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As the number of urban electric vehicles continues to increase, accurate

prediction of the electric vehicle (EV) spatial and temporal distribution

charging demand is of great importance for safely operating the power grid.

Due to the uncertainty and variability of EV user charging and discharging

strategies, the strategic factors behind user behavior become the key to

influencing whether the charging demand prediction results are reasonable.

As a result, this paper proposes a charging demand prediction model based on

real-time data from Baidu map that can interpret EV user driving strategies and

charging strategies based on the strategy learning capability of generative

adversarial imitation learning. This paper first analyzes the correlation

between strategy factors and SOC in user charging and discharging data,

then describes establishing a 24-hour SOC prediction model for a single

vehicle, and finally discusses building a spatiotemporal model of charging

demand in the region on this basis. The results demonstrate that, while it

can be combined with real-time traffic data, the method has better prediction

accuracy and robustness compared with the current mainstream prediction

methods and high application value.
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1 Introduction

In recent years, in order to reduce dependence on oil and fossil fuels, a number of

countries and regions have developed policies to promote the development and market

penetration of electric vehicles. Global electric vehicle sales reached 6.75 million units in

2021, an increase of 108% over 2020, while the global share of electric vehicles in global

light vehicle sales was 8.3% compared to 4.2% in 2020 (EV volumes.com, 2021). The

continued growth of scaled EV charging loads connected to the grid will certainly bring

challenges to urban road traffic, as well as to the stable operation of the grid. Currently,
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research on EVs focuses on charging demand prediction, energy

management and charging guidance, which can help reduce the

negative impacts of EVs on the grid, where EV charging demand

prediction is the basis for conducting an impact analysis of EV

access on the grid, a distribution grid planning and control

operation, a two-way interaction between EVs and the grid,

and charging guidance (Chen and Zhang, 2019). However,

with the increasing penetration of EVs and the increasing

charging demand, the rationality and accuracy of the existing

charging demand prediction methods can no longer meet the

needs of grid dispatch and charging guidance well (Ge et al.,

2020). Therefore, this paper discusses conducting a series of

studies on electric vehicle charging demand prediction.

Contemporary research on EV charging demand prediction

focuses on user behavior analysis and the coupling characteristics

between user behavior, road networks, and EVs (Arias et al.,

2017; Li et al., 2018; Liu et al., 2022). Charging demand is

generated due to the lack of energy of electric vehicles, and

user behavior is the dominant factor of electric vehicle battery

energy change, where user behavior users include charging time

selection, travel mileage selection and driving strategy; thus, user

behavior analysis is the difficulty and key to charging demand

prediction. In recent years, load prediction models based on IoT

big data platforms for obtaining user psychological and

behavioral characteristics to meet real-time charging demand

have been the focus of research (Ge et al., 2020), (Ge et al., 2020)

obtains regenerative feature data by obtaining historical travel

information and using data mining and fusion techniques to

analyze the distribution pattern of residential trips and charging

behavior characteristics. (Xydas et al., 2016) starts with the

analysis of real charging data to establish a framework of

features for EV charging demands. The model uses data

analysis methods to extract the information hidden behind

charging events to characterize EV charging loads. (Arias

et al., 2017) proposes a time-space EV charging-electricity

demand prediction model based on real-time CCTV data in

Seoul, Korea. Traffic data (i.e., arrival rates) and EV battery

information (i.e., SOC levels and charging patterns) are used to

calculate EV charging demands. (Jahangir et al., 2021) proposes a

supervised EV demand prediction method called EVGANS,

which was developed in a 3D environment based on

generative adversarial networks that can represent different

characteristics of EV charging demands. (Zhao et al., 2021)

addresses the problem of prediction accuracy by developing a

new data-driven prediction framework, which improves the

application of charging demand prediction models and

enhances the prediction accuracy in complex real-world

scenarios. (Yang et al., 2020) proposes an analytical

framework for EV charging demand, emphasizing that

charging demand is mainly determined by users’ travel

behavior and bounded rational behavior. (Zang et al., 2020;

Zang et al., 2021) analyze the information of user

consumption behavior from practical load data from

residential customers, and predict regional charging load

based on deep learning algorithm.

Recent research methods show that researchers focus on

individual user charging SOC feature mining and user

charging strategy distribution based on model group

behavior and its impact on charging demand prediction

(Yang et al., 2017; Chaudhari et al., 2018; Calearo et al.,

2019). A Marquardt (LM) training method based on a

rough structure was developed using Levenberg’s

feedforward and recursive artificial neural network (ANN).

The method considers the correlation between arrival time,

departure time and trip length (Jahangir et al., 2019). (Yi et al.,

2020) investigates the spatial and temporal distribution of an

EV charging demand in different urban functional areas and

temperatures. The method describes the variability of

individual users and considers various objective factors,

such as time, location, temperature, and road conditions.

(Lin et al., 2019) establishes an agent-based travel chain

model (ABTCM) to study the distribution of electric vehicle

(EV) charging demand and its dynamic characteristics, where

a large number of EV charging demand differentiation models

are considered. (Majidpour et al., 2014; Yi and Bauer, 2015)

links charging demand to the urgency coefficient of user

charging behavior, which gave a mathematical model to

describe charging demand behavior, but lacked a method to

determine charging demand behavior. (Ge et al., 2020)

predicts the future 24-hour SOC variation curve of a single

EV based on user historical SOC data, but this is only

applicable to the more regular user SOC historical data,

while the method lacks a grasp of user behavior. Based on a

large amount of literature, it is known that user behavior is a

deterministic strategy made by users based on factors, such as

current time and remaining SOC, and there is a lack of

research on accurate mathematical models of user charging

and discharging strategies in current research due to the large

number of factors influencing user behavior.

In this paper, we study two problems. The first problem is

building an accurate mathematical model of user charging and

discharging policies. Currently, generative adversarial imitation

learning (Ho and Ermon, 2016) can express user policies as a

neural network, and thus, neural networks can fit user policies

due to their good strategy learnability (Wang, 2003). Generative

adversarial imitation learning improves on the original inverse

reinforcement learning (Ng and Russell, 2000), which can extract

policies directly from user data, while avoiding the problem of

difficult definition of the reward function in inverse

reinforcement learning. In this paper, user charging and

discharging policies are divided into driving policies, travel

target mileage policies, and charging duration selection

policies, and then these three policies are learned using

generative adversarial imitation learning. The second problem

is perceiving the charging demand behavior on the single vehicle

SOC prediction results. Here, we consider quantifying the
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perception of user charging demand based on the user charging

urgency model and providing the method of determining

charging demand.

In summary, this paper proposes a new EV charging demand

prediction method that fully considers user charging and

discharging strategies, and this paper makes the following

contributions.

1) A user charging and discharging strategy model is established.

Based on the MIC maximum information coefficient to prove

the correlation between EV SOC variation and driving

strategy and charging strategy, combined with the real-

time traffic flow speed of Baidu map, we propose a

strategy learning model based on the generative adversarial

imitation learning (GAIL) hybrid proximal policy

optimization algorithm (PPO).

2) A 24-hour SOC prediction model for a single electric vehicle

is established. Based on the strategy learning model, the

prediction method of single EV SOC is proposed based on

the XGboost algorithm, and it is proven that the prediction

method has good robustness and accuracy.

3) A spatiotemporal model of EV cluster charging demand in

the region is established. Based on the individual EV SOC

prediction curves and combined with the user charging

urgency perception model, a spatiotemporal model of EV

cluster charging demand in the region is established and

demonstrated to describe the spatiotemporal characteristics

of charging demand.

The rest of the paper is organized as follows: Chapter

2 demonstrates that the user charging and discharging

strategy is the main factor in the SOC variation of EVs.

Chapter 3 gives a detailed description of the approach in this

paper, and Chapter 4 presents and discusses the results of the

model simulation. Chapter 5 provides a summary and outlook of

the work in this paper.

2 Analysis of charging and
discharging strategies for EV users

From Chapter 1, it is clear that the core problem of EV

charging demand prediction at this stage is to consider a single-

user SOC prediction model based on the user’s EV charging and

discharging strategy. Since SOC variation is affected by many

factors, including user strategy factors and environmental

factors, it is necessary to demonstrate that charging and

discharging strategies are the main factors of SOC variation.

Thus, this proves the feasibility of a single EV SOC prediction

model, followed by screening the strategy factors that are strongly

related to SOC as the input features of the single vehicle SOC

prediction model, where charging and discharging strategies

include the user driving strategy, the user travel mileage

selection strategy and the user charging duration selection

strategy. Next, the correlation between user charging demand

and user charging starting SOC distribution and user charging

urgency is illustrated.

2.1 Strategic factors analysis of the
charging and discharging process based
on the MIC matrix

MIC is the maximal information coefficient (Zhang et al.,

2014). MIC can measure the degree of correlation between two

variables, and the value of MIC is between 0 and 1. The larger the

value of MIC is, the stronger the correlation between the two.

Meanwhile, MIC has good accuracy and robustness.

The charge-discharge characteristic analysis proves the

correlation between the discharging SOC and the driving

strategy based on the MIC matrix and illustrates the

correlation between the charging SOC and the charging

strategy. The MIC matrix values are distributed from 0 to 1;

the closer to 1 the value is, the stronger the correlation between

the horizontal and vertical factors.

2.1.1 Correlation analysis of discharging
characteristics

The discharging process, i.e., the driving process, is a process

with human factors involved, and its SOC is affected by

numerous factors, not limited to those shown in the figure

below, such as road conditions (slope, bumpiness). This paper

mainly considers the influence of the user’s driving strategy on

the SOC variation. The discharging characteristic MIC matrix is

shown on the left of Figure 1, and the results prove that the

correlation between the discharging SOC and driving distance,

speed and temperature is the strongestamong the subcorrelation

factors of the discharging SOC, the correlation between the

discharging SOC and total voltage and battery voltage is

stronger, therefore, the user driving strategy is the main causal

factor of SOC change in the discharging process. Meanwhile,

temperature is also a major factor affecting SOC, which is due to

the fact that electric vehicles are driven in situations where the

outdoor temperature is low and the low temperature inhibits the

performance of the battery (Qin et al., 2021). Here, a discharging

SOC prediction model based on user driving strategy and real

temperature data is considered.

2.1.2 Correlation analysis of charging
characteristics

The charging stage has no human subjective factors involved,

and each variable changes with the interaction process of EV and

charging pile. The whole process is more regular than the

discharging process, and the charging process is divided into

fast charging and slow charging. The correlation of these two

process features is basically unified. The MIC matrix is shown on
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the right of Figure 1, and the results prove that the charging SOC

and the user charging duration, charging voltage, and

temperature are strongly correlated. As with the discharging

process, a charging SOC prediction model based on user

charging duration and real temperature data is considered here.

2.2 Correlation analysis of charging
urgency and charging demand

The root cause of user charging demand generation is the

reduction of battery energy, which affects the urgency of user

charging, i.e., charging urgency (Yi and Bauer, 2015). The higher

the charging urgency is, the higher the probability of that user

signaling charging demand. Only the charging urgency determined

by the battery SOC is considered here. When the depth of discharge

(DOD) is deep and the remaining charge is less, the higher the

charging probability of the user and the higher the charging urgency

of the user, it becomes more urgent for the user to charge.

Here, we consider the general expression of the charging

urgency function. Let the charging probability density function

be D(x) in Eq. 1, D(x) is a function of depth of discharge DOD.

The integral of D(x) is the charging probability, then the closer

the DOD is to 1, the greater the charging probability. Here,

DOD = 1- SOC, D(x) is determined by the functions h1(x) and
h2(x), where x1, x2 and x3 are determined by the battery

capacity; the larger the battery capacity, the larger x1, x2, and x3.

D(x) �
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 x≤ x1

h1(x) � k1x +m1, x1 < x≤ x2

h2(x) � k2x +m2, x2 < x≤ x3

0 x3 <x≤ 1
(1)

where h1(x1) � 0, h1(x2) � h2(x2), h2(x3) � 0, k1, m1, k2, and

m2 are calculated from x1, x2, and x3, the charging urgency

function Cu(x) is the integral of D(x) from 0 to x, i.e., charging

probability, giving the following equation.

Cu(x) � ∫x

0
D(t)dt (2)

Here, ∫x3

0
D(t)dt � 1, while we express the charging urgency

function:

Cu(x) �
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 x≤ x1

f1(x) � a1x
2 + b1x + c1, x1 < x≤ x2

f2(x) � a2x
2 + b2x + c2, x2 < x≤ x3

1 x3 <x≤ 1
(3)

where f1(x1) � 0, f1(x2) � f2(x2), and f2(x3) � 1.

2.3 Correlation analysis of user charging
starting SOC distribution and charging
demand

The user charging starting SOC distribution reflects the

user’s dependence on the action of charging demand on the

selection of starting charging SOC. If a user tends to choose to

charge at a lower SOC, the probability of having a charging

demand at a certain moment will also be lower, conversely, the

probability of generating charging demand will increase. We

consider fitting the charging start SOC distribution of different

users using a normal distribution, and themethod of determining

the charging demand is as follows: when a user’s real-time SOC

approaches this user’s historical charging starting SOC at

moment t, i.e., when the real-time SOC drops to some user’s

charging demand interval, that user will generate charging

demand, which is determined by the distribution of the user’s

charging urgency coefficient and that user’s charging

starting SOC.

FIGURE 1
MIC matrix analysis of charging characteristics and discharging characteristics.
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Here, consider the case that when the charging starting

SOC is smaller, the greater the probability of charging for a

user. In order to obtain the charging start SOC distribution of

a user, i.e. normal distribution N(μ, σ2), we obtain the mean

and variance of a user’s historical charging start SOC data,

which are extracted from the EV operating data introduced in

Section 3.1.1, then draw the starting SOC value X from

N(μ, σ2), and let the user’s SOC at moment t be Xt, at

which time the user’s charging urgency factor is Cu(Xt).
Then, the charging demand interval of that user is

[X, X + Cu(Xt)]. It can be seen that the smaller Xt is and

the larger Cu(Xt) is, the wider the range of the charging

demand interval and the greater the probability of that user

generating charging demand.

3 Spatial and temporal prediction
model for EV cluster charging
demand

The analysis of the strategy factors of the charging and

discharging process in Section 2.1 shows that there is a

correlation between user strategy and SOC variation, as well

as variability in different user behavior strategies, so it is

necessary to establish a single-user 24-hour SOC curve and

finally a regional EV cluster charging demand model. Strategy

learning is performed using generative adversarial imitation

learning (GAIL), and based on strategy learning; individual

vehicle SOC curves are predicted based on the XGboost

algorithm. The spatial and temporal prediction framework for

EV cluster charging demand is shown in Figure 2, and the

prediction process is divided into three steps, which are

described in detail in Sections 3.3, 3.4, 3.5, followed by

experimental data acquisition and algorithm introduction

described in Sections 3.1, 3.2, respectively.

Step 1: Regional scale EV path planning and real-time traffic flow speed

acquisition on the path.

Step 2: 24-hour individual EV SOC prediction.

Step 3: Regional EV cluster charging demand prediction.

3.1 Data acquisition

3.1.1 EV operating data
The experimental data in this paper are obtained from the

Shanghai New Energy Electric Vehicle Monitoring Center for

1,000 tested EVs in a month (Shanghai Electric Vehicle Public

Data Collecting, 2019), which contains the following EV

operation parameters: speed, acceleration, SOC, temperature,

latitudes and longitudes, with data points sampled every 10 s,

with private cars, logistics vehicles, buses, and taxis accounting

for 10%, 12%, 35%, and 43% of the data, and the data points for a

single trip trajectory are approximately 2000. This article states:

all vehicle information has been de-privatized. The data

attributes are shown in Table 1.

3.1.2 Road network node data
The OSMnx library in Python was used to obtain

information on the coordinates of all road nodes in the target

prediction area and the distance between nodes (road nodes are

the intersections of that path and other roads), and a sample road

network is shown in Figure 3.

3.2 Algorithm description

3.2.1 Generative adversarial imitative learning
algorithm

Generative adversarial imitation learning is an effective

combination of imitation learning (Osa et al., 2018) and

adversarial networks (Goodfellow et al., 2014). This paper is

based on GAIL to fit user charging and discharging strategies.

FIGURE 2
Spatial and temporal prediction framework for EV cluster
charging demand.

TABLE 1 Data attributes.

Property name Range of values

Speed 0–220 km/h

Acceleration −2.2305–2.7277 m/s2

SOC 0–100%

Temperature 0–40°C

Longitudes 118.787731–121.962492°

Latitudes 30.698392–32.069602°
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The generator network is the charging and discharging policy,

where the discriminator and generator are multilayer fully

connected neural networks. Here set the label of generated

data by the generator to 1 and the real user data to 0. The

above process is a game process between the discriminator and

the generator. After several iterations of the above process, when

the discriminator cannot distinguish the data generated by the

generator from the real data, i.e., the generator and the

discriminator reach Nash equilibrium, the generated data

successfully matches the real data.

3.2.1.1 Discriminator network

First, we introduce the binary cross-entropy loss function:

H(q) � −∑m
i�1
[yi · log(p(yi)) + (1 − yi) · log(1 − p(yi))] (4)

Eq. 4 is the loss function for training the binary classifier,

p(yi) is the probability of yi, where yi is the data label (0 or 1),

and −∑N
i�1yi · log(p(yi)) is the entropy of the distribution of yi,

while a smaller entropy indicates a closer approximation to the

true distribution q(yi).
According to the principle of generative adversarial model,

the discriminator performs a gradient descent update based on

Eq. 5:

∇θd

1
m
∑m
i�1
[logD(x(i)) + log(1 −D(G(z(i))))] (5)

where D(x(i)) is the discriminator’s probabilistic determination

of the real data andD(G(z(i))) is the probabilistic determination

of the generated data.

3.2.1.2 Generator network

The loss function of the generative network is constructed

using Eq. 4 as follows:

∇θg

1
m
∑m
i�1
log(1 −D(G(z(i)))) (6)

FIGURE 3
Example of a path.
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3.2.2 Proximal policy optimization algorithm
The optimization of the parameters of the generator and

the discriminator is performed by the PPO algorithm. This

algorithm accelerates the convergence of the network

parameters. The PPO algorithm has some of the advantages

of trust region policy optimization (TRPO) (Schulman et al.,

2015). The objective function of PPO is a first-order

approximation taken over TRPO, so they are easier to

implement, more general and have better sample

complexity (Schulman et al., 2017). In this paper, certain

improvements are made based on the original PPO

algorithm as follows.

In order to make the generalization ability of the

generator better, the generated samples collected from the

environment are disrupted here, while the samples are

divided into certain batches and sent to the PPO

algorithm for multiple rounds of parameter updates, which

can make full use of the sample information and also improve

the learning efficiency and convergence speed of the

generator. Here, the sample batches should not be too

many, so as not to reduce the operation speed of the

algorithm.

3.2.3 Extreme gradient boosting algorithm
XGBoost is an optimized distributed gradient

boosting library (Chen and Guestrin, 2016) that performs

well on regression problems. It is a machine learning

algorithm based on the gradient boosting framework.

The basic idea of XGBoost is the same as GBDT (Friedman,

2001).

3.3 Regional scaled EV path planning and
real-time traffic flow speed acquisition on
the path

3.3.1 Intraregional scaled EV pathway planning
Path planning uses the set of real path latitude and

longitude coordinates in the dataset of Section 3.1.2, and all

path latitude and longitude coordinates are processed through

the data. Then, the OSMnx library in Python is used to

visualize the path and extract information about the

coordinates of road nodes and distance from the starting

node (a path node is the intersection of that path and other

roads). Let the dataset of each path node be:

Ωj � {(xj
1, y

j
1, s

j
1), (xj

2, y
j
2, s

j
2), ..., (xj

n, y
j
n, s

j
n)} (7)

where Ωj denotes the j trajectory j � 1, 2, 3, . . . dataset and,

(xj
1, y

j
1) and sj1 are the path node latitude and longitude

coordinates and the distance from the starting node,

respectively. Examples of path visualization are shown in

Figure 3.

3.3.2 Path real-time traffic flow speed
acquisition

Considering that the user’s driving strategy is affected by the

real-time traffic flow speed, it is necessary to obtain the real-time

average speed of each road section based on the Baidu map real-

time information platform (Baidu map open platform, 2022) to

obtain the driving time T of the road section to which the current

vehicle coordinates belong. Let the distance of the adjacent nodes

from the starting node be l1 and l2. Then, the length of the current

road section is L � l1 − l2, the time required to pass the current

road section is Tt, and the real-time average traffic flow speed of

this road section is vt. Its real-time average traffic flow speed can

be calculated according to the following expression:

vt � L

Tt
(8)

3.4 24-hour individual EV SOC prediction
model

The individual EV SOC is predicted on the path-based real-

time traffic flow speed extraction in Section 3.3. The prediction

flow diagram is shown in the dashed part of Figure 4, and the

prediction model is divided into two submodels as follows.

3.4.1 User strategies learning model based on
generative adversarial imitation learning

The dashed part of Figure 4 shows the policy model part,

which consists of three upper-level policies and one lower-

level policy. The state space is the current SOC and the current

moment, and all upper layer strategies share the current state

information and make actions according to the state, where

the charging and discharging strategies make charging action

0 or travel action 1; the charging strategy outputs the single

charging duration; the travel strategy outputs the single travel

target distance; the lower driving strategy executes the output

target of the upper-level strategy and outputs the acceleration,

single mileage, and time of the next moment with an output

interval of 10 s. Thus, the output after executing the policy

network is a single EV 24-hour speed curve and a single

mileage curve. The three policy networks use the same

GAIL structure with a time scale of 24 h. The strategy

learning flow chart is shown in Figure 5. The strategy

learning model consists of a policy generation network, a

discriminator network and a PPO network. The policy

network uses the user history data as the learning sample

and fits the user history policy distribution through the

discriminator. The specific process is as follows.

Step 1: Trajectory sampling

The main program is a nested loop structure. The first layer

loop is an iterative loop, traversing all expert trajectory data for

one generation. The second layer is an expert trajectory loop, first
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generating the sampled trajectory after the policy network and

then calculating the corresponding value function, advantage

function, and the mixed logarithmic density of the sampled

trajectory, before sending the expert strategy trajectory and

sampled trajectory to the discriminator to update the

discriminator parameters, and finally sending the value

function, advantage function, and the mixed logarithmic

density of the sampled trajectories to the PPO algorithm to

update the policy network until all expert trajectories are

traversed and the second level of the loop ends.

Step 2: PPO policy optimization

The structure is a nested two-layer loop; the first layer is an

iterative loop, for each iteration, the order of the collected sample

data (state set, reward value set, advantage estimation set, value

estimation set, return estimation set, state-action mixed

logarithmic probability set) is disordered, divided by certain

batches and sent to the PPO algorithm for a parameter

optimization update together with the policy network, value

network; and the second layer is the network parameter update

layer, traversing all sampled batches, i.e., the cycle is completed.

3.4.2 XGboost-based 24-hour SOC prediction
model for a single EV

Based on the input feature analysis of the SOC prediction

model in Section 2, the speed and mileage curves, as well as the

charging duration curve, are calculated based on the 24-hour user

speed curve generated by the learning strategy in Section 3.4.1,

where the speed and mileage curves predict the discharging SOC

and the charging duration curve predicts the charging SOC.

Therefore, the driving SOC regression prediction model and the

charging SOC regression prediction model are developed.

Here, the prediction algorithm is chosen as XGboost, and the

prediction model flowchart is shown in the lower part of Figure 6,

where the loop is a cross-validation process. The process divides

the training dataset into n subsets and normalizes the training set

by removing the mean and scaling to the unit variance, and each

loop uses one of the subsets as the validation set and the

remaining subsets as the training set until all subsets are

traversed. This method ensures good generalization.

3.5 Regional EV cluster charging demand
prediction model

As shown in Figure 4, based on the individual EV SOC

prediction model in Section 3.4, a regional-scale EV charging

energy demand prediction model is established, where the user

charging urgency and charging starting SOC are used to predict

the charging energy demand without using the user. According

to the definition of the charging demand interval in Section 2.3,

FIGURE 4
Flow chart of EV cluster charging demand spatial and temporal prediction.
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when the user SOC enters within the charging demand interval,

the user is considered to have charging demand, and the charging

energy demand of this user is calculated, labeled on the map, then

finally generated a heatmap for EV cluster charging demand

prediction.

3.6 Hyper parameter optimization of
strategy learning model and SOC
prediction model

In order to make the strategy learning model and SOC

prediction model in Section 3.4 converge in a shorter time to

achieve better performance, the Bayesian optimization algorithm

is utilized here for hyper parameter search. In the curated path

model, the KL scatter of the true and predicted values is used as the

objective function of Bayesian optimization, where the policy

network and the discriminator network consist of multilayer fully

connected neural networks, and the network hyper parameters are

shown in Table 2, with the number of expert trajectories set to 10. In

the SOC prediction model, the mean square error of the true and

predicted values is used as the objective function of Bayesian

FIGURE 5
Flow chart of strategy learning based on the PPO algorithm.

FIGURE 6
Flow chart of single vehicle 24-hour SOCprediction based on
the XGboost algorithm.
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optimization, and the number of search generations is 50. The

XGboost hyperparameters are shown in Table 2, and the

hyperparameters are all accurate to 4 decimal places.

3.7 Evaluation metrics

3.7.1 Regression model metrics
1) Root mean square error (RMSE):

RMSE(yi, ŷi) � ⎡⎣1
n
∑n
i�1
(yi − ŷi)2⎤⎦ 1

2 (9)

2) Mean square error (MSE):

MSE(yi, ŷi) � 1
n
∑n
i�1
(yi − ŷi)2 (10)

3) Coefficient of determination (R-Squared):

R − Squared(yi, ŷi) � 1 −
∑n
i�1
(yi − ŷi)2

∑n
i�1
(yi − �y)2 (11)

The R-squared is between 0 and 1; the closer it is to 1, the

better the performance of the regression model.

4) Mean absolute error (MAE):

MAE(yi, ŷi) � 1
n
∑n
i�1

∣∣∣∣yi − ŷi

∣∣∣∣ (12)

3.7.2 Reinforcement learning metrics
3.7.2.1 Robustness

The size of the expert sample determines the

amount of information that can be learned by the policy

network, which in turn affects the stability of the policy

network. Thus, the robustness of the reinforcement learning

TABLE 2 Parameter settings.

Object Parameter Value or class

Discriminator network Number of neural network layers 3

Set the number of hidden layer dimensions (3,128)

Activation function Hyperbolic tangent function

Policy network Number of neural network layers 3

Set the number of hidden layer dimensions (3,128)

Set the initial action variance 0

Activation function Hyperbolic tangent function

PPO algorithm Optimization iteration number 100

Optimize the number of single samples 128

Discount rate 0.9581

Truncation threshold 0.2234

Main program Operating equipment Tesla P100 GPU

Maximum number of iterations 1,000

Learning rate 9.9234*10–5

XGboost algorithm Learning rate 0.0696

Gamma 2.3287

The maximum depth of the tree 19.8345

Subsample rate 0.8565

L2 regularization 0

L1 regularization 93.1137

Maximum number of nodes 734.9243

The sum of the minimum instance weights required in the child 66.9243

Number of iterations of boosting 716.9243

Bagging_fraction 0.9822
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model is mainly reflected in the effect of the size of the data on

the model’s stability.

3.7.2.2 Kullback-Leibler divergence

KL divergence (Kullback-Leibler divergence), also known as

relative entropy, is a way to describe the difference between two

probability distributions, P and Q, where P denotes the true

distribution and Q denotes the fitted distribution of P. For two

probability distributions, P and Q, of a discrete random variable

or a continuous random variable, the KL divergence is defined as

follows:

D(P‖Q) � log(P(i)
Q(i)) × ∑

i∈X
P(i) (13)

D(P‖Q) � log(P(i)
Q(i)) × ∫

x

P(x) (14)

The KL divergence is between 0 and +∞. The smaller the KL

divergence is, the closer a certain probability distribution is

proven to be to the true distribution.

4 Results and discussion

The model simulation analysis is divided into several parts:

first, the robustness and learnability of the policy network

are evaluated, followed by a speed prediction model based on

the policy model to illustrate the variability of user

policies, comparing the speed prediction results for four

types of users. Then, the single vehicle 24-hour SOC

prediction results are shown and compared with

historical SOC-based prediction methods, and finally, a

spatiotemporal map of charging demand at key moments

throughout the day in the main city of Shanghai is

shown. The algorithm program is fully implemented by

Python 3.7.

4.1 Analysis of the strategy learning model

4.1.1 Policy network robustness analysis
The robustness of the policy network reflects the stability of

the policy network, therefore the stability of the policy network

obtained by different policy optimization algorithms is different;

thus, it is necessary to analyze the robustness of the policy

optimization algorithm (PPO algorithm) based on this paper,

and the comparison algorithm is the TRPO algorithm. As shown

in Figure 7. Here, the total historical travel trajectories are

supplied for 20, and the average returns of TRPO- and PPO-

based policy networks are compared and analyzed under the

conditions of 25%, 50%, 75%, and 100% historical travel

trajectory data, respectively. 3 to 5 simulations are performed

with the same random seeds. The dashed lines indicate the values

of the reward functions corresponding to the expert policies, and

the red color represents the TRPO-based return curves. The

purple color represents the return curve based on PPO. The

TRPO algorithm is less robust when the amount of data is less,

while the average return is lower, and the PPO algorithm is more

robust under each amount of data. Its average return fluctuation

is less than 0.2%, while the average return is higher than the

TRPO algorithm, and the average return value of the PPO

algorithm is close to the expert strategy. Therefore, the

robustness of the method in this paper is better, and the

stability of the policy network is stronger.

4.1.2 Kullback-Leibler divergence analysis of
strategy distribution and real data

In order to prove that the method of this paper has good

strategy learnability, the KL divergence of this paper’s

algorithm (PPO) and TRPO algorithm on strategy learning

is compared and analyzed here, and the magnitude of KL

divergence indicates the difference between the policy network

generated data and the real data. The results are shown in

Table 3. The results based on the PPO algorithm have the

FIGURE 7
Comparison of PPO and TRPO robustness.

TABLE 3 Comparison of KL divergence of strategy learning results and
expert data.

Data distribution PPO TRPO

Charging duration strategy 0.1052 0.8792

Traveling mileage strategy 0.1256 0.8254

Driving strategy 0.1123 0.8648
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lowest KL divergence among the three learning strategy

results, which indicates that the PPO algorithm has better

learnability for the policy path.

4.2 Real-time speed prediction for a single
EV based on the policy model

We illustrate the effect of variability in the charging and

discharging strategies of different users on the time

distribution of charging demand and provide data for the

subsequent prediction of the 24-hour SOC of a single vehicle.

The results of the 24-hour speed prediction for a single vehicle

are shown here. Here, four types of users are considered:

private cars, logistics vehicles, buses, and taxis. Their

respective charging and discharging strategies are learned,

and then the 24-hour speed prediction curve of a single

vehicle is predicted based on the real-time traffic flow

speed, as shown by the red line in Figure 8. Finally, the

single driving mileage is calculated based on the speed

curve, and here, the starting mileage is obtained by

averaging the user’s historical data. As shown by the blue

line in the figure, the following analysis shows the variability of

user charging and discharging strategies.

As shown in Figure 8, taxis and buses travel the longest

single mileage, and due to the functionality of logistics vehicles

and buses, the charging demand for both is distributed between

9:00 p.m. and 8:00 a.m. the following day. Additionally, after

10:00 p.m., the operation basically stops, so both take slow

charging in the evening. There is relatively no substantial

regularity in the discharging time interval for taxis and private

cars. Meanwhile, taxis have obvious charging behavior at

approximately 1:00 p.m. Since taxis need to obtain more travel

orders during the day, they mostly adopt fast charging, so the

charging duration of taxis is approximately 1 h, while the charging

demand of private cars is basically concentrated between 12:00

a.m. and 8:00 a.m., and private car users mostly adopt slow

charging in the evening. Additionally, the driving speed of the

four types of cars is basically positively correlated with the real-

time traffic flow speed, and the learning results of the user’s driving

strategy are relatively substantial. In summary, the variability of

the time distribution of charging demand for different users is

relatively obvious due to different charging and discharging

strategies.

4.3 24-hour SOC prediction for a single EV

Here, the user driving speed and mileage prediction results

based on Section 4.2, i.e., the charging and discharging strategy,

are used as the input features of the XGboost algorithm as a way

to predict the 24-hour SOC curve of a single vehicle to

demonstrate the superiority of the method in this paper. As

shown in Figure 9, four types of EVs are selected by vehicle usage

and compared with the prediction method based on historical

SOC, where the red line represents the real SOC, the blue line

FIGURE 8
Single vehicle 24-hour speed and mileage prediction results.
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represents the prediction result based on historical SOC, and the

sky blue line represents the prediction result based on the

charging and discharging strategy. The prediction results of

both methods for charging SOC are good, the prediction

curves are relatively smooth, and the prediction results are

stable. However, in SOC the prediction results of the

discharging process, the two perform slightly differently. In

the comparison of the prediction results for private car users,

the prediction curves of the two methods are less stable and show

obvious jitter, which may be related to the feature distribution of

the data itself, but both have a good grasp of the overall trend of

the SOC discharging process. In the prediction results for taxi

users, the method in this paper performs well in the prediction

results for taxi users. The method in this paper shows good

stability in the prediction results of the discharging process, but

the prediction results of the historical SOC-based method show

obvious jitters and outliers in the second half of the discharging

process, which is due to the inconspicuous characteristics of the

historical data. In the prediction results of SOC for logistics

vehicle users, both show better robustness and fit.

It also proves the good prediction accuracy of the method in

this paper. According to Table 4, the four evaluation metrics of

regression prediction in Section 3.7 are selected here, and the

prediction accuracy of this paper’s SOC prediction method and

the historical SOC-based prediction method are compared

according to these four indicators. Both methods use the same

FIGURE 9
Single vehicle 24-hour SOC prediction results.

TABLE 4 Evaluation metrics.

Type of
vehicle

Prediction
methodology

MAE RMSE MSE R-Squared

Logistics vehicle Real-time traffic flow speed 1.3761 2.1281 4.5287 0.9924

Historical SOC 1.6585 2.3239 5.3964 0.9923

Taxi Real-time traffic flow speed 1.6732 2.4536 6.0201 0.9725

Historical SOC 2.7492 3.1373 9.8429 0.9496

Bus Real-time traffic flow speed 2.7218 3.3042 10.9176 0.9074

Historical SOC 3.1527 4.4402 19.7158 0.8652

Private car Real-time traffic flow speed 2.0627 2.6167 6.8472 0.9831

Historical SOC 3.1424 3.8717 14.8005 0.8522
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FIGURE 10
Results of 24-hour charging demand prediction in Pudong.
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size training set to train the network, and the training set size is

5,000 data points. From the prediction results of the four types of

vehicle SOCs, each of the prediction methods obtained from this

paper’s average mean square error is reduced by 37% and the

average coefficient of determination is improved by 4%. The

results demonstrate that the two methods perform basically

equivalently for the logistics vehicle SOC prediction problem,

while in the other three types of EV SOC prediction problems,

the prediction accuracy of this paper’s method is considerably

higher than that of the traditional prediction method.

4.4 Regional EV cluster charging demand
prediction

Spatial and temporal prediction of large-scale EV charging

demand is considered here. The individual EV 24-hour SOC

prediction results based on Section 4.3 and the definition of

charging demand intervals in Section 2.3 are combined to predict

the charging demand and energy demand for all users. The

spatiotemporal distribution of charging demand in the region is

then built on this basis. Here, it is specified that when a user

generates charging demand, the difference between the current

battery energy and 100% of the battery capacity is used as the

charging energy demand. Let the charging energy demand beEpc, let

the current battery SOC be SOCt, and let the user battery capacity be

Cp, at which time the charging energy demand of a single user is

calculated as follows:

Epc � (1 − SOCt)Cp (15)

The battery capacity options are as follows: 135 kWh for

buses, 48 kWh for private cars, 40.6 kWh for logistics vehicles,

and 45 kWh for taxis.

Figure 10 selects the prediction area as the core area of

Pudong New Area in Shanghai, which is divided into three

functional areas: the main urban area, containing the central

business district along Lujiazui and three subcenters (Huamu

Road, Jinqiao, and Zhangjiang Town); the high-tech industrial

area, centered on Tang Town and Zhuqiao Town; and the

residential area, centered on Kangqiao and Zhoupu Town.

The spatial distribution characteristics of charging demand for

1,000 tested EVs in a day are shown here, where 8 key time points

in a day (3:00 a.m., 6:00 a.m., 9:00 a.m., 12:00 a.m., 3:00 p.m., 6:

00 p.m., 9:00 p.m., and 12:00 p.m.) are intercepted in kWh, and

only users with charging demand are shown in the figure, where

each dot represents a vehicle with a charging demand, and the

size and color shades of the dots represent the amount of energy

demanded by the user. Figure 11 shows the total charging

demand in each hour of a day. In order to prove the validity

of the model in this paper, the spatiotemporal distribution

characteristics of charging demand are analyzed based on the

prediction results.

4.4.1 Analysis of the temporal characteristics of
the charging demand

As seen in Figure 11, charging requests peak at approximately

12:00 p.m. and 6:00 p.m., reaching approximately 150 and 180,

respectively. Charging energy demand also peaks at approximately

12:00 p.m. and 6:00 p.m., reaching approximately 4,000 kWh and

7000 kWh, respectively, with charging demand entering a trough at

approximately 3:00 a.m. Overall, the temporal distribution of

charging demand is relatively smooth, and the peak period lasts

for a long time. This proves that the charging demand has the

characteristics of time distribution.

4.4.2 Analysis of the spatial characteristics of
charging demand

As shown in Figure 10, from the spatial distribution of charging

demand, the charging load demand is in the low period from 12:00

a.m. to next day 6:00 a.m., and there is no obvious aggregated

demand for charging. After 6:00 a.m., the charging demand

gradually increases in the main urban area due to the emergence

of the morning peak period, with Lujiazui, Zhangjiang town and

Jinqiao town as the center in a radial distribution and less charging

demand in the area of high-tech industrial zone and residential area.

After 6:00 p.m., due to the emergence of the evening peak period, the

charging demand in the high-tech industrial area appears to be

aggregated, and the residential area also has an aggregated

distribution. After 12:00 a.m., the charging demand in the sub

center area and the industrial area decreases substantially. Other

areas show a uniform distribution of a charging demand throughout

the day. In summary, it is proven that the charging demand

distribution is related to the functionality of the area, and

therefore, the charging demand has spatial distribution

characteristics.

From the distribution of charging energy demand

throughout the day, most of the charging demand energy near

the central business district is distributed below 30 kWh, so the

FIGURE 11
Total charging demand and total energy demand statistics by
moment.
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charging users are mainly taxis and private cars, while the

charging energy demand in the high-tech industrial area is

distributed above 60 kWh, which indicates that the charging

users are mainly public transport vehicles. This proves that the

functionality of the vehicle and the charging demand distribution

are related, and in the case of this paper, the users are dominated

by taxis.

5 Conclusion

In this paper, first, to address the problem that the

mathematical model of user charging and discharging

strategies in the current literature is vague, a GAIL hybrid

PPO-based strategy learning model is proposed. Then, a

single-user SOC prediction model is built based on the

strategy model. Second, a mathematical determination

method of charging demand is given based on user

charging urgency, and a regional EV cluster charging

demand model is predicted based on the determination

method. The model analysis demonstrated that the KL

divergence of the policy network obtained based on the

GAIL hybrid PPO algorithm is reduced by 77% compared

to the GAIL hybrid TRPO algorithm. Thus, in strategy

learning, this paper method has better learnability. Finally,

in terms of single vehicle SOC prediction, this paper proposes

that the prediction method using user behavior characteristics

(speed, distance traveled, charging duration) has lower

prediction error, as well as better robustness compared to

the current historical SOC-based prediction methods with a

37% reduction in mean square error. The main contributions

of this paper are as follows.

1) A 24-hour SOC prediction model is established for individual

EVs based on real-time traffic flow rates that can elaborate on

the variability of user policies.

2) A regional charging demand prediction model is established

for charging EV clusters based on user charging urgency.

Future research work will make further improvements

based on the above results. First, since the strategy learning

model in this paper only considers real-time traffic flow speed

information, the vehicle speed in real situations will be

affected by more factors, such as the degree of road

depression, the slope and the distance of the previous

vehicle; thus, more complex driving environments need to

be considered to portray the perfect EV SOC changes. Second,

the charging demand urgency factor directly affects the

reasonableness and accuracy of charging demand. In the

future, more users need to be considered to perceive the

overall charging requirements, and with the rapid

development of telematics technology, more comprehensive

user information can be fully obtained in the future. Finally,

this paper focuses on the charging demand prediction of the

whole urban area. However, it lacks the charging demand

prediction of the charging station because the practical

charging station model of the parking location is the key to

estimating the charging demand, and at the same time, can

provide more accurate data support for charging guidance, so

the application value of the model in this paper needs to be

improved.
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Nomenclature

ε Truncation threshold

γ Reward discount rate

πE Expert strategies

πθ A policy with the parameter θ

∏ Policy space

C Reward function space

τi Collection of sampled trajectories

ρπE State-action probability distribution

Ât Advantage estimation at moment t

c(s, a) Reward functions under status s and action a

DOD Depth of discharge

D(x) Discriminator function

Dω(s, a) The discriminator function with the parameter ω

Dk Trajectory space

dπE State probability distribution

G(x) Policy generation functions

GAIL Generating adversarial imitation learning

H(π) Policy π causal entropy function

IRL Inverse reinforcement learning

KL Kullback-Leibler divergence

MIC Maximal information coefficient

MSE Mean square error

MAE Mean absolute error

PPO Proximal policy optimization

Qπ(s, a) Policy π under the state-action value function

RMSE Root mean square error

R-Squared Coefficient of determination

R̂t Value of reward function at moment t

rt(θ) State-to-action probability ratio at moment t

SOC State of charge

TRPO Trust region policy optimization

Vπ(s) Policy π under the state value function

XGboost Extreme gradient boosting algorithm
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