focus of a great deal of research (Sharma et al., 2013; Sifat and

Haseli, 2019; Seyam et al., 2020).

In addition, extensive research is being conducted to reduce the

carbon emissions of the electricity consumption side of the power

system. On the one hand, researchers hope to reduce the electricity

that consumers obtain from the grid by employing distributed clean

energy (Dhople, 2017; Gong et al., 2020; Chen et al., 2021). On the

other hand, some research aggregates distributed resources to

participate in the planning and dispatching of the power grid

(Han et al., 2022; Sang et al., 2022; Zhang et al., 2022), allowing

users to achieve more cost-effective and low-carbon electricity

consumption goals through demand response.

In contrast, researchers have ignored how to reduce carbon

emissions from the power system in the transmission line.

Analyzing the distribution of carbon emissions in the power

system is a prerequisite for investigating the reduction of carbon

emissions during transmission. Some researchers view carbon

emission as a virtual network flow dependent on active power

flow (PF), analyzing the distribution characteristics of carbon

emission flow (CEF) in power systems by analogy with active PF

distribution (Kang et al., 2012). In (Kang et al., 2015), researchers

propose a method for calculating CEF. However, most CEF

analysis is conducted assuming a lossless network. Due to

impedance in the transmission line, there will be a certain loss

of active PF in the transmission process, and a portion of carbon

emissions will not be transmitted to the electricity consumption

side along with the active PF, resulting in the so-called carbon

emissions flow loss (CEFL) that is unnecessary.

Furthermore, based on the optimal power flow (OPF)

(Momoh et al., 1999a; Momoh et al., 1999b) and combined

with the CEF analysis theory, researchers have proposed the

optimal carbon emission flow (OCEF) model of the power

system (Zhang et al., 2015; Cao et al., 2020), which takes into

account the minimization of power generation cost and CEFL

under the condition that the system’s safety constraints are met.

The OCEF problem is a complex nonconvex nonlinear

programming problem, similar to the OPF problem.

Traditionally, the OPF is typically solved on a large time scale

to aid grid dispatchers in making day-ahead economic

dispatching decisions. As more and more RE are connected to

the grid, both the power production side and the power

consumption side will demonstrate increasingly volatile

fluctuations (Zhou et al., 2021). If the predicted value is used

as an input to the OPF and the OCEF, the obtained results may

deviate significantly from reality.

As a result, the input of the OCEF should be the real-time

load value corresponding to the actual circumstance. This is more

likely to obtain real-time OCEF in a relatively short time under

the current state of the power system as the basis for economic

low-carbon dispatching.

As stated previously, the OCEF problem is a notoriously

challenging multi-objective nonconvex nonlinear programming

problem. The conventional method for solving such problems

involves linearization approximation and relaxation of constraint

conditions. It is not easy to ensure that the obtained results can satisfy

the optimal dispatching requirements of the power system because

the computational complexity is high. The emergence of intelligent

optimization algorithms, such as particle swarm optimization (Zhan

et al., 2009) and genetic algorithm (Holland, 1992), solves the

traditional method’s dilemma. Their good solution space search

ability can handle some optimization problems in discrete space.

However, these traditional intelligent optimization algorithms

require a large number of iterations to solve the OCEF problem,

which is time-consuming. The solution’s performance is positively

correlated with the number of iterations. Therefore, it is difficult for

these intelligent optimization algorithms to solve the OCEF in real-

time.

Accordingly, the reinforcement learning (RL) (Kaelbling

et al., 1996), which can actively obtain feedback from the

environment and implement strategies in dynamic state space,

has become a potent tool for many researchers to solve such

optimization issues. A Markovian Decision Process (MDP)

(Bellman, 1957) formalises the RL framework. Policy, reward,

value, and agent are the four essential elements of RL. The agent

needs to learn how to behave through trial-and-error interactions

with a dynamic environment. During the learning process, the

agent seeks a strategy that yields a high accumulated reward from

its interactions with the environment (van Otterlo et al., 2012).

The agent can then attain optimal control by selecting the actions

with the highest value or the greatest expected cumulative

reward.

RL has superior solution space search capabilities compared to

conventional intelligent optimization algorithms. However, when

the scale of the problembegins to grow and the action space and state

space tend to be continuous, the training process for RL consumes

too much computation. Although finding a solution closer to the

optimal one may be possible, the time required to solve the problem

is unacceptable. Consequently, in (Mnih et al., 2013), deep learning

(DL) is combined with RL, and deep reinforcement learning (DRL)

is proposed to address the issue of excessive computation. Utilizing

the powerful function-fitting ability of deep neural networks (DNN),

DRL aims to replace the value function and policy function in RL

with DNNs. These networks’ loss functions will be computed using

Monte Carlo sampling estimation or the time difference equation.

This method reduces the computational cost of RL while enhancing

the ability to solve continuous action space and state space problems.

Using the Proximal Policy Optimization (PPO) algorithm

(Schulman et al., 2017) in DRL and numerous performance

improvement techniques, a real-time and efficient method for

solving the OCEF is developed in this paper. The current power

grid state parameters are input for a well-trained PPO agent.

Obtaining the dispatching operation is possible through simple

forward propagation. In addition, there is no need to repeat the
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training process, as the solution procedure is extremely quick.

This paper’s contribution can be summarized as follows:

1) Based on the power system’s CEF analysis, the influence of

active power loss on CEF distribution in the grid is thoroughly

accounted for. In order to modify the original carbon flow

analysis, the CEFL is allocated to the generation side and the

consumption side.

2) The OCEF problem is modelled as a process with continuous

action space and state space MDP, making it more suitable for

real-time power system dispatching.

3) The enhanced PPO is trained under the improved OCEF

model, and a properly trained agent is deployed to solve the

original problem precisely and expeditiously.

The following are the contents of this paper: Methodology

describes the paper’s model and analysis method; Proposed DRL-

based OCEF solutions describes the OCEF solution framework

based on the PPO algorithm; Case study is a case study;

Conclusion contains the conclusion and prospect.

Methodology

Theory of carbon flow analysis in power
system

The traditional method of calculating the total carbon

emissions of the power system is to use the total macroscopic

energy consumption over a long period. However, this method

has certain hysteresis and is too imprecise to describe in detail the

process of variation in the trend of carbon emissions over time.

Also, it is challenging to identify the source of carbon emissions

and evaluate carbon footprints. The theory of power system CEF

analysis abstracts carbon emission into a virtual network flow

that can flow in the grid alongside active PF. The theory analyses

the distribution characteristics of CEF analogously to the

distribution of active PF. In Table 1, the relationship between

the fundamental physical quantities in the CEF and PF, as well as

their physical meanings, are defined.

For a power system with nB nodes and nG generators, without

considering the active power loss, the NCI calculation formula is

as follows:

EN � (PN − PT
B)−1PT

GEG (1)

where EN is a nB-dimensional NCI vector; PN is the active power

flux matrix of nB nodes, which is a nB-order diagonal matrix and

the diagonal elements are the amount of active power flowing

through each node; PB is the branch PF distribution matrix. If

there is at least one straight-through branch (transmission line)

between nodes i and j (i, j = 1, 2, ..., nB) and the quantity of active

PF from this branch (or branches) is p, then PBij = p and PBji = 0.

Otherwise PBij = PBji = 0; PG is the power injection distribution

matrix of size nG × nB. If the kth generator is connected to the

node j, and the power injected from the kth generator to node j is

p, then PGkj = p; EG is a nG-dimensional generator carbon

emission intensity (CEI) vector, where the kth element

represents the CEI of the kth generator set.

The isolated nodes should not be included in the matrix

calculation in this study in order to avoid the singular matrix. A

network’s isolated node is defined as a node that is not adjacent to any

other nodes.

Transmission loss allocation method
based on the active power flow tracking

The power grid model is considered a lossless network in the

preceding CEF calculation. In the actual power grid, however, this

analysis method will cause errors. As a result, the existing lossy

network should be converted to an equivalent lossless network. There

is no doubt that electricity consumption is the root cause of electricity

production, so consumers and producers should share network loss.

Based on the power flow tracking method in the power

system (Power, 2017), this paper employs a network lossless

equivalent method combining downstream tracking and

TABLE 1 THE basic physical quantities of CEF analysis.

Names Unit Physical meaning Corresponding Physical Quantities in Power
Flow Analysis of Power System

Branch CEF (BCEF) kg The cumulative amount of carbon emissions produced by the system at
the power plant to maintain active power flow over a given period of time

Transmission power in branch

BCEF rate kg/s The amount of carbon emitted per unit time by the system at the power
plant to maintain the active power flow

Active PF in branch

BCEF intensity kg/
kWh

BCEF per unit time with a unit active power flow

Nodal carbon
intensity (NCI)

kg/
kWh

A unit of electricity consumed at the node corresponds to the carbon
emissions of the power plant
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upstream tracking. The network loss is proportional to the

additional load at nodes based on the original load amount.

The network loss is equivalent to the extra load at generation

nodes based on the power injected by the generator.

According to upstream tracking, let P(g) be the active power flux

vector of each node in the equivalent lossless network. PGN is the nB-
dimensional vector that describes the active power output of

generators received by each node. By introducing an upstream

distribution matrix Au, the power balance expression of each

node can be written as follows:

AuP(g) � PGN (2)

[Au]ij �
⎧⎪⎨⎪⎩

1, i � j
−∣∣∣∣Pj−i

∣∣∣∣/Pj, j ∈ Ui

0, others
(3)

where Ui is the set of upstream nodes of node i.

Since the network loss is relatively low, it can be assumed that the

proportion of load in the active power flux of the node remains

unchanged before and after the equivalence; hence, the equivalent

load at node i is

∣∣∣∣∣∣P(g)Li

∣∣∣∣∣∣ �
∣∣∣∣∣∣P(g)Li

∣∣∣∣∣∣
P(g)i

P(g)i � PLi

Pi
P(g)i (4)

The network loss equivalent to the load node is

ΔPL � P(g)L − PL (5)

where PL
(g) is the equivalent nodal load vector, PL is the nodal

load vector before equivalence.

The process of equivalent network loss to the generation

node by the downstream tracking method is similar to the above

process. By introducing a downstream distributionmatrixAd, the

power balance expression of each node can be written as follows:

AdP(g)′ � PL (6)

[Ad]ij �
⎧⎪⎨⎪⎩

1, i � j
−∣∣∣∣Pi−j

∣∣∣∣/Pj, j ∈ Di

0, others
(7)

where Di is the set of downstream nodes of node i.

Further, elements of the vector PGN after equivalence is

∣∣∣∣∣∣P(g)GNi

∣∣∣∣∣∣ �
∣∣∣∣∣∣P(g)GNi

∣∣∣∣∣∣
P(g)i

P(g)i � PGNi

Pi
P(g)i (8)

The network loss equivalent to the generation node is

ΔPG � PGN − P(g)GN (9)
The total network loss in the system is

Loss � ΔPL � ΔPG (10)

As stated previously, both the generation side and the load side

should share the transmission network loss. Consequently, the

allocation ratio β∈(0, 1) is set to allocate a portion β of the total

network loss to the generation side and a portion 1 − β to the load

side, which can be expressed as follows:

ΔP′
G � βΔPG (11)

ΔP′
L � (1 − β)ΔPL (12)

The allocation ratio β can be negotiated by power generation

companies, electricity consumers and electricity retailers.

Problem formulation of power system
optimal carbon emission flow

The CEFL of the network loss apportioned to the generation

side can be directly calculated by multiplying the apportioned

network loss by the generator’s CEI. By analyzing the distribution

characteristics of CEF in the power grid, the CEFL assigned to the

load side can be determined.

The equivalent network loss of the load side can be related to

the generator through the path of active power transmission by

introducing the generator-to-node incidence matrix RU-N. RU-N

can be calculated as follows:

RU−N � [PN(PN − PT
B)−1PT

G]T (13)

The size of the RU-N is K×N. After elements in RU-N are

normalized by the sum of all elements in the column, the

element‾RU-Nij in‾RU-N represents the percentage of active

power contribution of the ith generator to the load on node j.

Further, the load side equivalent network loss traced to each

generator can be calculated by the following formula:

ΔPG−L � (diag(ΔP′
L)�RU−N)T (14)

ΔPG-L is a matrix of size K × N, where the element ΔPG-Lij
represents the part of the network loss shared by node j from the

ith generator. Each row of the matrix is summed to obtain the nG-

dimensional vectorΔPg-l. The element ΔPg-li in this vector

represents the active power contributed by the ith generator

to the network loss allocated to all its associated nodes.

Finally, the total CEL FCEFL in the power system can be

calculated by the following formula:]

FCEFL � ET
G(ΔP′

G + ΔPg−l) (15)
Based on the OPF problem, the OCEF problem is constructed by

adding the objective of reducing unnecessary CEFL. The

construction of the OCEF in the power system can be stated as

follows:

min . CG + FCEFL (16)
Subject to:

Pgk
min ≤Pgk ≤Pgk

max,∀k ∈ G (17)
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Qgk
min ≤Qgk ≤Qgk

max,∀k ∈ G (18)
Vk

min ≤ |Vk|≤Vk
max,∀k ∈ Nb (19)

|Slm|≤ Slm
max,∀(l, m) ∈ L (20)

Pgk − Pdk � ∑
l∈Nb(k)

Re{Vk(Vp
k − Vp

l )ypkl} (21)

Qgk − Qdk � ∑
l∈Nb(k)

Im{Vk(Vp
k − Vp

l )ypkl} (22)

where G is a set composed of all generators in the system; Pgk is the

active output of the kth generator;Qgk is the reactive output of the kth

generator; Vk is the voltage phasor of node k;Nb is the set composed

of all nodes in the system; Slm is the power transmitted on the branch

l-m; L is the set of nodes connected by a transmission line. (21) and

(22) describe the system power balance constraint.

Proximal policy optimization algorithm

This paper employs the PPO algorithm,which is effective, robust

and generalizable. The PPOalgorithm and the TRPOalgorithmhave

essentially the same structure, both utilizing the policy gradient

method for training, i.e., parameterising the strategy. The strategy is

optimized by designing an objective function to measure the quality

of the strategy and thenmaximizing this objective function using the

gradient ascent method.

The objective function of PPO can be expressed as follows:

max
θ

J(θ) � Es0[Vπθ(s0)] � Eπθ
⎡⎣∑∞
t�0
γtr(st, at)⎤⎦ (23)

where θ is the parameter of random strategy πθ; πθ is the

probability function modelled by neural networks, which

input is a certain state, and the output is the probability

distribution of taking action in this state; st is the state at tth

step; at is the action at tth step; γ is the discount coefficient; r (st,
at) is the return function; Vπθ(•) is the value function under the

strategy πθ.

The following formula calculates the gap between the

objective functions under the old and new strategies:

J(θ′) − J(θ) � Eπθ′
⎡⎣∑∞
t�0
γt[r(st, at) + γVπθ(st+1) − Vπθ(st)]⎤⎦

(24)
By introducing the advantage function Aπθ(st, at), (Eq. 24) can be

rewritten as follows:

J(θ′) − J(θ) �� 1
1 − γ

Es~vπθ′Ea~πθ′(·|s)[Aπθ(s, a)] (25)

The advantage function can be calculated by generalized

advantage estimation (GAE) (Schulman et al., 2018):

Aπθ(st, at) � ∑∞
l�0
(γλ)l(rt + γVπθ(st+1) − Vπθ(st)) (26)

where λ∈[0, 1] is the hyperparameter defined for computing the

generalized advantage estimation.

Therefore, it is only necessary to find a new policy to let

Es~vπθ ′Ea~πθ ′(·|s)[Aπθ(s, a)], so that the monotonically increasing

performance of the policy can be guaranteed.

Since the new strategy is unknown and must also be used for

sampling, it is extremely challenging to solve the equation directly.

Hence, if the change in state visit distribution between two policies is

ignored and the old strategy’s state distribution is adopted directly,

after introducing importance sampling to process distribution of

action, the optimization goal can be defined as:

Lθ(θ′) � J(θ) + 1
1 − γ

Es~vπθEa~πθ(·|s)[R(θ)Aπθ(s, a)] (27)

where the importance sampling is

R(θ) � πθ′(a|s)
πθ(a|s) (28)

PPO algorithm uses truncation to limit Kullback-Leibler (KL)

divergence (Kullback and Leibler, 1951) between old and new

policies, ensuring they are close enough and avoiding complex

constrained problems. The objective function of optimization

can be rewritten as follows:

argmax
θ′

Es~v
πθkEa~πθk(·|s)[min(R(θ)Aπθk(s, a), clip(R(θ), 1 − ϵ, 1

+ ϵ)Aπθk(s, a))]
(29)

where, clip (x, l, r) =max (min (x, r), l) restricts xwithin [l, r]; ϵ is
the hyperparameter to adjust the truncation range.

Proposed DRL-based OCEF solutions

The framework for handling the OCEF problem of the power

systemusing theDRL-based solver proposed in this paper is depicted

in Figure 1. The PPO agent is trained by interacting with a simulated

power grid environment to discover the optimal strategy for various

grid states. When constructing the OCEF solver with a well-trained

agent, only forward propagation calculations are required to obtain

the (approximate) OCEF in the current state.

State and action space

The agent receives the state variables provided by the

simulated grid environment and then outputs corresponding

actions to modify the current state of the grid in order to reduce

power generation cost and CEFL. Therefore, the state should

contain the key variables describing the grid’s current state,

which the agent can use to output the optimal action.

The state space and action space constructionmethod used in

this paper refer to (Zhou et al., 2021). The key variables to
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describe the power grid state are: active load Pd and reactive load

Qd of nB nodes; amplitude |Y| and phase angle ∠Y of self-

admittance of nB nodes; the active power output Pg and the

voltage Vg of the nG generators. Thus, the state space is shown as

follows:

state � [Pd1 ~ PdnB, Qd1 ~ QdnB, |Y1| ~ |YnB|,
∠Y1 ~∠YnB, Pg1 ~ PgnG, Vg1 ~ VgnG] (30)

The action space, which contains active power output of

generator adjustment value ΔPg and voltage adjustment ΔVg of

nG generators, is shown in the Formula 31:

action � [ΔPg1 ~ ΔPgnG,ΔVg1 ~ ΔVgnG] (31)

The structure of policy network and value
network

PPO utilizes two neural networks to fit the policy function

and the value function, similar to the Actor-Critic algorithm. The

policy network, which is the agent in the PPO algorithm, is

responsible for generating actions according to the state. The

value network generates the appropriate value based on the

present state.

First, the primary portion of the policy network is constructed.

Considering the power grid’s topology, this paper divides the six

state variables in the state space into generator state variablematrix

sg of size 2×nG and node state matrix sb of size 4×nB. Two

convolutional layers are required to extract the matrices’

information when two sets of state variable matrices are input

into the policy network. There are 16 convolutional kernels of size

3 × 3 and a stride size of 1 × 1 for each of the two convolutional

layers, whose parameters are identical. Using zero padding to fill

the edges of the matrix guarantees that all state variable

information will be sensed. Unlike a convolutional neural

network that processes image input, this paper does not use

max-pooling to extract features from the convolutional layer’s

output to preserve all power grid state parameters.

Second, the policy network is designed to generate actions in a

particular way. PPO is a typical DRL algorithm with stochastic

strategies. For discrete actions, the agent will directly generate the

probability distribution of each action and make specific action

decisions by random sampling based on the probability

distribution generated for training. When the agent is used as a

solver, it will always select the action with the highest probability

and thus make the optimal decision. For continuous action in this

paper, the agent generates the Gaussian distribution’s mean and

variance, whichhave the samedegree of freedomof action.During

training, the agent randomly sampled specific actions based on the

Gaussiandistribution.As a solver, it always selects themeanaction

valuebecause themeanvalue is theactionvaluewith themaximum

probability.

Third, select the activation function and construct the

remaining policy network components. The policy network in

this paper consists of two output layers. Using the Tanh function

to activate the outputs will generate actionable means. The

parameterization is used for variation to make the parameters

trainable. The fully connected layer constructs all hidden layers

in the policy network, and the layer norm is used to avoid the

gradient vanishing problem. Figure 2 is a diagram illustrating the

structure of the policy network.

The structure of the value network is comparable to that of

the policy network, as its output is the value determined based on

the current state. The size of the output layer only needs to be as

large as the output value, so no additional details are required.

The hyper-parameters of the policy network and the value

network are shown in Table 2.

Thetrainableparametersof theneuralnetworks inboththepolicy

network and the value network should be initialized with orthogonal

initialization. The orthogonal initialization can further mitigate the

problems of gradient disappearance and gradient explosion that can

occur during the training process, thereby enhancing the training’s

stability.

FIGURE 1
The DRL-based framework to solve the OCEF problem.
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Training process of PPO agents

In the DRL algorithm, agents gain experience by constantly

interacting with the environment and ultimately acquire the

optimal strategy to guide them to obtain the greatest

cumulative reward. This study uses a PF solver to simulate

the power grid environment. Figure 3 is The flowchart of the

agent interacting with the simulated power grid environment.

In this process, the initial state s0=(sg0, sb0) is randomly

generated by the function env. reset() according to the actual

topology of the power grid. It is necessary to ensure that the

system’s initial state satisfies the operational constraints. At tth

step, the agent detects the state st of the system from the

simulated power grid environment, modifies the current state

based on the action at specified by the strategy, and obtains the

next state st+1. Additionally, the environment provides the agent

with an immediate reward rt for taking action at state st and a

signal done indicating whether the termination state has been

reached. The interaction process between the agent and the

environment will continue until it is terminated. The above

environment is defined as the function env. step().

The immediate reward value for the current step is calculated

according to (32), which is a piecewise function. When the PF

solver in the environment diverges, the environmentwill feedback

a large negative reward to the agent, causing the agent to avoid this

situation in the future. If some constraints are not met, the agent

will receive anegative rewardproportional to theoverlimit valueof

variousvariables.Agentswillmake fewerdecisions thatmaylead to

constraint violations if the reward is low. When the PF solver is

solvable, and there are no violation issues, the environment will

givetheappropriaterewardbasedonthepowergenerationcostand

CEFL calculated from the current state. Agents will be encouraged

tomake decisions that reduce the cost of power generation and the

CEFL by monetary incentives.

reward �
⎧⎪⎨⎪⎩

−5000, if PF solver is diverged
RPg v + RV v + RBr v, if there are constraints violations

2000 − CG − 1000 × FCEFL if f easible
(32)

where RPg_v is the negative of the overlimit value of the active

power output of generators; RV_v is the negative of the overlimit

value of nodes voltage; RBr_v is the negative of the overlimit value

of the power transmitted by the line. To calculate the positive

reward, the coefficient of the CEFL value FCEFL is set to be the

same order of magnitude as the generation cost.

Although PPO belongs to the off-policy DRL algorithm, the

interaction process can still utilize the replay buffer to save data.

When the amount of data in the replay buffer reaches a

predetermined threshold, the policy network and value

network loss functions are calculated for propagation. At the

beginning of the next interactive round, the data stored during

the previous training round is cleared after the network

parameters have been updated.

The loss function of the policy network is

LActor � −min(R(θ)tAπθ(st, at), clip(R(θ)t, 1 − ϵ, 1
+ ϵ)Aπθ(st, at)) − αH(πθ(•|st)) (33)

where α is the regularization coefficient; H (πθ(•|st)) is the

entropy of the current strategy. In information theory and

FIGURE 2
Network structure.
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probability statistics, entropy is used as a measure to describe the

uncertainty of random variables. The greater the entropy, the

more average the probability of each action selected by a strategy.

H (πθ(•|st)) is calculated as follows:

H(πθ(•|st)) � Eat~πθ[ − log(π(at|st))] (34)
The loss function of the value network is the advantage function

obtained by GAE:

LCritic � Â
GAE(γ,λ)
t � ∑∞

l�0
(γλ)lδVt+l (35)

Algorithm 1 shows in detail the training process of the PPO

agent to solve the OCEF.

Algorithm 1. PPO training for solving the OCEF problem.

Case study

The proposedmethod for solving theOCEFproblembased on the

DRL algorithm is tested on the IEEE-30 system. The system consists of

six generators, 30 nodes and 41 lines. Python 3.7 and Pytorch 1.11.0 +

cu113 are used to build a simulation test platform. The power grid

simulation environment is built with the PF solver in Pypower.

Pypower is a Python platform port to theMatpower toolkit inMatlab.

The default initial grid parameters of the IEEE-30 system are

as follows. The outputs of the generator and load on the node are

shown in Table 3.

The power transmitted on each branch is shown in Table 4.

The cost of generation is calculated as follows.

CG � ∑6
k�1

c2P
2
gk + c1Pgk + c0 (36)

The settings of the coefficient of each generator are shown in

Table 5:

In order to conduct CEF analysis, this paper sets the CEI

vector of each generator set as shown below:

EG � [0.52, 0.15, 0.38, 0.52, 0.16, 0.28]T (37)

Tracking and allocation of CEFL

When the network loss is ignored, the calculation results of

CEI and active flux of each node are shown in Table 6:

TABLE 2 The hyperparameters of the policy network and the value
network.

Layers Layer type Hyper-parameter

Policy Net

conv_gen_1 Conv2d Kernels: 16, Size: 3 × 3, Stride: 1 × 1

conv_node_1 Conv2d Kernels: 16, Size: 3 × 3, Stride: 1 × 1

hidden_1 Dense Units: 1024

hidden_2 Dense Units: 256

Value net

conv_gen_2 Conv2d Kernels: 16, Size: 3 × 3, Stride: 1 × 1

conv_node_2 Conv2d Kernels: 16, Size: 3 × 3, Stride: 1 × 1

hidden_4 Dense Units: 1024

hidden_5 Dense Units: 256

hidden_6 Dense Units: 64

output_3 Dense Units: 1

FIGURE 3
The flowchart of the agent interacting with the simulated
power grid environment.
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In this paper, the allocation ratio β is set to 0.5. The

comparison of active power output and active load data of the

generator before and after the allocation is as the Table 7 shows:

It can be seen that, after allocation, the network loss caused

by branch impedance is divided proportionally between the

generation side and the load side. After tracing the CEFL, the

results are shown in Table 8.

Training process of DRL-Based OCEF
solver

The initialization of the power system simulation

environment includes two parts: load and generator random

initialization and PF initialization. By sampling in the uniform

distribution, the active and reactive loads are randomly generated

between [0.6, 1.4]p.u.. In the IEEE-30 system, node 1, where

generator one resides, is the balance node, and nodes where the

other five generators reside are PV nodes. The generated load is

randomly distributed to all six generators. After the generator

output’s initialization, the generator’s voltage is randomly

generated between [Vgmin, Vgmax]. The PF solver in Pypower

is used to calculate the AC PF under the current network state,

and the initial state sg0 of the generator and the initial state sb0 of

the node are obtained, completing simulation environment state

initialization.

The hyperparameter settings involved in Algorithm 1 are

shown in Table 9:

Table 10 shows the setting methods and meanings of

hyperparameters involved in PPO algorithm.

After the replay buffer stores enough data, the

mini_batch_size group of samples are randomly selected from

the replay buffer to calculate the gradient of the policy network

and the value network and update the network. The above

sampling and update process will be performed kepoch times

when each replay buffer is full.

For the hyperparameters in the training process of policy

network and value network, this paper sets them as follows: 1)

set the initial value of the learning rate as 3 × 10–4 and adopt the

learning rate decay method, which makes the learning rate

linearly decreases to 0 with the number of training steps; 2) in

gradient backpropagation, gradient truncation is adopted to

limit the parameters’ update range, and the truncation range is

set as [-0.5, 0.5]. The above two hyperparameter settings will

speed up network training and make the training process more

stable.

In addition, this paper also takes the following measures to

improve the training process: 1) standardize the advantage

function; 2) standardize the input state variables into the

network, and save the mean and variance of the state

variables, so that the agent can standardize the input variables

when it is called as the OCEF solver; 3) smooth the output of

reward by using the reward scaling method proposed in

(Engstrom et al., 2020); 4) refer to the Open AI Baseline

(Baselines, 2022) example and set the parameter eps in the

Adam optimizer to 1 × 10–5 (default value is 1 × 10–8).

TABLE 3 The initial grid parameters of the IEEE-30 system.

Node Generation Load Node Generation Load

P (MW) Q (MVar) P (MW) Q (MVar) P (MW) Q (MVar) P (MW) Q (MVar)

1 25.97 1.00 - - 16 - - 3.50 1.80

2 60.97 32.00 21.70 12.70 17 - - 9.00 5.80

3 - - 2.40 1.20 18 - - 3.20 0.90

4 - - 7.60 1.60 19 - - 9.50 3.40

5 - - - - 20 - - 2.20 0.70

6 - - - - 21 - - 17.50 11.20

7 - - 22.80 10.90 22 21.59 39.57 - -

8 - - 30.00 30.00 23 19.20 7.95 3.20 1.60

9 - - - - 24 - - 8.70 6.70

10 - - 5.80 2.00 25 - - - -

11 - - - - 26 - - 3.50 2.30

12 - - 11.20 7.50 27 26.91 10.54 - -

13 37.00 11.35 - - 28 - - - -

14 - - 6.20 1.60 29 - - 2.40 0.90

15 - - 8.20 2.50 30 - - 10.60 1.90
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After configuring the aforementioned parameters, Figure 4

and Figure 5 illustrate the agent training process. Figure 4 depicts

the immediate reward curve after each agent-environment

interaction during the training process. Figure 5 depicts the

agent’s average reward for solving the target problem multiple

times during the current training round, once every 512 steps.

TABLE 4 The power transmitted on each branch.

Branch From node To node From node injection To node injection Loss

P (MW) Q (MVar) P (MW) Q (MVar) P (MW) Q (MVar)

1 1 2 10.89 5.09 10.86 2.17 0.026 0.08

2 1 3 15.08 4.09 14.96 5.57 0.127 0.48

3 2 4 16.07 5.21 15.89 6.66 0.178 0.5

4 3 4 12.56 4.37 12.54 4.3 0.018 0.07

5 2 5 13.79 4.51 13.68 6.03 0.11 0.44

6 2 6 20.28 7.42 19.99 8.5 0.289 0.87

7 4 6 22.5 11.38 22.43 11.12 0.066 0.26

8 5 7 13.68 6.21 13.56 6.88 0.12 0.29

9 6 7 9.27 3.17 9.24 4.02 0.031 0.08

10 6 8 24.82 24.43 24.69 23.92 0.128 0.51

11 6 9 5.79 3.36 5.79 3.46 0 0.1

12 6 10 3.31 1.92 3.31 2 0 0.09

13 9 11 0 0 0 0 0 0

14 9 10 5.79 3.46 5.79 3.51 0 0.05

15 4 12 1.67 2.02 1.67 2.04 0 0.02

16 12 13 37 9.26 37 11.35 0 2.1

17 12 14 5.39 0.88 5.35 0.8 0.037 0.08

18 12 15 9.48 1.06 9.41 1.19 0.066 0.12

19 12 16 9.26 0.1 9.18 0.28 0.08 0.18

20 14 15 0.85 0.8 0.85 0.8 0.003 0

21 16 17 5.68 2.08 5.65 2.15 0.031 0.07

22 15 18 9.16 0.76 9.07 0.57 0.097 0.19

23 18 19 5.87 0.33 5.85 0.38 0.022 0.05

24 19 20 3.65 3.78 3.66 3.8 0.009 0.02

25 10 20 5.92 4.62 5.86 4.5 0.052 0.12

26 10 17 3.37 8.01 3.35 7.95 0.023 0.06

27 10 21 2.23 11.67 2.28 11.77 0.044 0.1

28 10 22 3.75 8.48 3.82 8.62 0.062 0.13

29 21 22 19.78 22.97 19.87 23.16 0.093 0.19

30 15 23 8.81 5.25 8.91 5.47 0.109 0.22

31 22 24 2.1 7.8 2.18 7.68 0.078 0.12

32 23 24 7.09 0.88 7.02 0.75 0.066 0.14

33 24 25 3.86 1.77 3.89 1.71 0.035 0.06

34 25 26 3.55 2.37 3.5 2.3 0.046 0.07

35 25 27 7.44 0.66 7.5 0.78 0.063 0.12

36 28 27 6.11 6.08 6.11 6.4 0 0.31

37 27 29 6.17 1.68 6.08 1.51 0.09 0.17

38 27 30 7.12 1.67 6.95 1.35 0.171 0.32

39 29 30 3.68 0.61 3.65 0.55 0.035 0.07

40 8 28 5.31 6.08 5.34 4.33 0.036 0.12

41 6 28 0.77 2.7 0.77 1.75 0.001 0

Total Loss 2.444 8.99
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The difference between the two curves is that the curve in

Figure 4 represents the outcome of the agent’s interaction

with the environment using random strategies during the

training process, whereas the curve in Figure 5 represents the

agent’s adoption of the action value with the highest probability

to interact with the environment, which is a deterministic

strategy.

As shown by the curve in Figure 4, during the first one

million training steps, the agent made numerous random

attempts and then began to find an effective way to obtain

greater rewards. The curve can also show this process in

Figure 5. With the agent’s exploration, within one million to

two million steps, the agent can obtain stable good immediate

rewards. The fluctuation curve in both figures indicates that the

agent will continue to explore. Currently, as a result of the

ongoing optimization of the strategy, the curve in Figure 5 is

also gradually increasing. After two million steps, the agent’s

strategy is effective and stable.

The verification of solution effect

To evaluate the effectiveness of the DRL-based solver

proposed in this paper, the generator dispatching outcomes

of OCEF and OPF are compared. Simultaneously, NSGA-II

(Deb et al., 2002) with a population of 100 is utilized to solve

OCEF, compared to the proposed method to validate its

performance.

The generator dispatching results under OCEF obtained by

the proposed solver are compared to the dispatching results

under OPF to determine whether the results under OCEF can

effectively balance the two objectives. When the OPF solver of

Pypower (based on the interior point method) is utilized for

dispatching optimization considering only the generator cost,

Table 11 displays the active power output of each generator, the

generation cost, and the tracked CEFL.

Table 12 displays the generator dispatching results when the

DRL-based OCEF solver is invoked.

It is evident that the DRL-based solver can achieve a balance

between the two objectives, which raises the overall cost of

power generation by 7.55% but reduces carbon flow loss by

30.95%.

Figure 6 illustrates the performance of the proposed method

and NSGA-II in solving the problem with 10,000 random initial

TABLE 5 The settings of the coefficient of each generator.

Generator Connecting node c2 c1 c0

1 1 0.02 2 0

2 2 0.0175 1.75 0

3 13 0.025 3 0

4 22 0.0625 1 0

5 23 0.025 3 0

6 27 0.00834 3.25 0

TABLE 6 The calculation results of CEI and active flux.

Node Active power
flux

CEF intensity Node Active power
flux

CEF intensity

P (MW) t/MWh P (MW) t/MWh

1 25.97 0.52 16 9.26 0.35

2 71.86 0.21 17 9.05 0.32

3 15.08 0.52 18 9.16 0.35

4 28.62 0.35 19 5.87 0.35

5 13.79 0.21 20 9.57 0.31

6 42.77 0.28 21 2.23 0.28

7 22.95 0.24 22 45.12 0.33

8 24.82 0.28 23 28.01 0.22

9 5.79 0.28 24 9.18 0.24

10 9.10 0.28 25 3.86 0.24

11 0.00 0.00 26 3.55 0.24

12 1.67 0.35 27 40.46 0.43

13 74.00 0.31 28 6.08 0.28

14 5.39 0.35 29 6.17 0.43

15 10.33 0.35 30 10.81 0.43

Frontiers in Energy Research frontiersin.org11

Qin et al. 10.3389/fenrg.2022.1017128

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.1017128


states. The graph on the left compares the amount of time

required to solve a problem when both approaches yield the

same result. The figure on the right compares the benefits of the

two methods for simultaneously solving 10,000 identical

problems. In terms of score and solution time, it can be seen

that the method proposed in this paper is superior to NSGA-II.

The DRL-based OCEF solver has a relatively stable effect on

problems with varying initial conditions.

Figure 7 compares the solution processes of the DRL-based

solver and NSGA-II when applied to the same problem. DRL

solver does not need an iterative solving process, but adopts the

optimal strategy to make decisions and achieves a good solution

in several steps. In contrast, NSGA-II requires constant iteration,

resulting in a higher computational cost and a slower solution

speed.

TABLE 7 The comparison of active power output and active load data.

Node Generation Load Node Generation Load

Before After Before After Before After Before After

1 25.97 25.78 - - 16 - - 3.50 3.52

2 60.97 60.59 21.70 21.70 17 - - 9.00 9.08

3 - - 2.40 2.41 18 - - 3.20 3.23

4 - - 7.60 7.64 19 - - 9.50 9.62

5 - - - - 20 - - 2.20 2.23

6 - - - - 21 - - 17.50 17.58

7 - - 22.80 23.00 22 21.59 21.48 - -

8 - - 30.00 30.25 23 19.20 19.05 3.20 3.20

9 - - - - 24 - - 8.70 8.75

10 - - 5.80 5.85 25 - - - -

11 - - - - 26 - - 3.50 3.54

12 - - 11.20 11.20 27 26.91 26.65 - -

13 37.00 36.86 - - 28 - - - -

14 - - 6.20 6.22 29 - - 2.40 2.42

15 - - 8.20 8.24 30 - - 10.60 10.73

Difference

Generation 1.222 Load 1.222

TABLE 8 The comparison of active power output and active load data.

Generator Generation Loss tracing CEFL

MW MW t/h

1 25.97 0.363 0.189

2 60.97 0.738 0.111

3 37.00 0.321 0.122

4 21.59 0.237 0.123

5 19.20 0.265 0.042

6 26.91 0.519 0.145

Total CEFL 0.732

TABLE 9 The hyperparameter settings involved in Algorithm 1.

Hyper-parameter Value

max_train_steps 3 × 106

max_episode_steps 128

batch_size 512

TABLE 10 Settings of the hyperparameters of the PPO algorithm.

Hyper-
parameter

Meaning Value

γ The discount factor 0.96

λ Generalized dominance estimation calculates
the coefficient

0.95

ϵ Truncation range coefficient 0.15

α Regularization coefficients of policy entropy 0.01

kepoch Number of network updates 8

mini_batch_size Batch size of the data sampled in the replay
buffer

32
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FIGURE 4
The rewards of evert step.

FIGURE 5
The average rewards of every evaluation.

TABLE 11 The dispatching results OF OPF.

Generator Generation Cost Loss

P (MW) $/h MW

1 41.54 117.59 0.327

2 55.40 150.66 0.103

3 16.20 55.16 0.051

4 22.74 55.06 0.140

5 16.27 55.43 0.035

6 39.91 142.99 0.256

Total 576.89 CEFL (t/MWh) 0.911

Reward 512.11

TABLE 12 The dispatching results of DRL-based OCEF.

Generator Generation Cost Loss

P (MW) $/h MW

1 2.73 5.61 0.021

2 59.65 166.65 0.448

3 31.70 120.22 0.220

4 27.63 75.34 0.304

5 24.03 86.53 0.425

6 45.74 166.10 0.863

Total 620.45 CEFL (t/MWh) 0.629

Reward 725.52
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Conclusion

In this paper, a DRL-based solver for multi-objective OCEF is

presented and validated using a case study on the IEEE-30

system. In the case study, the DRL-based solver’s solution

results are compared to those of NSGA-II. Experimental

results indicate that the solution time of the proposed DRL-

based OCEF solver is one-hundredth that of NSGA-II, and the

solver’s performance is enhanced by at least 10 percent. In

addition, the DRL-based solver is more stable and can satisfy

real-time power dispatching needs.

Following is a summary of future research ideas:

1) More intricate dispatching scenarios for power systems can be

considered. For instance, constraints such as the N-1 safety

constraint and the generator climbing constraint can be

considered, thereby enhancing the practical applicability of

the DRL-based solver.

2) The actual state parameters of the power system can be used

as training data for the model. As demonstrated in the case

study, training the agent requires a large amount of data, and

each round of interaction requires a time cross-section of

system state parameters. In practice, collecting such a vast

amount of data is difficult. Consequently, data generation

techniques such as the generative adversarial network can be

used to provide the necessary training data for DRL agents.

3) Consider utilizing the multiagent method to solve the OCEF

problem in the larger system. Even though the performance of

the DRL-based solution is superior to that of the conventional

solution, the larger system still entails a larger action space and state

space. This increases the difficulty of calculating the immediate

reward value of environmental feedback in a simulated power

system and increases network training requirements. When the

original large system is partitioned, a single agent is responsible for

the dispatching solution of each partition, and multiple agents are

combined to reduce training difficulty.
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