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Potassium-ion batteries (PIBs) have attracted increasing research interest

because of the natural abundance and low cost of potassium. Nevertheless,

lacking of suitable anode materials that can deliver high reversible capacity and

long cycle life highly hinder the further development of PIBs. Here, we report a

flour chemistry strategy to establish a porous phosphorus-doped carbon

(PPDC) as anode for high-performance PIBs. The as-prepared PPDC with

high hierarchically porous structure and rich P-doping not only offers fast

transport of K+ and electrons during continuous cycling, but also affords

sufficient inner space to relieve volume expansion of active electrode.

Therefore, the PPDC displayed high reversible capacity, excellent cyclic

stability, outstanding rate performance. These results imply a great potential

for applications in the field of high-energy storage devices.
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1 Introduction

It is of great significance to design energy storage systems with the merits of low cost,

eco-friendliness, long cycle and high energy density. (Zhou et al., 2015; Tan et al., 2016;

Zhang et al., 2018; Zhao et al., 2018; Wu et al., 2019a; Gao et al., 2019; Sun et al., 2019; Cui

et al., 2020; Liu et al., 2020; Wu et al., 2020; Guo et al., 2021; Liu et al., 2021; Pfleging, 2021;

Wang et al., 2022a; Wang et al., 2022b; Huang et al., 2022; Xiao et al., 2022; Zhang et al.,

2022; Zhong et al., 2022) Potassium-ion batteries (PIBs) have been considered as a

superior alternative to lithium-ion batteries, due to abundant storage (2.09 wt% vs.

0.0017 wt% for Li) in the earth’s crust, and lower redox potential of K/K+ (-2.93 V

vs.-2.71 V for Na+/Na) that leads to a wider potential window and a higher energy density.

(Zhou et al., 2015; Tan et al., 2016; Zhao et al., 2018; Gao et al., 2019; Cui et al., 2020; Liu

et al., 2020; Pfleging, 2021;Wang et al., 2022b; Li et al., 2022) Nevertheless, larger radius of

K+ (1.38 Å) compared with that of Li+ and Na+ gives rise to huge volume expansion of the

electrode material during charge/discharge, which greatly limits the range of available

electrode materials. (Liu et al., 2018; Zhao et al., 2018; Liu et al., 2020; Deng et al., 2021;

Pfleging, 2021; Wang et al., 2022b; Li et al., 2022).

In order to achieve high-performance PIBs, it is important to select suitable anode

materials. To date, various materials have been explored as potential anode candidates for
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PIBs, including carbon materials, metal oxides, metal sulfides,

phosphides, MXene based materials. (Wang et al., 2018; Zhang

et al., 2019a; Wu et al., 2019b; Chen et al., 2020; Li et al., 2020;

Cao et al., 2021; Deng et al., 2021; Li et al., 2021; Luo et al., 2021;

Zhang et al., 2021; Cao et al., 2022). Among them, carbon-based

materials present great potential toward commercialization due

to their abundant reserve, low prices and excellent

electrochemical properties. For instance, Zhu reported a

completely opening radial pores in N/O dual-doped carbon

nanospheres (RPCNSs) as anode for high-power PIBs. The

RPCNS with hierarchical structure and N/O dual-doping

permits speedy ions and electrons transportation within the

carbon nanospheres anode, thus achieving a reversible

capacity and long-term cycling life over 2000 cycles. (Deng

et al., 2021).

It is worth noting that heteroatom doping such as B, N, O, P,

and S is an effective strategy to enhance the physicochemical

property of carbon matrix. (Liu et al., 2017; Song et al., 2017;

Chang et al., 2018; Cao et al., 2020; Fang et al., 2021; Cao et al.,

2022) On the one hand, heteroatom doping is efficient in

introducing defects in carbon materials, and further provide

more active sites for K+ storage. (Zeng et al., 2014; Yao et al.,

2021; Zhou et al., 2021) On the other hand, the doping elements can

also increase the conductivity, expand the interlayer distance of

carbon based materials, thus imparting outstanding electrochemical

performance to the carbon materials. (Zeng et al., 2014; Liu et al.,

2017; Song et al., 2017; Chang et al., 2018; Cao et al., 2020; Fang et al.,

2021; Yao et al., 2021; Zhou et al., 2021; Cao et al., 2022).

Here, a porous phosphorus-doped carbon (PPDC) was

designed as high-performance anode for PIBs. The

constructed PPDC with hierarchically porous structure and

rich P-doping facilitates excellent electronic/ionic conductivity,

offers effective remission of the mechanical stress during

potassiation/depotassiation, thus affording exceptional

performance of the PPDC electrode. As a result, the obtained

PPDC could display a high reversible capacity of 292 mA h g−1 at

100 mA g−1 after continuous 80 cycles, remarkable rate

capabilities (377、321、248、198、182、136、93 mA h g−1

at 0.1, 0.2, 0.3, 0.4, 0.5, 1.0, and 2.0 A g−1), indicating show

great application prospects in the field of high-performance PIBs.

2 Experimental section

2.1 Preparation of the porous phosphorus-
doped carbon (PPDC)

The synthesis method of the PPDC samples used in this study

is as follows. First, phosphoric acid (10 mL, 87%) was diluted into

a 10% concentration phosphoric acid solution. The flour was

dissolved in 50 mL, 10% phosphoric acid solution to form a

homogeneous gel-like substance. The flour was purchased from a

ordinary vegetable market. Then, the gel was reacted in a reactor

at 180°C for 12 h. The obtained samples after the reaction were

dried and heated to 600, 700, and 800°Cunder argon flow at a

heating rate of 3°C min−1 for 3 h. Finally, the calcined samples

were washed with 10% HCl aqueous solution, filtered, and

washed with distilled water several times until neutral; the

porous carbon with different heating temperatures were dried

at 60°C for 12 h and marked as PPDC-600, PPDC- 700 and

PPDC-800. Using cheap flour as raw material, PPDC with

hierarchical porous structure and phosphorus element doping

was designed as an anode material for k-ion half-cells. The high

specific surface area, hierarchical porous structure, and

phosphorus doping of PPDC materials can facilitate ion/

electron transport during charge and discharge.

2.2 Material characterizations

Raman spectra were tested with a 488 nm laser (Jobin-Yvon

Lab RAM HR-800) and thermal gravimetric analysis (TGA) was

performed with a TG-209F1. N2 adsorption/desorption isotherm

was carried out specific surface area and porosity distribution

measurement with an Autosorb IQ Gas Sorption System at 77 K.

The morphologies and chemical structures of the carbonaceous

material were characterized by SEM (Zeiss SIGMA).

2.3 Electrochemical characterizations

Active materials, conductive carbon and carboxymethyl

cellulose with mass ratio of 8:1:1 were dispersed in a mixed

solution (1 mL) of ethanol and H2O, and ball-milled for 30 min.

Then, the obtained slurries were painted on the Cu foil and dried

at vacuum environment at 60°C for 12 h. The working electrode

with an average mass loading of each electrode about 0.9 mg cm−2

is a disc with diameter of 12 mm. Potassium metal and glass fiber

film were used as the anode electrode and the separator,

respectively. The 5 M KFSI dissolved in ethylene carbonate/

dimethyl carbonate mixture (EC/DMC by 1:1 vol.) was used

as electrolyte. The coin-type cells (2032) were assembled in aMB-

Labstar (1,200/780) glove box (Munich, Germany) under Ar

atmosphere. The concentrations of moisture and oxygen were

maintained below 0.5 ppm. The CT2001A battery test system

(LANDTE Co., China) and a CHI660E electrochemical station

(CHI instrument Co., Shanghai, China) were used to test the

electrochemical performance.

3 Results and discussions

3.1 Morphological characterizations

The micromorphology of obtained PPDC-600, PPDC-700

and PPDC-800 were investigated by scanning electron
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microscope (SEM) images and SEM-mapping (Figure 1). As

shown in Figures 1A,B, the PPDC-600 exhibited typical porous

structure with rough surface and conductive network. This

structure beneficial to achieve fast ion/electron

transportation path during charge and discharge process.

Figure 1C is element mapping of C, O and P for PPDC-600.

Obviously, the C, O and P element evenly distribute in the

carbon skeleton. Figure 1 d displays the element content

statistics of C, O and P in PPDC-600. What is noteworthy is

that the P doping is conductive to provide more active sites for

K+ storage and further enhance the electrical conductivity, thus

offering excellent battery performance. Figure 1E-l demonstrate

similar porous structure and uniform distribution of C, O and P

in PPDC-600, PPDC-700 and PPDC-800. The difference is the

element contents of C, O and P due to different calcination

temperatures.

3.2 Structural characterizations

Raman spectroscopy measurements were used to characterize

the structures of PPDC-600, PPDC-700, PPDC-800 (Figures 2A–C).

Apparently, two obvious Raman peaks for the three samples

appearing at about 1,350 cm−1 and 1,600 cm−1 are assigned to the

D band of amorphous carbon and G band of graphitic carbon,

respectively. Obviously, the values of ID:IG ratio of the PPDC

gradually decrease as the temperature rises, indicating the

increasing degree of graphitization, the reductive ordered carbon

atoms and active sites (Zeng et al., 2014; Yao et al., 2021; Zhou et al.,

2021). All in all, temperature is a double-edged sword. The PPDC-

700 were prepared at an appropriate temperature of 700°C, thus

displayed better K+ storage performance than PPDC-600 and

PPDC-800. Nitrogen adsorption and desorption isotherms and

pore size distribution were analyzed to investigate the

FIGURE 1
Morphological and structural characterizations. (A,B) SEM images of PPDC-600 electrode at different magnifications; (C) Element mapping of
C, O and P for PPDC-600; (D) Element content statistics of PPDC-600; (E,F) SEM images of PPDC-700 electrode at different magnifications; (G)
Element mapping of C, O and P for PPDC-700; (H) Element content statistics of PPDC-700; (I,J) SEM images of PPDC-800 electrode at different
magnifications; (K) Element mapping of C, O and P for PPDC-800; (L) Element content statistics of PPDC-800.
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microporous and mesoporous structures of the PPDC. As displayed

in Figures 2D–F, specific surface areas of the PPDC-600, PPDC-700,

PPDC-800 are calculated to be 765, 796, and 806 m2 g−1 Figures

2G–I exhibit that the poresmainly locates between 2 nm and 10 nm,

indicating the existence of mesoporous. The large specific surface

area and hierarchically porous structure are beneficial to effectively

accommodate potassium ion storage and alleviate volume

expansion. (Song et al., 2017; Zhang et al., 2019b; Zhou et al., 2020).

3.3 Battery performance characterizations

The electrochemical performance of as-prepared three

samples (PPDC-600, PPDC-700 and PPDC-800) were

investigated to explore the influence of carbonization

temperature. Figure 3A and Supplementary Figure S1 are the

charge–discharge voltage profiles for selected cycles of PPDC

anodes at a current density 100 mA g−1, demonstrating similar

battery behavior of the PPDC-600, PPDC-700 and PPDC-800

electrodes. As shown in Figure 3B and Supplementary Figure S2,

the cyclic performances of PPDC electrodes were further tested at

100 mA g−1. The Coulombic efficiency experiences a jitter at

about 18th cycle, and dive in the last cycle, due to sudden

changes in ambient temperature. The PPDC-700 delivers a

initial discharge capacities of 565 mA h g−1 and charge

capacities of 376 mA h g−1 and maintains a higher reversible

capacity of 310 mA h g−1 after continuous 50 cycles, indicating

that the PPDC-700 displays higher reversible capacity and better

cyclic stability. The initial large discharge capacity phenomenon

is attributed to the SEI formed on the anode. The higher

reversible capacity of the PPDC-700 was also proved by the

larger peak area of the PPDC-700 than that of the PPDC-600 and

PPDC-800 at 1 mV s−1 (Supplementary Figure S3). Figure 3C

presents that the essentially unchanged shape of the charge/

discharge curves of the PPDC-700 anode at increased current

densities, suggesting the prominent reaction kinetics of K-ions

intercalation/deintercalation. Figure 3D describes the rate

performances of the PPDC-600, PPDC-700 and PPDC-800 at

different current densities form 100 mA g−1 to 2 A g-1. The

PPDC-700 electrode shows the higher rate capacities of 377、

321、248、198、182、136、93 mA h g−1 at 0.1, 0.2, 0.3,0.4, 0.5,

1.0, and 2.0 A g−1, respectively. The high invertible capacity of

FIGURE 2
Structural and compositional information. (A,B,C) Raman spectra for PPDC-600, PPDC-700, PPDC-800, respectively; (D,E,F) N2 adsorption-
desorption isotherms for PPDC-600, PPDC-700, PPDC-800, respectively; (G,H,I) the corresponding pore size distribution.
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377 mA h g−1 is still obtained when the current density returns to

100 mA g−1 Figure 3C exhibits the long-cycle of PPDC-700

electrode at 1,000 mA g−1. After 1,000 cycles, the PPDC-700

always keeps a specific capacity as high as 197 mA h g−1 while

maintaining close to 100% Coulombic efficiency. It is proved that

the hierarchically porous structure, and appropriate

graphitization degree and P-doping content of the PPDC-700

electrode provide fast ion/electron transportation and effectively

relieve the mechanical stress during the cycle to enhance the

battery performance.

3.4 Kinetic analysis

CV curves was measured at scan rates of 0.1–10 mV s−1 in a

voltage range from 0.01 to 3 V to analyze the kinetic mechanism

of the PPDC-600, PPDC-700 and PPDC-800 electrodes

(Figure 4). Figures 4A–C display similar the changing trend of

peak shape for the PPDC-600, PPDC-700 and PPDC-800

electrodes. Figures 4D–F manifest the separation of the

capacitive contribution (inner region) from the total capacity

(outer region). The capacitive capacities of the PPDC-600,

PPDC-700 and PPDC-800 electrodes account for 39.5%,

48.7% and 50.1% at a low scan rate of 1 mV s−1, indicating the

charge storage behavior is dominated by the ionic diffusion and

surface reaction process. As presented in Figures 4G–I, with the

scan rate rising to 0.1, 0.5, 1, 2, 5 and 10 mV s−1, the fraction of

capacitive capacity for the PPDC-700 increases to 31.8%, 39.9%,

48.7%, 52.5%, 77.1% and 98.9%, respectively. As for the PPDC-

600, the fraction of capacitive capacity increases to 38.4%, 45.6%,

52.4%, 59.7%, 75.6%, and 96.8%, respectively. For the PPDC-800,

the fraction of capacitive capacity increases to 35.8%, 44.4%,

FIGURE 3
(A)Charge–discharge voltage profiles for selected cycles of the PPDC-700 anode at a current density of 100 mA g−1; (B)Cyclic performances of
the PPDC-700 anode at 100 mA g−1; (C) Charge–discharge voltage profiles of the PPDC-700 electrode at different current densities; (D) Rate
capability of the PPDC-600, PPDC-700 and PPDC-800 anodes at different current densities; (E) Cyclic performances of PPDC-700 anode at
1,000 mA g−1.
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50.1%, 57.2%, 73.9% and 96.4%, respectively (Supplementary

Figure S4). This phenomenon further confirmed that PPDC-700

anode for PIBs with superior electrochemical reaction kinetics,

thus provides higher reversible capacity, better cyclic stability and

rate performance.

4 Conclusion

In summary, a porous phosphorus-doped carbon was

prepared as anode for high-performance PIBs. This porous

structure and P-doping have the following benefits: 1) the

hierarchically porous structure with high specific surface area

effectively relieves the mechanical stress during potassiation/

depotassiation, thus affording exceptional cyclic stability of the

PPDC electrode; 2) the rich P-doping carbon matrix facilitates

excellent electronic/ionic conductivity, achieving favorable

electrochemical reaction kinetics. Therefore, the PPDC

electrode presented high specific capacity, outstanding cyclic

performance and rate performance. The work gives some

guidance for rational design of biocarbon anode for high-

performance PIBs.

5 Equations

The equations should be inserted in from the equation editor.

f (x) � a0 +∑
∞

n�1
(an cos nπxL + bn sin

nπx
L

)

6 Nomenclature

6.1 Resource identification initiative

To take part in the Resource Identification Initiative, please use

the corresponding catalog number and RRID in your current

manuscript. For more information about the project and for

steps on how to search for an RRID, please click here.

FIGURE 4
Kinetic analysis of the PPDC electrodes. CV curves of (A) the PPDC-600, (B) the PPDC-700 and (C) the PPDC-800 at various scan rates of
0.1–10 mV s−1; Contribution of the surface process at scan rate of 1 mV s−1 in (D) the PPDC-600, (E) the PPDC-700 and (F) the PPDC-800;
Contribution of the surface process in (G) the PPDC-600, (H) the PPDC-700 and (I) the PPDC-800 at different scan rates.
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6.2 Life science identifiers

Life Science Identifiers (LSIDs) for ZOOBANK registered

names or nomenclatural acts should be listed in the manuscript

before the keywords with the following format:

urn:lsid:<Authority>:<Namespace>:<ObjectID>[:<Version>]
For more information on LSIDs please see Inclusion of

Zoological Nomenclature section of the guidelines.
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