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The occurrence of unintentional islanding will seriously threaten the stable operation
of a microgrid (MG). Therefore, detecting the islanding of an microgrid timely is an
important premise to ensure the microgrid operates safely and stably. However, the
problem of dead zone exists in the traditional islanding detection process because
the threshold of various electrical feature quantities of the point of common
coupling (PCC) cannot be determined effectively. To solve this problem, an
islanding detection method based on CatBoost is proposed for an microgrid. The
novelty of this method lies in two aspects: 1) To reduce the error brought by the
electrical feature quantities with weak correlation in the process of islanding
detection, an analysis method based on the Spearman correlation coefficient is
used to extract the electrical feature quantities closely related to islanding detection.
2) To determine the threshold of the electrical feature quantitiesmore accurately and
reduce the dead zone of island detection, an integrated learning machine is used to
dig out correlations between the electrical feature quantities and the operation of an
microgrid. The performance of the proposed islanding detection method is verified
based on the modified IEEE13-bus system. The results of the example verify that the
proposed islanding detection can achieve higher detection accuracy in cases of grid-
connected interference and line faults.
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1 Introduction

As a new form of power supply that effectively integrates distributed generations (DGs),
microgrids (MGs) can promote the development of DGs and improve the consumption
capacity of the grid for DGs (Zhang et al., 2022). The power quality in MGs is the key to
determining whether MGs can operate stably. When the power quality does not meet the
requirements or the power supply is interrupted due to the failure of distribution networks, the
DGs will continue to supply the load, thus forming an islanding state of the MGs (Wang et al.,
2022a; Liu et al., 2022). After the occurrence of islanding, the DGs should take corresponding
control measures to change their inverter control mode, and even implement the corresponding
load shedding strategy when the power shortage is serious. Otherwise, the power shortage will
lead to voltage and frequency instability in the islanding MG, and the power equipment will be
damaged in serious cases (Davari et al., 2021; Wang et al., 2022b).

Effective islanding detection of MGs is key and prerequisite to preventing the delinking of
islanding MGs during the process of islanding transition. Therefore, from a safety point of view,
the MGs should have the ability of timely islanding detection. At present, the research on
islanding detection technology is mainly divided into active islanding detection and passive
islanding detection. In (Sivadas and Vasudevan, 2020), an active islanding detection method
was proposed for an MG containing multiple inverters operating in parallel. This method
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realizes accurate identification of islanding mode by constructing a
predefined pattern with small periodic steps during the process of
islanding detection. In (Gupta et al., 2015), an average absolute
frequency deviation value based active islanding detection
technique was proposed. This detection method can detect the
occurrence of islanding and maintain the stable operation of
systems under the condition of small frequency deviation. In
(Murugesan et al., 2018), an active islanding detection method
based on generator d-axis current disturbance was proposed. This
active islanding detection method can quickly detect the occurrence of
islanding while maintaining the stable operation of DGs. In (Wen
et al., 2016), an impedance-based analysis of the active frequency drift
(AFD) islanding detection method was proposed. In this method, the
output impedance of the inverter is modeled and the frequency
detection unit can accurately judge the occurrence of islanding
according to the frequency drift of the inverter. The active
islanding detection methods are mainly to inject a disturbance
signal into the system and judge whether islanding occurs by using
the change of electrical feature quantities caused by the disturbance
signal. However, these methods can affect the power quality.

To avoid the impact of the islanding detection process on the
power quality of MGs, the passive islanding detection method has
been widely studied. In (Seyedi et al., 2021), a new method for
islanding detection based on the combination of the rate of change
of voltage (ROCOV) and the rate of change of active power
(ROCOAP) was proposed. This method overcomes the
disadvantage that the traditional passive islanding detection
methods may fail when the power mismatch is close to zero. In
(Makwana and Bhalja, 2019), an islanding detection method based on
the modal component of the voltage signal was proposed. This method
can quickly identify the occurrence of islanding under the condition of
complete power balance in an MG. In (Bakhshi et al., 2018), an
islanding detection method based on the chaos theory was proposed.
This method takes the correction frequency at the point of common
coupling (PCC) as the input signal of the forced Helmholtz oscillator
and determines the threshold of the islanding detection index by using
the chaotic motion of the forced Helmholtz oscillator and the obvious
change of normal motion. In (Bakhshi-Jafarabadi et al., 2021), a two-
level islanding detection method using the rate of change of output
voltage and the change of active power output was proposed. This
method can achieve independent determination of the threshold and
does not adversely affect the output power quality of DGs. However,
the passive islanding detection methods rely on the change of the
electrical feature quantities of the inverter when the islanding occurs,
and there are shortcomings such as detection blind area and low
detection accuracy. In addition, the large uncertainty and power
volatility of DGs operation will lead to the failure of the passive
islanding detection methods in some scenarios.

In recent years, the application of machine learning algorithms in
islanding detection has been widely studied. The application of
machine learning algorithms can improve the shortcomings of
traditional active and passive islanding detection methods, and
improve the rationality and efficiency of islanding evaluation. In
(Ezzat et al., 2021), a two-stage islanding detection method based
on K-nearest neighbor (KNN) was proposed. This method can
correctly identify the occurrence of islanding in the presence of
noise and has the advantages of high recognition accuracy and
short detection time. In (Baghaee et al., 2020), an islanding
detection method for photovoltaic power plants based on a support

vector machine (SVM) was proposed. This method effectively solves
the problem of indistinguishable islanding events and grid fault events
in multiple complex scenario tests. In (Kermany et al., 2017), an
islanding detection method for MGs with multiple connection points
to smart grids was proposed. This method uses artificial neural
networks (ANNs) to move the current and voltage measurement
locations from the PCC to the distribution network side during the
signal processing, thereby reducing the islanding detection time. In
(Alshareef et al., 2014), a passive islanding method for DGs based on
wavelet design and machine learning was proposed. This method uses
the procrustes analysis method to determine the filtering coefficient of
the designed wavelet and improves the adaptability of the machine
learning algorithm in islanding detection. In (Özcanlı and Özcanlı,
2022), an islanding detection method based on long short-term
memory (LSTM) was proposed. The islanding detection method
achieves accurate detection of islanding without affecting the power
quality and operation stability of the MG. However, the above
islanding detection methods do not analyze the correlation between
electrical feature quantities at the PCC and the islanding states. The
selection of electrical feature quantities at the PCC is closely related to
the islanding detection method. If the training samples of the islanding
detection method contain irrelevant or weakly correlated electrical
feature quantities, feature conflicts and key features will be
underestimated, which will affect the accuracy of the islanding
detection method.

To solve the above problems, this paper extracts electrical feature
quantities with a strong correlation with islanding detection based on
the Spearman correlation coefficient. In addition, to effectively
determine the threshold of multiple electrical feature quantities and
reduce the dead zone in the islanding detection process, an islanding
detection method based on CatBoost is proposed for an MG in this
paper. This method trains the islanding detection method in the
dataset generated by islanding, grid-connected interference, and
line fault by CatBoost. It learns to explore the correlation between
multiple electrical feature quantities and the operating state of theMG,
so as to determine the threshold of electrical feature quantities in the
process of islanding detection and realize the accurate detection of
islanding. The proposed method can effectively improve the defects of
the traditional active and passive islanding detection methods, and
improve the accuracy of the islanding detection methods.

The main contributions of this paper are as follows:

1) To reduce the interference of weak correlation electrical feature
quantities on the islanding detection method, an islanding state
feature extraction method based on the Spearman correlation
coefficient is proposed in this paper. By analyzing the
correlation between multiple electrical feature quantities and the
operating states of an MG, this feature extraction method extracts
the electrical feature quantities with a strong correlation with the
islanding states. This method can reduce the errors caused by
weakly correlated electrical feature quantities in the islanding
detection method.

2) To determine the threshold of various electrical feature quantities
and reduce the dead zone in the process of islanding detection, an
islanding detection method based on CatBoost is proposed for an
MG. As an ensemble learner, this method has strong performance
in the multidimensional data processing. It can fully learn data sets
and determine the threshold of electrical feature quantities to
accurately detect islanding.
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2 Feature extraction

The islanding detection method proposed in this paper is to judge
whether the islanding occurs in the MG according to the electrical
feature quantities at the PCC between the MG and the distribution
network. The PCC can provide rich instantaneous electrical feature
quantities information (Mlakić et al., 2019; Chaitanya et al., 2021).
Table 1 shows the common electrical feature quantities that can be
used in islanding detection at the PCC. The ideal electrical feature
quantities applied to the islanding detection of the MG should be
highly correlated with the operation states of the MG and can produce
obvious changes before and after the islanding of the MG. At the same
time, the ideal electrical feature quantities should be insensitive to
faults and power quality disturbances in the MG. Therefore, it is
necessary to analyze the correlation between multiple electrical feature
quantities at the PCC and the operation states of the MG.

During islanding detection, the time and complexity of islanding
detection will increase dramatically if all the electrical feature
quantities in Table 1 are used as the criterion of islanding
detection. In addition, the electrical feature quantities at the PCC
contain much weak correlation information with islanding detection.
The information will affect the judgment of the islanding detection
method and bring errors in islanding detection. Therefore, it is
necessary to extract the characteristic of relevant electrical feature
quantities and dig out the effective information related to islanding
detection. In this paper, the Spearman correlation coefficient is used to
analyze the correlation between the electrical feature quantities at the
PCC and the islanding states, and the electrical feature quantities with
a large correlation with the islanding state are extracted. The extracted
electrical feature quantities are used as the islanding detection index to
improve the efficiency and accuracy of the islanding detection method.

The Spearman correlation coefficient can measure the correlation
between two variables (Zhang et al., 2016; Jia et al., 2021). This method
can be used to extract the key information for judging the islanding
state of the MG, and enhance the mapping relationship between the
electrical feature quantities at the PCC and the islanding judgment.
The specific steps of the electrical feature quantities correlation
analysis based on the Spearman correlation coefficient proposed in
this paper are as follows:

Step 1: The electrical feature quantities data set xki at the PCC and the
data set y of the islanding state of the MGs are constructed, and the
data set is expressed as

xk
i � xk

1, x
k
2,/xk

n−1, x
k
n( ) (1)

y � y1, y2,/, yn−1, yn( ) yn ∈ 0, 1{ }( ) (2)
where k is the kth electrical feature quantities at the PCC and n is the
total number of the electrical feature quantities.

Step 2: xk
i and y in ascending or descending order are arranged, the

sorted position ri as the rank of is xk
i recorded and its corresponding

rank sequence r is determined. Similarly, y is sorted and the rank
sequence s of yi is obtained.

Step 3: Each element of the sequence r and the sequence s is
subtracted to obtain the rank difference sequence
d � (d1, d2,/, dn−1, dn), and d is brought into the calculation
formula to obtain the Spearman correlation coefficient ρ. The
Spearman correlation coefficient ρ is expressed as

ρ � 1 −
6∑

n

i�1
d2
i

n n2 − 1( ) (3)

where n is the sequence length of the variable.
The range of the Spearman correlation coefficient is [−1,1]. A

negative value means negative correlation, and a positive value means
positive correlation. The greater the absolute value is, the greater the
correlation is. The closer the value of the Spearman correlation
coefficient ρ is to 0, the smaller the correlation between them is.

3 Proposed islanding detection method

3.1 CatBoost introduction

The traditional active and passive islanding detection methods
need to manually set the threshold, and there is a certain detection
dead zone. The disturbance signals injected by some traditional
islanding detection methods will also adversely affect the power
quality in the MG. The application of machine learning in
islanding detection can improve the defects of traditional active
and passive islanding detection methods. Machine learning avoids
the manual setting of the thresholds in islanding detection, and can
accurately detect the islanding state of an MG by learning various
electrical feature quantities measured at the PCC and further
determining the thresholds of electrical feature quantities.

The traditional single machine learning algorithms are prone to
low precision in multi-feature data processing. The emergence of
integrated machine learning algorithms avoids the defects of single
machine learning algorithms. As a typical representative algorithm in
the integrated machine learning algorithm, CatBoost is developed
based on the GBDT framework. CatBoost has a good performance in
processing categorical features, gradient deviation, and prediction
offset, and can reduce the occurrence of overfitting, thereby
improving the accuracy of the algorithm (Samat et al., 2021; Samat
et al., 2022).

CatBoost is composed of Categorical and Boosting. By training the
weighted training set, several weak learners are formed, and the weight

TABLE 1 Multiple electrical feature quantities at PCC.

Name Symbol

Active power P

Active power change rate dP/dt

Frequency f

Frequency change rate df/dt

Voltage U

Voltage change rate dU/dt

Current I

Current change rate dI/dt

Total harmonic distortion of voltage THDU

Total harmonic distortion of current THDI
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errors are fed back for weight correction. Finally, a strong learner based on
several learners is formed. Its structure diagram is shown in Figure 1.

It is assumed that the observation data set
S � (X1, Y1), (X2, Y2),/, (Xn, Yn){ }, where Xi � x1

i , x
2
i ,/, xm

i{ } is
the m-dimension vector containing numerical and categorical
features, and Yi is the marker value.

First, the CatBoost model binaries all numeric features: the tree of
oblivious is used as the base predictor to binarize floating-point
features, statistics, and one-hot coding.

Second, categorical features are marked as numerical values:

(1) The observed values are randomly arranged to generate multiple
random sequences.

(2) For a certain sequence, the average marker values of the training
data set are used to mark the categorical features:

xk
i �

∑
n

j�1
xk
j � xk

i[ ] · Yj

∑
n

j�1
xk
j � xk

i[ ]
(4)

where, if xk
j � xk

i , then [xk
j � xk

i ] = 1; otherwise, it is 0. The same
values of the categorical features are placed before the given values of
the sequences.

(3) It is assumed that θ � (θ1, θ2,/, θn), the values of the categorical
features are converted to the numerical values:

xk
θp �

∑
p−1

j�1
xk
θj
� xk

θp[ ]Yσj + a · P

∑
p−1

j�1
xk
θj
� xk

θp[ ] + a

(5)

where, prior value P and parameter a(a> 0) are added, namely prior
weight, which is helpful to reduce the noise of the low frequency
category.

Finally, when dealing with feature combinations, CatBoost
combines with a greedy strategy: 1) The first split of the tree does
not combine at all; 2) The second split of the tree combines all the
existing combination and classification features in the current tree and
all the classification features in the data set. At the same time, the new
combined categorical features are converted into numerical features;
3) All the splits selected in the tree are considered categorical features

with two values, and are used to generate a combination of numerical
features and categorical features.

In the process of overcoming gradient bias, CatBoost constructs a
tree in two stages: 1) CatBoost selects the tree structure and calculates
the value of leaf nodes after the tree structure is fixed; 2) CatBoost
enumerates different splitting methods, and scores the obtained tree
by calculating the values of leaf nodes, so as to select the best
segmentation. The values of leaf nodes in the two stages are
calculated using the approximation of the gradient.

CatBoost synchronizes training data sets and processing categorical
features, which greatly improves the efficiency of feature processing. The
algorithm for calculating leaf nodes can effectively avoid overfitting and
reduce the need for hyperparameter tuning, whichmakes themodelmore
universal. At the same time, CatBoost binaries floating-point features,
statistics and one-hot encoded features, and achieves binarization of
model output in the scoring process.

3.2 Islanding detection process based on
CatBoost

The islanding detection method based on CatBoost in this paper
mainly includes sample construction, weak learner generation, loss
function gradient determination, and final strong learner generation.
The specific contents are as follows:

1) Sample set construction

Firstly, data set (x1, y1), (x2, y2),/, (xn−1, yn−1), (xn, yn){ } is
obtained by constructing n samples from the electrical feature
quantities at the PCC, where xi � (x1

i , x
2
i ,/xk−1

i , xk
i ) (i � 1, 2,/, n)

is the i th sample formed by the electrical feature quantities at the PCC,
and k is the dimension of the i th sample. yi(i � 1, 2,/, n)(yi ∈ 0, 1{ })
is the islanding state label corresponding to the i th sample, where
0 represents the grid-connected state and 1 represents the islanding state.

2) Generation of weak learner

After constructing the sample set, the initial weak learner f1 is
constructed by constructing the classification and regression trees
(CART), and the weight error ei is fed back to update the weight.
Finally, a strong learner F based on several learners is formed. Before

FIGURE 1
Diagram of CatBoost structure.
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generating F, in the total L rounds iterative process, the output of the
previous round of the l th (l � 2, 3,/, L) generates the strong learner
Fl−1, and the loss function is obtained according to Fl−1, and the learning
results to describe the difference between the predicted value and the real
value of the sample in the islanding detection process. The purpose of
iterative learning in the l round is to find a weak learnerfl of the decision
tree model to minimize the iterative loss function in this round. fl is
expressed as

fl � argmin∑
n

i�1
L yi, Fl−1 xi( ) + fl xi( )( ) (6)

where fl(xi) is the output value of the weak learner fl when the input
is xi, and L(yi, Fl−1(xi)) is the loss function of the strong learner Fl−1.

3) Loss function gradient determination
The negative gradient of the loss function for the i th sample in the l
round is:

gi
l � −zL yi, fl−1 xi( )( )

zfl−1 xi( ) (7)

For each sample input xi, the corresponding loss function negative
gradient gi

s can be obtained, and then the weak learner of this round can
be fitted by set (x1, g1

l ), (x2, g2
l ),/, (xn−1, gn−1

l ), (xn, gn
l ){ }. To make

gi
s unbiased for the weak learner and avoid the prediction offset existing in

the generation of the strong learner, the proposed islanding detection
method adopts the gradient estimation method of the sorting boosting
algorithm. For each sample xi, a separate learning modelMi is obtained
by training with samples other than xi, and the negative gradient of the
loss function on xi is calculated by using this learning model Mi. This
method avoids the gradient deviation in the gradient calculation process
and realizes the unbiased estimation of the gradient.

4) Generation of the final strong learner

The proposed islanding detection method uses a symmetric tree as
the basic predictor. In this type of tree, the same partitioning criterion
is used on the entire level of the tree. This tree is balanced and less
prone to overfitting. In a symmetric tree, the index of each leaf node
can be encoded as a binary vector of length equal to the depth of the
tree, and the evaluation result is calculated by using binary features
during prediction. The strong learner formed after l rounds of
iterations is Fl(x), and its expression is expressed as

Fl x( ) � Fl−1 x( ) + fl (8)
After the strong learner in the L rounds of iteration and the weight

update based on the weight errors, the proposed islanding detection
method can be obtained.

The electrical feature quantities at the PCC under various
operation scenarios of an MG are taken as the input, and the
islanding label of the MG is taken as the output. The flow chart of
the proposed islanding detection method is shown in Figure 2, and the
detailed steps of the islanding detection are as follows:

1) The hyperparameters of CatBoost and fault events are initialized.
2) The Spearman correlation coefficient analysis method is used to

extract the islanding strong correlation electrical feature quantities
at the PCC of the MG under fault events.

3) The data of islanding strong correlation electrical feature quantities
at the PCC is input to the pre-trained CatBoost model.

4) Each weak learner in the CatBoost model gives its own islanding
decision result of the MG.

5) The strong learner generated by the training of CatBoost model
gets the final decision of islanding detection according to the
weight of each weak learner.

6) The islanding event label is output.

FIGURE 2
Flow chart of the proposed islanding detection method.

FIGURE 3
MG model based on a modified IEEE 13-bus system.
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4 Simulation studies and results

The setting of the samples can determine the learning result of the
machine learning algorithm and then affect the islanding detection
accuracy. To include the operation situations of MGs in grid-
connected and islanded states as much as possible, a modified
IEEE 13-bus system shown in Figure 3 is built based on MATLAB/
Simulink in this paper. All tests are conducted on a computer
equipped with Intel(R) Core(TM) i5-7500, which operates at
3.40 GHz and is equipped with 16 GB of running memory. The
test system contains 4 DGs and 6 loads. In the system, the AC
power grid is a three-phase power supply. The line voltage and DC
bus voltage are 380 and 600 V respectively. The frequency is 50 Hz.
The data information of DGs and loads are shown in Table 2. The
parameter Settings of the CatBoost model are shown in Table 3.

To train and detect the proposed islanding detection method more
comprehensively, and reduce the interference of different operation
states of MGs on islanding detection, this paper comprehensively
considers the switching of DGs and loads in the islanding scenario and
the grid-connected scenario. At the same time, the short-circuit and
open-circuit faults of transmission lines are also considered in the case
of MG grid-connected mode. Various simulated events are shown in
Table 4. In addition, to more comprehensively reflect the different

operating states of MGs, the power imbalance in the MG is considered
on the basis of the above state settings (Faqhruldin et al., 2014).

This paper comprehensively considers the islanding events, grid-
connected interference events, and line fault events shown in Table 3.
In the range [0, .7] of power imbalance degree in the MG, 15 groups
are taken at an interval of .05, and a total of 330 groups of data are
generated. This paper not only considers the situation of MGs as the
power receiver but also considers the situation of MGs as the power
supplier of the distribution network. Three groups of data in the value
range [−1, 0] are taken to generate a total of 66 groups of data. A total
of 396 groups of data are generated under the two conditions.

4.1 Analysis of feature extraction results

In the constructed 396 sets of data, the Spearman correlation
coefficient is used to analyse the correlation between the islanding state
and the electrical feature quantities at the PCC. The Spearman
correlation coefficient analysis results are shown in Figure 4.

According to the correlation strength classification criteria in
Table 5, the absolute value |ρ| of the Spearman correlation coefficient
ρ is used to classify the correlation strength (Zhao et al., 2022). The
correlation analysis results show that the frequency f of the electrical
feature quantities, the frequency change rate df/dt, the voltage total
harmonic distortion THDU, the current total harmonic distortion
THDI, and the MGs operating state |ρ| are greater than .8, and their
correlation strength is “very strong.” The current change rate dI/dt
and |ρ| are greater than .7, and their correlation strength is “strong.”
However, the active power P, the active power change rate dP/dt, the
voltage U, the voltage change rate dU/dt, the current I, and |ρ| are
less than .6. The correlation between these electrical feature
quantities and MG operating states is weak. In this paper, f,
df/dt, dI/dt, THDU, and THDI are selected as the electrical
feature quantities used in the islanding state detection method.
The purpose is to select the electrical feature quantities that are
strongly related to the MG operating states among the 10 electrical
feature quantities, and avoid the use of many electrical feature
quantities at the same time. According to the islanding detection
standard IEEE Std. 1547, the detection time cannot exceed 2 s
(Kermany et al., 2017). Considering the detection time and data
input delay of the islanding detection method, an average value of the
electrical feature quantities in 3 consecutive cycles is selected in this

TABLE 2 Data information of DGs and loads.

Rate power/kW Real time power/kW

DER1 30 30

DER2 40 40

DER3 50 50

DER4 60 60

L1 50 45

L2 60 57

L3 40 40

L4 50 50

L5 50 45

L6 30 30

TABLE 3 The parameters of CatBoost model.

Parameter Parameter specification Parameter values

Iterations Maximum number of trees 100

Depth The depth of the tree 5

Learning_rate Learning rate .1

Loss_function Loss function Logloss

Eta Step of contraction .5

Min_child_weight Minimum weight sum of sample leaf nodes 5

Eval_metric Prevent overfitting parameters Accuracy

Calc_feature_importance Prevent overfitting parameters 1

One_hot_max_size Prevent overfitting parameters 1
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paper after the islanding occurs when collecting the electrical feature
quantities.

4.2 Result analysis of islanding detection
method

In the cases of islanding events, grid-connected interference events
and line faults are extracted to obtain electrical eigenvalues for
islanding detection, which together with the islanding state

constitute the training samples of the islanding detection method.
To verify the performance of the proposed islanding detection method
based on CatBoost, this paper compares the proposed islanding
detection method with three different islanding detection methods.
Comparison method 1 is the islanding detection method based on
K-nearest neighbor (KNN) (Ezzat et al., 2021), comparison method
2 is the islanding detection method based on a support vector machine
(SVM) (Baghaee et al., 2020), and comparison method 3 is the
islanding detection method based on artificial neural network
(ANN) (Kermany et al., 2017). In addition, the accuracy,
F-measure, and AUC value indicators are selected as the evaluation
indicators of the islanding detection method (Xia et al., 2022). The
values of accuracy, F-measure, and AUC represent the reliability and
accuracy of the islanding detection method, and the closer the value is
to 1, the higher the reliability of the islanding detection method.

4.3 Case 1: Analysis of the impact of feature
extraction on islanding defection method

To verify the reliability of the islanding detection method and the
influence of feature extraction on the islanding detection method, a

TABLE 4 MG different state settings.

Simulate event Event situations Simulate events Event situations

Islanding events 1. PCC disconnect Grid-connected interferences 1. SD1, SL1, and SL2 disconnect

2. PCC and SL1 disconnect 2. SD2, SL2, and SL3 disconnect

3. PCC and SL2 disconnect 3. SD3, SL4, and SL5 disconnect

4. PCC and SL3 disconnect 4. SD3 disconnect

5. PCC and SL4 disconnect 5. SD1 and SD2 disconnect

6. PCC and SL5 disconnect 6. SL1,SL2, and SL3 disconnect

7. PCC and SD1 disconnect 7. Connect SD4

8. PCC and SD2 disconnect 8. Connect SL6

9. PCC and SD3 disconnect Line faults Single-phase/two-phase/three-phase short circuit

FIGURE 4
Spearman correlation coefficient between each electrical quantity and MGs state.

TABLE 5 Correlation strength classification.

The value ranges of |ρ| Correlation strength

[0.8, 1] Very strong

[0.6, 0.8) Strong

[0.4, 0.6) Moderate

[0.2, 0.4) Weak

[0, 0.2) Very weak
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comparative analysis of different detection methods is carried out in
the two cases of feature extraction and no feature extraction in this
paper. At the same time, to ensure that the sample proportions of
islanding events and grid-connected interference events in the training
set and validation set are consistent with the full set of samples,
stratified proportional sampling is used to divide the total sample set
into a sample set A and a sample set B according to the ratio of .7:.3.
The proposed islanding detection method, comparison method 1,
comparisonmethod 2, and comparisonmethod 3 are trained by taking
sample set A as the training sample set. Sample set B is used as the

verification sample to verify the performance of the islanding
detection methods trained by sample set A. The accuracy,
F-measure, and AUC values of the proposed islanding detection
method, comparison method 1, 2, and 3 based on sample set B are
shown in Figures 5–7.

When there is no feature extraction and the four islanding
detection methods detect the islanding state based on 10 electrical
feature quantities, the values of accuracy, F-measure, and AUC of the
proposed method, comparison methods 1, 2, and 3 are shown in
Figures 5–7, respectively. The accuracy, F-measure, and AUC values
obtained by comparison method 1 are all below .8. These values
obtained by comparison method 2 are all below .7, and the F-measure
and AUC values are even around .5. These values obtained by
comparison method 3 are all below .9. These values obtained by
the proposed method all reach .99. When judging the islanding state
based on 10 electrical feature quantities, the proposed islanding
detection method is significantly better than comparison methods
1, 2, and 3. However, the accuracy, F-measure, and AUC values
obtained by the four islanding detection methods do not reach 1,
which shows that the four islanding detection methods fail to
accurately judge the islanding state of the MGs without feature
extraction.

After using the Spearman correlation coefficient to extract the
characteristics of electrical feature quantities, five electrical feature
quantities which have a strong correlation with the islanding state
of the MG are extracted from the original 10 electrical feature
quantities. By analyzing the islanding detection results before and
after feature extraction, it can be concluded that the values of
accuracy, F-measure, and AUC of comparison method 1 are
increased by 16%, 17%, and 16% respectively by using the
Spearman correlation coefficient to extract the electrical feature
quantities. The values of accuracy, F-measure, and AUC of
comparison method 2 are increased by 24%, 39%, and 39%
respectively. The values of accuracy, F-measure, and AUC of
comparison method 3 are all increased by 14%. In particular,
the values of accuracy, F-measure, and AUC obtained by the
proposed islanding detection method are all increased from
.99 to 1, which realizes the error-free detection of the islanding
state. This is because after using the Spearman correlation
coefficient for feature extraction, features weakly correlated with
the MG state are eliminated, and key features with a strong
correlation in the process of islanding detection are retained.
Feature extraction reduces the errors caused by electrical feature
quantities with weak correlation in the process of islanding
detection, weakens the over-fitting phenomenon, and improves
the accuracy of the islanding detection method.

By analyzing the performance of different detection methods
after feature extraction, it can be seen that the values of accuracy
and AUC obtained by the proposed method are 9%, 10%, and 2%
higher than that obtained by comparison method 1, 2, and 3,
respectively. The F-measure of the proposed islanding detection
method is 8%, 9%, and 2% higher than that obtained by
comparison methods 1, 2, and 3, respectively. This is because
islanding detection is a complex process involving a variety of
electrical feature quantities. KNN, SVM, and ANN have limited
ability to fit and judge the complex electrical variables at the PCC
in the islanding MG, and cannot fully learn the correlation between
the MG operation states and the electrical feature quantities. The proposed
islanding detection method is based on the integrated learner, which can

FIGURE 5
Accuracy of four islanding detection methods.

FIGURE 6
F-measure of four islanding detection methods.

FIGURE 7
AUC of four islanding detection methods.
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give full play to the advantages of weak learners in the diversity of structure
and parameters, and can fullymine the rules contained in complex electrical
feature quantities in data training. Therefore, compared to comparison
methods 1, 2, and 3, the proposed islanding detection method has higher
detection accuracy and performance.

4.4 Case 2: Comparative analysis of different
islanding detection methods in four scenarios

To further verify the performance reliability and superiority of the
proposed islanding detection method, all samples in islanding events
and grid-connected interference events are combined into a new
sample set A, and all samples in islanding events and line fault
events are combined into a new sample set B in this case. In
addition, all samples in islanding events, grid connection
interference events, and line fault events are divided into sample
set C and sample set D by stratified proportional sampling method in
the ratio of .5:.5. The proposed method, the comparison method 1, 2,
and 3 are trained based on sample sets A, B, C, and D, respectively. The
accuracy rate accuracy, F-measure, and AUC values of the proposed
islanding detection method, comparison methods 1, 2, and 3 are
tested. In this case, four scenarios are set as follows:

Scenario 1: According to the ratio of .6:.4, sample set A is divided
into a training set and validation set by the stratified proportional
sampling method to verify the performance of different islanding
detection methods under grid-connected interference.

Scenario 2: According to the ratio of .6:.4, sample set B is divided
into a training set and validation set by the stratified proportional
sampling method to verify the performance of different islanding
detection methods under grid-connected interference.

Scenario 3: The proposed islanding detection method, the
comparison method 1, 2, and 3 are trained by sample set C.
Sample set D is used as the verification set to test the islanding
detection methods trained by sample set C.

Scenario 4: The proposed islanding detection method, comparison
methods 1, 2, and 3 are trained by sample set D. Sample set C is used as
the verification set to test the islanding detection methods trained by
sample set D.

The accuracy values of the proposed islanding detection
method, comparison methods 1, 2, and 3 in four scenarios are
shown in Figure 8, the F-measure is shown in Figure 9, and the
AUC values are shown in Figure 10. From Figures 8–10, it can be
seen that in the verification of the four test scenarios, the proposed
method is significantly better than the comparison methods 1, 2,
and 3 in the three evaluation indicators of accuracy, F-measure,
and AUC values on the validation samples. In scenario 1, the
accuracy and AUC values obtained by the proposed islanding
detection method are 10%, 7%, and 3% higher than those of
comparison methods 1, 2, and 3, respectively. The F-measure
value obtained by the proposed islanding detection method are
10%, 7%, and 4% higher than those of comparison methods 1, 2,
and 3, respectively. In scenario 2, the accuracy and F-measure
values obtained by the proposed islanding detection method are
1% higher than those of comparisons 1, 2, and 3. The AUC value
obtained by the proposed islanding detection method are 1%, 2%,
and 2% higher than those of comparison methods 1, 2, and 3,
respectively. The data shows that compared with comparison
methods 1, 2, and 3, the proposed islanding detection method

has a higher detection accuracy in the presence of grid-connected
interference and line faults.

In the cross-validation of scenario 3 and scenario 4, with the
increase in the complexity of the composition of the test samples,
the three evaluation indexes of accuracy, F-measure, and AUC
values obtained by comparison methods 1, 2, and 3 fluctuated
greatly, and the values ranged from .9 to .99. On the contrary, the
proposed islanding detection method is relatively stable in the
three evaluation indexes of accuracy, F-measure, and AUC values,
and the values all reach 1. This data shows that the proposed
islanding detection method can detect islanding more accurately
for complex verification samples in the presence of grid

FIGURE 8
Accuracy of four islanding detection methods in four scenarios.

FIGURE 9
F-measure of four islanding detection methods in four.

FIGURE 10
AUC of four islanding detection methods in four scenarios
scenarios.
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connection interference and line fault. In four different
scenarios, the proposed islanding detection method can
accurately detect islanding and non-islanding states. In
addition, compared with the comparison methods 1, 2, and 3,
the proposed islanding detection method can better detect
islanding correctly under different sample compositions. They
have a large leading amplitude, which fully shows that compared
with the traditional single machine learning algorithm, the
proposed islanding detection method gives full play to the
advantages of the integrated learner in the multidimensional
data processing. The data set can be fully learned to determine
the threshold value of electrical feature quantities in the process
of islanding detection and has higher detection accuracy.

5 Conclusion

To determine the threshold value of various electrical feature
quantities, reduce the dead zone in the process of islanding
detection, and then realize the accurate detection of islanding,
an islanding detection method based on CatBoost is proposed.
The method realizes the accurate islanding detection of the MGs
by deep excavating the electrical feature quantities at the PCC.
Compared with existing methods, the proposed islanding
detection method has the following advantages:

1) The proposed islanding detection method uses the Spearman
correlation coefficient to extract the features of the electrical
feature quantities at the PCC, reducing the error caused by the
electrical feature quantities with weak correlation in the islanding
detection process.

2) The proposed islanding detection method can more accurately
determine the threshold of electrical feature quantities and reduce
the dead zone of islanding detection.

3) The proposed islanding detection method can avoid the
interference caused by grid-connected interference and line
faults, and has higher islanding detection accuracy.
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