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Self-sustainingmicrogrids (MG) are now possible due to the integration of renewable
energy and communication technology in utility. It is essential to have an effective
energy management system (EMS) because of the unpredictable response of these
resources, the uncertainty of the load variations, and the market pricing. Only
operational expenses have been considered while discussing MG’s optimum
operation so far. It is necessary to examine the potential of adding demand-side
management (DSM) to the energy management system challenges and its impact on
overall operational costs and peak reduction. This article investigates the influence of
the load shaping approach that is imposed by the utility on non-dispatchable energy
sources. A stochastic EMS framework is developed to come up with an optimum
solution for day-ahead scheduling and minimize operating costs for grid-connected
MG. Using real-time weather data, four different solar and wind power production
profiles are developed in the first step to address the issue of unpredictability. MG
system design, operational restrictions, and allocating demand side management
load participation data to the goal function are all addressed in this second step of the
algorithm development. Artificial Bee Colony (ABC) is designed in the third stage to
find the ideal setup of DG units for maximum electricity dispatch and comparing
outcomes for all scenarios with and without DSM involvement. It has been shown
that with a 20% DSM load participation, a proposed stochastic framework may save
costs by 62%, according to the simulation results.
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1 Introduction

The structure of traditional power networks has evolved over the last several decades as a
result of the advent of uncertain renewable generation (URGs) and cutting-edge
communication and control technology (Arefifar et al., 2018). Increasing use of high
penetration URGs and improved development of demand-side resources (DSRs) have been
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regarded as two significant technical advancements to support the
sustainable growth of current energy infrastructure, which is made
possible by the goal of reducing total cost (Yang and Xia, 2017). A
microgrid (MG), whichmay be integrated with different URGs, energy
storage systems (ESSs), and DSRs, is a viable way to offer clean and
renewable electricity as a crucial part of the energy transition of the
traditional power systems (Che et al., 2017).

Microgrids (MGs) are autonomous systems that support the
incorporation of distributed energy resources (DERs) and
renewable energy for reliability and cost-effectiveness reasons (Che
et al., 2014; Che and Shahidehpour, 2014; Dang et al., 2014).
Microgrids are essential elements of smart power distribution
networks for regulating the resilience of the power system under
adverse circumstances. They may be operated in either a grid-
connected or an island mode. To improve the dependability,
resilience, and economics of power networks, a community of
microgrids that are physically linked to one another forms a cluster
(Loh et al., 2013), (Che et al., 2015). When microgrids are
interconnected the optimal power-sharing for cost optimization is
studied in (Ullah et al., 2022a). In (Ullah et al., 2022b) the impact of
power-sharing and demand response is calculated using the ABC
algorithm.

With the help of contemporary information and communication
technology, the SG can modify the production of renewable energy,
develop intelligent monitoring systems, and distribute and transfer
grid electricity (Zhang and Xia, 2009). The SG may also build the
infrastructure, administer the decentralized energy resources, and
govern and manage the power market (Kolokotsa, 2016). By
assessing the current and future state of the electrical market,
choosing a financially viable choice for energy supply, and
modeling and describing the system load, the DSM supports the
SG functions (Macedo et al., 2013). To satisfy the rising energy
demand, however, SG’s capacity must be increased, which
necessitates the building of infrastructure for power production
and transmission (Nguyen et al., 2012). The creation of new
infrastructure will raise relevant system expenses as well as the
complexity of the SG networks. By lowering peak load demand,
altering load profiles, and lowering total costs and carbon
emissions, the DSM may also enhance grid sustainability. Previous
research documented the effects of DSM on SG’s decreased carbon
emissions. For instance, by introducing electric cars and a DR
program, Zhang et al. decreased the amounts of carbon emissions
in the SG environment (Zhang et al., 2016). A bid-scheduling DSM
approach was adopted in Singapore by Ai et al. to encourage
customers and lower carbon emission levels (Ai et al., 2010). On
the basis of the DR program in the SG environment, they created
demand-side reserve scheduling in this instance. To examine and
assess carbon emission levels from various portions of an SG network,
Li et al. suggested a carbon emission flow model (Li et al., 2017).
Participation in the energy management program is collaborative
between DSM and supply-side management.

Traditional power system optimization and control strategies are
primarily centralized and model based. Traditional methods, on the
other hand, are gradually becoming unable to meet the demands of
power system development, such as dynamic grid operations
optimization, distributed energy resources, and generation,
distributed demand side management (DSM), an uncertain market
environment, a lack of information about bidding rivals, and massive
power data processing. If not adequately managed, a system with RE

would entail dealing with extra technicalities such as power quality or
reliability difficulties.

Incorporating renewable energy (RE) sources into electrical grids
presents a unique issue in the form of unpredictably fluctuating power
supply. The difficulty in accurately estimating generation could be due
to available wind speeds that are much below or far beyond the
installed wind turbine’s cut-in or cut-out speeds; or reduced solar
insolation due to cloud cover. This makes managing sudden surges
and dips in power supply or demand more difficult for energy
planners, necessitating the development of technology that can
increase system efficiency and dependability (Locatelli et al., 2015).
Because most grids are still operated on fossil fuels, coal, or nuclear
power, where the supply level is predictable, renewable energy sources
require storage devices to control their supply and keep up with the
performance of traditional systems. Energy management of power
networks using storage systems attempts to reduce the microgrid’s
investment, operating, and maintenance costs (Khan et al., 2016),
while keeping the system’s reliability at a reasonable level, as shown in
Figure 1.

Renewable energy sources are becoming the adopted sources of
energy supply for new energy networks as more electrical networks
migrate to greener, lower-carbon technologies and decommission coal
and nuclear power facilities. The adoption of energy storage devices
can help solve the problem of their intermittent supply. According to
one forecast, storage capacity will exceed 1000 GW by 2030, when
solar and wind capacities have surpassed 5000GW, owing to their
application in electric vehicles, pumped hydro, and batteries (Ralon
et al., 2017).

Energy storage systems come in a number of technologies, on
small and big scales, with their own set of characteristics and limits
that limit where they can be used, and are available at a variety of
prices. Storage systems are also becoming more important as the
global demand for power for transportation and heating rises
(Brandon et al., 2017). Energy storage systems have a number of
technical advantages, including increased system stability and
reliability, lower voltage and frequency variations, and fewer
outages (Table of Contents, 2018). When they’re used in a system,
they can also create revenue.

This work discusses the energy management of networks that
include energy storage technologies. Energy management is critical for
efficiently utilizing the energy storage system while also protecting it
from excessive charging and draining (Manandhar et al., 2019) and
minimizing all associated network operating costs. As a result,
minimizing ESS investment costs requires optimizing the planning
and operation of energy storage systems (ESS) for viability and
maximum advantages.

To achieve the above requirements, power systems must include
advanced optimization and management techniques that can tackle
the problem on a local level. Simultaneously, information from power
unit neighbours should be used to optimize and integrate the entire
power system. In addition, a vast amount of historical power data, as
well as neighborhood data, should be collected in order to achieve
precise power system control and management.

1.1 Microgrid new technologies

There are many different kinds of generating technology available
for microgrids. Just a few of these include internal combustion engines,
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GT, MT, PV, FC, andWT technologies. Aside from that, a slew of new
technologies has arisen in recent years. This chapter collects the most
common new generation technology.

Wind energy is converted to electricity by a wind-electric turbine
generator. A blade, often known as a rotor, is the most important
component in wind-electric systems. The blades of the wind turbine
generator are moved by air. Because the air pressure is low, the blades
should have a large diameter. The diameter of a 1 kW WT blade in
normal conditions is roughly 2.6 m. A gearbox, generator, control
electronic equipment, grounding, and connectivity devices are all
included in the wind-electric turbine generator. The rotor is
suspended from a tall tower. Wind-electric systems are now widely
used all over the world. To generate power at a reasonable cost, all that
is required is the discovery of a windy location. (American Clean
Power Association, 2020).

Solar energy is converted into electricity using photovoltaic
systems. A photovoltaic module, sometimes known as a PV panel,
is a collection of solar cells. The solar cell is an apparatus that converts

Sun photons into the electric charges that make up an electric current.
There are numerous advantages to employing photovoltaic systems.
The photovoltaic systems’ modular design enables their quick
installation in any location. Cooling systems are not necessary for
PV cells, and their environmental effect is minimal (Hosseini Imani
et al., 2018).

Micro-hydro power plants are also often employed in micro-
generating, there are two different kinds of turbines used in micro-
generations. The most popular turbine type in high-head power plants
is the so-called Pelton wheel, which has a large number of cups
connected to it, as the water presses down on the cups, the turbine
rotates on its axis as a result. The Asymmetrical flow Kaplan turbine,
which has the hub in the same direction as the water flow, is another
form of micro-hydro turbine that is appropriate for low-head plants.
The fundamental advantage of hydropower turbines is that they create
power on a continuous basis, despite the fact that the water flow varies
slightly during the year. The challenge with micro-hydro plants is that
they are still in the design phase: how to build a turbine for the least

FIGURE 1
Energy management system in MG.

FIGURE 2
Demand and supply.
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amount of money and with the least amount of environmental impact.
(Hosseini Imani et al., 2018).

Natural-gas generating stations are the most ideal in microgrid
systems due to their low air emissions, lower price, and availability.
However, diesel-fuelled generators continue to dominate in short-
term applications or as backup energy sources. By improving the
design and management of the combustion process, the emissions
from natural gas systems have been permanently reduced. Advanced
natural-gas applications have reached nitrogen oxide production

levels of less than 50 ppmv, which is a big step forward in
environmental protection, the majority of these systems still need
to utilize exhaust catalysts, which significantly lowers system
efficiency. Dramatically. Consequently, it is still difficult to have
both high efficiency and low emissions at the same time (Engler, 2000).

Microturbines are power plants that use a field rotating machine,
typically a permanent magnet machine, to generate electricity at a high
uniform speed. It is a crucial advanced technology for the next-generation.
Microturbines run on a variety of fuels, such as natural gas, gasoline, and

FIGURE 3
DSM techniques.

FIGURE 4
Microgrid EMS.
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other liquid or gaseous fuels. This type of plant emits less than 10 parts per
million of NOx. However, because the microturbines’ speeds are so
unpredictable, complex power electronic technologies are needed to
connect them to the grid. Micro-turbines, on the other hand, have
low electricity-generating efficiency, often around 20% of the fuel
efficiency. The efficiency of the system could be greatly improved if
expensive and sophisticated recuperator technology is applied. In any
case, 70 to 80 percent of the heat is produced through the process of
thermal conversion of fuel energy, and this heat must be required to make
micro-turbines profitable (Engler, 2000).

The main fuel for fuel cells, which generate energy, is hydrogen.
The use of molten carbonate, solid oxide, and phosphoric acid cells is
currently widespread and becoming commercially affordable. These
systems emit extremely few pollutants and have a high efficiency when
compared to other power plants, but their production technique is
much more expensive (Engler, 2000).

A piston heat engine is the Stirling engine. It falls under the
category of an external combustion engine. These engines operate on
the principle of hot air pressure. It is a very cost-effective engine that
also has a low environmental impact (Hosseini Imani et al., 2018). The
tensions in the heat exchanger materials cause complications in the
Stirling engine. Due to manufacturing issues, this machine type is not
as common as it once was.

A diesel internal combustion engine powers diesel generator sets.
The diesel generator’s operational concept is the process of converting
the mechanical energy of a diesel engine to electrical energy through
the use of an electrical generator. Diesel generator sets are currently
commonly employed. These generators do not require any particular
installation requirements or locations. However, because diesel
engines have such a big environmental impact, their use is
decreasing (Hosseini Imani et al., 2018).

1.2 Demand side management program

The electricity grid’s stability is important (Momoh, 2012). As a
result, as shown in Figure 2, power suppliers work hard to maintain a
constant supply and demand balance. Demand response (DR) and

demand-side management (DSM) are created and applied to maintain
grid balance and make smooth Peaks and valleys in the demand for
electricity (Strbac, 2008; Gelazanskas and Gamage, 2014). DSM and
DR, on the other hand, have numerous problems.

Historically, load management has been referred to as DSM and DR.
The electricity demand fluctuates a lot throughout the course of a day. As
a result, grid stability may be compromised. As a result, one of the key
causes of concern for generation businesses is variations in power
consumption. Clark Gellings (Electric Power Research Institute,
United States) originated the term DSM in the early 1980s (Arteconi
et al., 2012). DSM (Gelazanskas and Gamage, 2014) also refers to the
monitoring, implementation, and planning of utility actions aimed at
changing the end user’s power profile. DSM programs are designed to
encourage customers to be more energy efficient. To put it another way,
DR is the activity taken by customers to reduce their energy consumption
for a certain time period, while DSM is meant to induce end-users to
modify their power profiles and often seeks for long-term reduction
(Logenthiran et al., 2012). Customers might, for instance, increase their
off-peak power use while decreasing it during peak hours (usually at
night). For three reasons, end users adjust to the DSM or change their
power profile to reflect the DSM:

• Electricity energy suppliers must establish an adequate
flexible pricing strategy to entice customers to regulate
their energy consumption and vary the form of their
electricity demand based on their lifestyle (By arranging
their dynamic activities for off-peak hours, they may lower
demand during on-peak hours).

• End users’ capacity to modify their power profiles: It’s essential
that end users have access to a control system that enables them
to regulate and keep track of their energy use (change their living
style). On the other hand, certain loads, such as television,
computer, beard trimmer, or lights, cannot be postponed or
moved to a different time.

• The capacity to calculate the earnings generated byDSMadoption: It
is important for customers to be able to identify how much money
they saved by utilizingDSM since this willmotivate them to continue
participating in DSM. As a result, a suitable interface is required.

FIGURE 5
Typical microgrid.

Frontiers in Energy Research frontiersin.org05

Ullah et al. 10.3389/fenrg.2022.1016109

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.1016109


Also, providing a comprehensible overview of the activities might be
quite beneficial, especially for those who are unfamiliar with how to
compute electricity bills (Braithwait et al., 2007).

1.3 Different types of DSM

The utility’s total load and the period of load consumption are
influenced by the successful implementation of DSM, which lowers
predicted peak loads (De Vizia et al., 2022). The DSM affects the load
shape of the power distribution network andmanipulates client energy
use patterns to create the desired changes in load profiles and lower
electricity bills (Hongming et al., 2006; Logenthiran et al., 2012).
Basically, the DSM lowers peak loads, which lowers operational
expenses and capital expenditures and helps to prevent the creation
of surplus electricity (Kinhekar et al., 2014). The DSMmay be divided
into six broad categories based on the daily and seasonal power use as
shown in Figure 3. These techniques consist of load shifting, peak
clipping, valley filling, strategic load increase, strategic load
conservation, and variable load shape (Gellings, 1985; Sinha and
De, 2016; Kalair et al., 2020).

The demand curve is shaped using a variety of DSM techniques
(Logenthiran et al., 2012; Zhu et al., 2012; Gelazanskas and Gamage,
2014), as shown in Figure 3, in addition, but not restricted to:

• Load shifting: the main purpose of load shifting is the transfer of
load from peak to off-peak hours, like heating of water for use in
off-peak hours (night time) and to utilize it in the peak hours.

• Conservation: Conservation is the best-known method of
reducing overall electricity usage, not just during peak hours.
For instance, power may always be saved by using energy-
efficient equipment.

• Peak clipping: The strategy’s main objective is to lessen demand
during peak hours (e.g., at 07:00 PM). Controlling interruptible
equipment, such as an air conditioner or heater, by customers or
electrical suppliers helps reduce energy use.

• Valley filling: in valley filling the load demand is increased in off-
peak hours and decreases in the peak hours. The best example of
valley filling is charging the PHEV in the night time which is off-
peak time.

• Load Growth: In contrast to conservation policy, load growth
involves increasing the total amount of sales (off-peak and peak
hours).

• Flexible load shape: Under this technique, the utility company
has the authority to interrupt loads as needed without informing
customers. Variations in service quality or quantity are typically
referred to as flexible load shapes.

Almost all DSM plans are created and carried out to make the best
use of the present power plants. A further crucial goal is to prevent,
postpone, or delay new power plants that are required (conventional
or renewable plants).

In this paper impact of DSM on operational cost is measured. To
further minimize operational expenses, a DSM program imposed by
the utility is added to the issue.

A stochastic EMS framework is created to execute and evaluate the
flexible load-shaping DSM method, price-based demand response
programs (DRPs), and incentive-based DRPs (Kumar et al., 2021).
In (Philipo et al., 2022) suggests a demand-side management approach

based on peak clipping and load shifting. An ANN approach is used
for optimization in (Philipo et al., 2022).

An artificial bee colony (ABC) has never been used previously
to solve optimal energy management in MG. Photovoltaic (PV),
wind turbine (WT), Fuel cell (FC), Microturbine (MT), and Battery
energy storage system (BESS) are all incorporated into the
microgrid.

Four distinct RES scenarios are developed using real-world
data. By using the ABC algorithm to resolve the EMS problem, a
comprehensive comparison of optimal solutions for scenarios
with and without DSM involvement is given. The paper consists
of five different cases and in each case, the impact on operational
cost is separately calculated. In the first case which is considered a
base case or case 1, the operational cost is calculated without using
DSM. In the second case, the 5% DSM strategy is used to find the
operational cost in cases 3,4, and 5, 10%,15%, and 20% DSM is
considered the more the percentage the DSM is used the less will
be the operational cost. This work shows that case 5 which
consists of the highest percentage of DSM will be the best case.
The process is divided into four different weather scenarios and
for different scenarios different solar and wind profiles are
considered. From these four scenarios, it is derived that the
high the incorporation of renewable energy sources in
microgrid DSM the high will be the cost. The different
scenarios with operational costs are represented in the results
and which show the increasing cost due to the increase in
penetration of renewable sources.

2 Microgrid clustering

There are several reasons why microgrids should be integrated.
The first and most important advantage of microgrid interconnection
is the capacity to share reserves under critical situations (e.g., the loss
of a major generator) to reduce the likelihood of system collapse,
minimize emergency load shedding needs, and improve overall system
dependability.

The economic dispatch in multi-microgrids systems, which may
occur in either grid-connected or island mode, is the second advantage
of interconnectivity. A microgrid with surplus solar power output, for
example, might support an adjacent weak microgrid, benefiting both
microgrids economically.

The third advantage is that storage and auxiliary tasks may be
shared.

Large energy storage systems in a microgrid, for example, might
supply important loads in several linked microgrids before thermal
generating units in individual microgrids can take up the appropriate
loads.

The fourth advantage is related to microgrid resilience. In an
emergency, microgrids may face extraordinary problems, such as
inadvertent islanding caused by a large disruption on the utility
side. The effect of such situations may be mitigated by adequate
and strategic connectivity of microgrids. A big microgrid may also be
divided into linked Nano grids (loops) for control reasons. A
distributed generating system in a microgrid, for example, may be
partitioned into many Nano grids to improve local dependability
(Arefifar et al., 2013).

The microgrid energy management system input information flow
and functionality are represented in Figure 4.
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3 Problem formulation

3.1 ABC algorithm in MG-EMS

The artificial bee colony algorithm (ABC) is an optimization tool based
on honey bee swarm foraging behaviour (Yi andHe, 2014). It replicates bee
colony swarm intelligence integration in foraging operations.

The colonies of real bees are divided into three categories: 1) Bee
workers (called also Employee bees). 2) Onlooker bees 3) Bee scouts.

The employed bees discover the food source’s neighbourhood;
onlooker bees get knowledge about food sources from the dancing of
employed bees inside the hives and choose a good food source. The
scout bees investigate new food sources at random. Because each
employed bee is linked with just one food source, the number of
employed bees or onlooker bees in the ABC algorithm is equal to the
number of food sources. Each food source represents a potential
solution to an optimization issue, and the quantity of nectar
correlates to the fitness value.

In each cycle of the ABC algorithm, a random solution is
generated, i.e., the bees randomly choose a selection of food
sources and exchange nectar quantity information with onlooker
bees. Second, they contrast a new food supply in the area with an
existing food source. The likelihood of selecting a food source rises as
the quantity of nectar from that food source increases. Following that,
some employed bees abandoned their food source in search of a new
food source. This cycle is repeated until a termination requirement is
met. Onlooker bees and employed bees are chosen at random.

Onlooker bee selects a food source based on roulette wheel
selection. The probability value Pi for the food source is given as:

Probability � Pi � Fiti∑PN
a�1 Fita

, (1)

Where, PN is population size equal in number to employee bee Fiti is
the fitness value of solution i. As Eq. 2, each employed bee creates a
new candidate solution in the neighbourhood of its current position:

Sij � yij + randij −1, 1( )(yij − ykj) (2)
Where, rand is a random value between -1 and 1. yij represents the ith
solution of jth parameter and jϵ 1, 2, 3, . . . , D{ } and D represents the
number if optimization parameters and k ∈ 1, 2, 3, . . . ., PN{ }.
According to the equation, the scout finds a new food source at
random:

yij � ymin ,j + rand 0, 1( )(ymax ,j − ymin ,j) (3)

4 Mathematical modeling and
operational constraints of MG
components

In order to evaluate the suggested design as shown in Figure 5, a
sample low voltage grid-connected microgrid was taken into
consideration. A microgrid central controller will monitor and
regulate the exchange of energy between MG and utilities using
microgrid central controller (MGCC). The main responsibility of
microgrid central controller is to allocate power references to (LCs)
local controllers in order to meet the power balance limitations for the
given time T. In order to meet the power need, the surplus (shortfall)

energy provided by storage devices must be absorbed (supplied) by the
micro-source controller (MC) and load controller (LC). While
accounting for predicting errors. The system contains Photovoltaic
(PV), wind turbine (WT), fuel cell (FC), microturbine (MT), and
energy storage technologies, among other DG elements.

4.1 Solar photo voltaic model

The power output of a PV system might change depending on
location, module features, and metrological factors like Sun irradiation
Is and ambient temperature (Ta). The following mathematical
equation provides an estimate of the PV module’s Ppv power
output (Radosavljević et al., 2016).

PPV � Pmax
Is

1000
1 + ρ Tm − 25( )( ) (4)

Where, Pmax is the maximum generated solar power (W) taken from
the solar unit, Is denotes solar irradiance (W/m2), Tm denotes module
temperature (℃), and ρ denotes the temperature coefficient (℃−1) for
the generation of power from the solar panel. The temperature of the
cell is depending on its nominal value Tnom, the temperature of the PV
module may be calculated as a function of Is and Ta (ambient
temperature) for every given position (℃).

Tm � Ta + Is
800

Tnom − 20( ) (5)

Typically, A Beta Probability Density Function describes the hourly
solar irradiation fpv (ξ), as seen in Eq. 6. In Eqs 7, 8, the mean (μ) and
standard deviation (σ) of the random variable, which denotes solar
irradiance, are used to assess the shaping parameters of this function.

fpv ξ( ) �
Γ α + β( )
Γ α( )Γ β( ) ξα−1 1 − ξ( )β−1

0 Otherwise

⎧⎪⎪⎨⎪⎪⎩ (6)

β � 1 − μ( ) μ 1 + μ( )
σ2

− 1( ) (7)

α � μpβ

1 − μ
(8)

For solar uncertainty modelling, the probability of a discrete state
with irradiance limitations of ξ1 and ξ2 is evaluated in Eq. 9 for every
given period.

P ξ( ) � ∫ξ2

ξ1

fpv ξ( ).dξ (9)

4.2 Wind generation uncertainty model

The intermittent nature of the wind is the main factor affecting the
power produced by the WT. Many researchers use the Weibull
distribution to represent the timely fluctuations in wind speed
(Radosavljević et al., 2016). The following is the Weibull
probability distribution function:

fpwt �
α

β
*

Pwt

β
( )α−1

pe
− Pwt

β( )α

Pwt ≥ 0

0 Otherwise

⎧⎪⎪⎨⎪⎪⎩ (10)
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Following is a representation of the actual power produced by WT
using the simulated wind velocity.

P wt( ) �

0 for 0≤ v≤ vc−in or v≥ vc−out

v2 − v2c−in
v2rated − v2c−in

pPrated for vc−in ≤ v≤ vrated

Prated for vrated ≤ v≤ vc−out

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(11)

Where, v is the wind velocity, vc−in in the cut in wind velocity from
which wind power start to generate, vc−out is cut out wind speed which
is the maximum limit of the velocity beyond which power generation
stopped.

4.3 Microturbine and fuel cell model

The cost values are derived from (Yi and He, 2014) and the cost
function estimate of DG units is obtained as shown in
(Radosavljević et al., 2016). The DG bids are provided as
follows after taking into account the depreciation cost (CD) and
production cost (CP) of Photovoltaic (PV), wind turbine (WT), and
BESS.

BidDG � CD

CP
pPDG (12)

CD � ri 1 + rin( )n
1 + rin( )n − 1

pCinst (13)

Where interest rate is represented by ri , and Cinst is installation cost of
DG unit. The bid cost calculations for MT and FC is as:

BidDG � Cf
PDG

η
+ Cit (14)

Cit � CD
PDG−nominal

CP
(15)

Where, Cit the yearly investment cost for the cos of depreciation CD,
cost of production CP, and the nominal DG power PDG−nominal. Cf is
fuel cost (€/kWh) necessary to provide the microturbine (MT) and
fuel cell (FC).

4.4 Battery energy storage system

Battery energy storage play an important role in energy
management system of microgrids. When the power generated by

FIGURE 6
Case1 with scenarios 1,2,3,4.
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microgrids exceeds the required demand, then extra power generated
will be stored in battery until it is fully charged up to Emax, when the
generation is low than demand, then battery will be discharged to meet
the load demand or to export to the grid.

if PGen t( )>Pload t( ) and SOCbat <EBMax

then;PBC t( ) � PGen t( ) − Pload t( )[ ]ηBC Charging process
(16)

if PGen t( )>Pload t( ) and SOCbat ≥EBMax then;PBC t( ) � 0 (17)
In Equation 17 as the battery is full the extra power generated will

either be shared with other microgrids or with the main grid.

if PGen t( )<Pload t( ) and SOCbat ≥EBMax

then;PBD t( ) � Pload t( ) − PGen t( )[ ]
ηBD

,
(18)

Eq. 18 shows the discharging process of battery, where PBD(t) will
be negative and ηBD is a discharging efficiency of a battery.

if PGen t( )<Pload t( ) and SOCbat <EBMax then;PBD t( ) � 0, (19)
Eq. 19 represents that if the generated power of microgrid is less

than the load of microgrid, and SOC of battery is minimum Cmin ,
then the microgrid will either import energy from other microgrid or
from the main grid.

4.5 Scenario creations

To deal with the uncertainty issue of MG elements, such as solar
power and wind power generation, stochastic programming is often
used. In this study, the scenario-based approach is used to simulate the
stochastic behaviour of variables related to wind speed and solar PV
irradiance. Modeled as (Wu et al., 2007), the uncertainty in solar and
wind power production are listed below:

Ps
PV,t � PPV,t,f + ΔPs

PV,t t � 1, 2, 3, . . . .., Nt, s � 1, 2, 3, . . . . . . , Ns

(20)
Ps
WT,t � PWT,t,f + ΔPs

WT,t t � 1, 2, 3, . . . .., Nt, s � 1, 2, 3, . . . . . . , Ns

(21)
where PPV,t,f, PWT,t,f,t, Ps

PV,t, and P
s
WT,t are, respectively, the predicted

output power of PV and WT and their predicted errors. The scenario
quantities for the uncertainty model are NT and Ns, which are time
interval quantities. The majority of earlier research (Moghaddam
et al., 2011; Radosavljević et al., 2016) only examined the
predictions of PV and WT production based on a particular
season, without incorporating the data from further seasons. The
authors of this research, however, took into account four different
seasonal patterns and projected PV and WT production using actual
Sun radiation and wind speed.

FIGURE 7
Case1 with 5% DSM, SC1, SC2, SC3, SC4.
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5 Problem statement

The operational limitations of the DG units linked to the grid
would be the first step in the day-ahead microgrid optimum
scheduling issue, which would then follow the cost objective
function in detail. The main objective of this article is to identify
the ideal DG unit generation set points for reducing the overall cost
incurred by demand response. Included in the overall costs are the fuel
used by DG sources, unit starting expenses, and the market price for
exchange of power between microgrid and main grid. The following is
a representation of the mathematical model for this problem
(Moghaddam et al., 2011).

5.1 Objective function

Objective function of this research is to reduce operational cost of
microgrid.

fmin x( ) � ∑T

t�1C
t
total (22)

fmin x( ) � ∑T

t�1 Pt
utility × Bidt

G +∑NDGs

i�1 ui t( )PDGi t( )BidDGi t( ) + Sup/downDGi ui t( ) − ui t − 1( )( )[ ]{
+∑NSg

j�1 uj t( )Pt
SGjBid

t
SGj + Sup/downSGj uj t( ) − uj t − 1( )( )[ ]}

(23)

Where, Pt
utility is the power to/from utility, BidtG is the market price

at time t, x is a state variable which shows different variable related
to active power and storage and their active or passive states.
PDGi(t) is the active power of DGs at time t and with its state
ui(t), and BidDGi(t)market price at time t. Sup/downDGi start-up or shut-
down cost for ith DG, and Sup/downSGj is the start-up or shut-down cost
for storage. Pt

SGj is the active power of jth storage at time t with its
state variable uj(t). BidtSGj is the market price of jth storage at
time t.

5.2 Demand side management

By changing the load profile of customers, DSM techniques
significantly contribute to enhancing the economics of distribution
network operators. DSM projects are divided into utility-induced and
customer-induced schemes. The most effective DSM technique
implemented by utility to take maximum advantage of the timing
flexibility of controlled loads is flexible load shaping (Logenthiran
et al., 2012), (Rangu et al., 2020). The central DSM controller considers
the required steps to achieve the target load profile after receiving the
load prediction data. The customer interacts with the DSM program
during hourly dispatch and communicates back and forth to get
scheduling signals (Lokeshgupta and Sivasubramani, 2018). To

FIGURE 8
Case 3 with 10% DSM.
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decrease system peak and total operational costs, the flexible load
shaping deman side management technique is therefore included as a
key aim of the day-ahead EMs challenge. The DSM approach is used to
adjust the intended load consumption profile such that it closely
resembles the ideal load profile as stated below [50].

MinF � ∑T

t�1 Pt
load − Pt

Objective( )2 (24)
Pt
load � f t( ) + c t( ) −D t( ) (25)

Where, f(t) is forecasted use at time t, c(t), and D(t) are
connected and disconnected load respectively during load
shifting at time t.

The two components of c(t) are the increase in load at time
owing to the device connections planned for periods before t and
the increase in load at time due to the device connections whose
connection timings are moved to time. The following equation
results in c(t):

c t( ) � ∑t−1
i�1∑N

r�1Drit.P1r +∑j−1
n�1∑t−1

i�1∑N

r�1Dri t−1( ).P 1+n( )r (26)

where P1r and P(1+n)r are the power consumptions at time steps 1 and
(1 + n), respectively, for device type r, and j is the overall length of
consumption for device of type k.Drit is the number of devices of type
that are moved from time step i to n.

D t( ) � ∑t+m
q�t+1∑D

r�1Drtq.P1r +∑j−1
n�1∑t+m

q�t+1∑D

r�1Dr t−1( )q.P 1+n( )r (27)

Where m is the maximum permitted delay and Drtq is the number of
devices of type k that are delayed from time step t to q.

Number of devices shifted will always be positive.

Drit ≥ 0∀i, j, r (28)
∑N

t�1Drit ≤Dcontrollable i( ) (29)

Dcontrollable(i) is the number of devices of type k that are
configurable at time step i.

6 Results and discussions

As already discussed above that in this article four different
scenarios are generated for photovoltaic (PV) and wind turbine
(WT). To check the impact of DSM on operational cost of
microgrids five different cases are considered. The first case is a
base case which is case 1, in base case the operational cost is
calculated without using DSM. In second, third, fourth, and fifth
cases 5%, 10%, 15% and 20% DSM is considered respectively and the
impact on operational cost is calculated. The more involvement of

FIGURE 9
Case 4 with 15% DSM, SC1, SC2, SC3, SC4.
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DSM the less will be the operational cost as the load and generation
will properly be managed to reduce the operational cost. The best case
which is our desired result is case5 with 20% DSM. All the operations
and comparisons of different cases are shown in the figures of all the
cases.

6.1 Case 1 (base case)

In case1 the optimized operational cost is calculated without DSM
for different scenarios as shown in Figure 6.

In Figure 6 from 1 to 6 h utility, fuel cell andmicroturbine is providing
electricity as shown in SC1, also during this period the electricity is cheap
and is used to store in BESS. From 7 to 8 h utilityMT, FC and BESS is used

to meet load demand. From SC1 it is clear that from 9 to 18 h which are
peak hours, MT, FC, BESS, PV and WT are used to meet load demand as
well as the extra amount of energy is sold to utility on higher price. From
Figure 6 it is clear that in any hours if the internal sources are able to meet
the load demand, then no need to import/export energy from/to utility. The
operating cost gradually increases from scenario 1 to scenario 4 is 252.61,
257.43, 322.32, 444.74 €/kWh. Because of the elevated bid prices for PV and
WT among other DG components, it is obvious that the share of renewable
power generation steadily grows in each scenario, increasing overall
operating costs.

6.2 Case 2 with 5% DSM

In Case 2, the impact of DSM implementation on microgrid
energy management system with a participation rate of 5% is
investigated. The optimal power dispatch method employing the
ABC algorithm is shown in Figure 7, and it is clear that the total
operational cost was decreased compare to Case 1 in all circumstances.
The BESS is set for charging between 1–5 and 23–24 h, respectively,
when the market price of utility services is low. During peak hours, the
battery’s stored energy is used to power the load, with the remaining
energy being exported to the utility. Furthermore, it is noted that
scenario 4’s higher renewable penetration (as indicated in
Figure 7(SC4) in comparison to Figure 7) results in the utility
receiving the most energy exports (SC4). For each of the four

FIGURE 10
Case 20% DSM, SC1, SC2, SC3, SC4.

TABLE 1 Comparison of different cases in term of operating costs.

SC1 SC2 SC3 SC4

CASE 1 252.61 267.43 322.32 444.74

CASE 2 179 202 315 419

CASE 3 163 192 272 393

CASE 4 130 186 257 377

CASE 5 96 138 242 345
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scenarios, the operational expenses assessed in this example are 179,
202, 315, and 419 €/kWh. Cost reduction percentages for Cases 1 and
2 are 29%, 21.5%, 3.02%, and 6.07%, respectively.

6.3 Case 3 with 10% DSM

Figure 8 shows the stochastic energy management system
integrated with a demand side management with a 10% residential
load participation. Due to its the most affordable offer among other
DG units, the FC is used to its full 30 kW capacity, as can be seen from
the results. On the other hand, since the MT has an expansive bid than
the utility market price, the use of electricity is limited to its minimal
limit of 3 kW during the first 7 h, 19 h–20 h, and 23 h–24 h,
respectively. Comparing Case 3 to Case 1 in hours 11 to 13, when
the generation from renewable sources is greater, notably in case 4, the
total use of MT is further optimised. For each scenario, the operational
costs assessed in Case 3 are 163, 192, 272, and 393€/kWh, respectively.
When compared to Case 1, the percentage cost reduction with the
adoption of 10% DSM is 35.32%, 25.30%, 15.53%, and 11.49%.

6.4 Case 4 with 15% DSM

Figure 9 shows the best power distribution strategy taking the 15%
DSM participation level into account. The Case 4 data demonstrate that
all DG units’ planned power is optimized to the point that the microgrid

will import less power from the utility during times of peak demand and
will boost total export energy relative to Cases 1 through 3. For each
scenario, the objective function evaluation values in Case 4 are 130, 186,
257.31, and 377.14 €/kWh, respectively. In comparison to the case where
DSM participation is not taken into account, the operating costs are
further decreased to 49.42%, 27.76%, 20.17%, and 15.24%.

6.5 Case 5 with 20% DSM (best case)

When compared to all preceding examples, Case 5’s DSM
involvement level of 20% results in the lowest total MG
operating cost. The operational cost is yet more optimised
compared to without use of DSM at greater residential load
participation levels of DSM. From Figure 10, it can be shown
that in Case 5 compared to all other situations, when demand is
high, the microgrid operator may export more power to the grid by
capturing the greatest amount of energy from renewable sources.
The best outcomes in Case 5 were 96, 138, 242.31, and 345.12 €ct
for each scenario, respectively. With a 20% DSM involvement,
operational expenses are reduced by 62%, 46.4%, 24.83%, and
22.4%. The optimum result for scenario 1 of Case 5 is reached
with minimum operational cost of 96 €ct when compared to all
simulation outcomes that are analysed in this study.

As the DSM involvement level rises, the performance of the ABC
optimization in terms of convergence properties, results in a
significant decrease in the MG operational cost. In every case, the
objective function reaches the ideal value after a relatively small
number of iterations. Table 1 compares the simulation outcomes
with and without DSM involvement levels.

By transferring controlled loads to intervals during off-peak hours, the
DSM program implementation offers a fluctuating load pattern to suit the
generation profile. According to the findings, the daily cost reductions for
the MG operator in the first scenario for various DSM involvement levels
are 41.74, 66.61, 85.58, and 100.69 €ct, respectively. Figure 11 shows the
daily cost reductions expressed as a percentage for all scenarios. In Table 2,
there is a quick comparison of the hourly optimum arrangement of the
MG system using and without using the DSM. We may infer from this

FIGURE11
Cost saving for different cases with different scenarios.

TABLE 2 Daily cost reduction for different cases from base case.

SC1 SC2 SC3 SC4

Case 2 73.61 65.43 7.32 25.74

Case 3 89.61 75.43 50.32 51.74

Case 4 122.61 81.43 65.32 67.74

Case 5 156.61 129.43 80.32 99.74
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study that the microgrid operator can lower daily operational costs and
perhaps increase annual financial savings.

Cost comparison and daily saving is shown in Figure 11.
Figure 12 shows that in case1 the cost increases from scenario

1 to scenario 4 due to increasing penetration of PV and WT.
Microgrid uses PV and WT up to maximum level. From the curves
shown in Figure 12, it is clear that operational cost of microgrid
reduces from case 1 to 5 due to increasing percentage of DSM. The
ABC algorithm, which has been used to determine the impact of
DSM on operating costs with various PV and WT scenarios, is
shown in all of the aforementioned figure graphs and tables as
being the most effective algorithm.

7 Conclusion

In this article, the operation and energy management of a new
microgrid is addressed using DSM implemented by utility. The new
scenario-based approach is suggested to handle the unpredictable
nature associated with RES while resolving the best scheduling
issue with DSM across a time duration of 24 h. We develop a four-
scenario stochastic model for a microgrid linked to the grid that
operates on a PV and WT power system. To evaluate the influence
of DSM on the microgrid, four home load participation levels of
5%, 10%, 15%, and 20% are studied. The outcomes of the
simulations performed demonstrate the effectiveness of the
Artificial Bee Colony optimization strategy in producing
technical and economic gains for both the utility and MG
operators. The best optimization outcome among all the case
studies taken into consideration in this study is attained with a
greater DSM engagement level of 20%. When compared to the
situation without DSM engagement, the total cost reduction is 62%,
46.4%, 24.83%, and 22.4% for each of the four scenarios,
respectively. The suggested framework has three applications:
Dynamic load shaping of the system’s auxiliary loads raises the
load factor and makes it easier for the microgrid operator to
successfully handle peak loads. As energy management involves

ongoing monitoring, a significant decrease in peak demand
decreases the cost of transmission and distribution networks.
The effective use of such a method strengthens publicly owned
utilities in emerging nations, which generates chances for real-time
energy trading. Demand-side management is being used to help
utility companies’ energy managers acquire and analyse load
participation profiles to create new energy policies and provide
the grid operational flexibility.
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