
Robust dispatching model of
active distribution network
considering PV time-varying
spatial correlation

Xin Ma1, Han Wu2* and Yue Yuan1

1College of Energy and Electrical Engineering, Hohai University, Nanjing, China, 2Smart Grid Research
Institute, Nanjing Institute of Technology, Nanjing, China

With a high proportion of photovoltaic (PV) connected to the active distribution

network (ADN), the correlation and uncertainty of the PV output will significantly

affect the grid dispatching operation. Therefore, this paper proposes a novel

robust ADN dispatchingmodel, which considers the dynamic spatial correlation

and power uncertainty of PV. First, the dynamic spatial correlation of PV output

is innovatively modeled by dynamic conditional correlation (DCC) generalized

autoregressive conditional heteroskedasticity (DCC-GARCH) model. DCC can

accurately represent and forecast the spatial correlation of the PV output and

reflect its time-varying characteristics. Second, a time-varying ellipsoidal

uncertainty set constructed using the DCC, is introduced to bound the

uncertainty of the PV outputs. Subsequently, the original mixed integer linear

programming (MILP) model is transformed into the mixed integer robust

programming (MIRP) model to realize robust optimal ADN dispatching.

Finally, a numerical example is provided to demonstrate the effectiveness of

the proposed method.
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1 Introduction

As a clean and sustainable renewable energy source, photovoltaic (PV) generation has

become one of the world’s fastest-growing energy sources, progressively becoming the

primary source of electricity in power system (Calcabrini et al., 2019). However, owing to

the correlation and uncertainty of PV output, the high proportion of PV in the active

distribution network (ADN) significantly influences ADN operation and increases the

complexity of dispatching (Yu et al., 2015; Haque and Wolfs, 2016). Thus, a reasonable

consideration of the correlation and uncertainty of PV outputs in the ADN dispatching

model can help enhance PV consumption and promote the balanced development of

the ADN.

First, the modeling of PV-output spatial correlation is considered. According to

earlier research, there is a spatial correlation between the PV output attributed to

locational considerations, micrometeorological circumstances (Ding and Mather,
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2017). Currently, common methods to establish a PV-output

spatial-correlation model mainly include correlation coefficient

matrices, covariance matrix, Copula function, and deep neural

network. In (Wu et al., 2021), the Pearson correlation coefficient

matrix was used to calculate the spatial correlation of the two

PVs, from which empirical distributions of spatial correlation

coefficients and distances were obtained. In (Luo et al., 2020), the

Kendall rank correlation coefficient, which can measure the

correlation of nonlinear variables, was used as the parameter

of the Frank-Copula function. Various correlation coefficient

matrices were used to evaluate and compare the numerical values

of PV-output spatial correlation. In (Wu et al., 2022), a

covariance-based spatiotemporal correlation model was

proposed to quantify and exploit the PV output spatial

correlation. In (Pan et al., 2019), a variety of Copula functions

were selected to obtain an appropriate PV spatial correlation

expression. In (Zamee and Won, 2020), Spearman rank-order

correlation and an artificial neural network (ANN) were

combined to characterize PV output. Each method has its

own advantages and disadvantages, as listed in Table 1.

Overall, neither the numerical expression nor the model

establishment of PV-output spatial correlation can measure or

represent the state of spatial correlation at each moment; that is,

they cannot reflect the time-varying characteristics of PV-output

spatial correlation. Furthermore, there is a lack of prediction

models for multidimensional PV output spatial correlations in

existing studies.

Second, the modeling of PV-output uncertainty in the

optimal dispatching problem of an ADN is investigated.

Stochastic optimization (SO) and robust optimization (RO)

are the two primary forms of modeling optimization

methodologies for PV-output uncertainty (Aharon and

Laurent El, 2009). For instance, in (Liu et al., 2019), a day-

ahead economic scheduling method based on chance-

constrained programming was proposed considering the

uncertainty of PV output. In (Vilaça Gomes et al., 2019), a

new approach was formulated to model the uncertainty of the

wind-sun-hydrothermal system by generating several

representative scenarios. However, SO requires estimating the

probability distribution of variables from historical data, which is

prone to large errors in actual situations. In addition, considering

the accurate representation of uncertainty, many scenarios may

need to be considered, which will increase the computational

complexity. Conversely, RO does not need to know the specific

probability distribution, but given the values ranges of variables,

that is, the uncertainty set (El-Meligy et al., 2022). In (Xu et al.,

2020; Choi et al., 2022), the box uncertainty sets were used to

restrict the upper and lower bounds of variables, which tend to be

over-conservative. (Ji et al., 2019). and (Aghamohamadi et al.,

2021) used the polyhedral uncertainty sets, which have a linear

structure and can easily control the uncertain budget, to describe

the uncertainties of PV outputs. However, it is difficult to depict

the correlation between these parameters using box or polyhedral

uncertainty sets. Significantly, the ellipsoidal uncertainty sets can

effectively describe multi-type sets to facilitate data input and

indicate the correlation between uncertain multi-variables

(Chassein and Goerigk, 2016; Golestaneh et al., 2018).

Considering the dynamic spatial correlation between multiple

PV outputs, it is better to use an ellipsoidal uncertainty set to

characterize the PV-output uncertainty in the robust

optimization dispatching model of ADN.

Based on the above discussions, this study establishes a

robust dispatching model for an ADN that fully considers the

spatial correlation and uncertainty of PV output. In this model,

the dynamic conditional correlation (DCC) generalized

autoregressive conditional heteroskedasticity (DCC-GARCH)

model is introduced to construct and predict

multidimensional dynamic correlation coefficient models of

PV outputs, representing temporal changes in spatial

correlation. After modeling the dynamic spatial correlation, a

time-varying ellipsoidal uncertainty set is introduced to bound

the uncertainty of PV outputs. In addition, to build a highly

TABLE 1 Advantages and disadvantages of methods for constructing spatial correlation of PV output.

Method Advantages Disadvantages

Correlation-coefficient matrices (including Pearson
coefficient, rank correlation coefficient, . . .)

• Can capture the nonlinear properties of
multidimensional PVs

• Cannot precisely quantify the correlation in extreme cases

• Can only obtain the average over the time from data and cannot
measure the PV spatial correlation at each moment

Covariance Matrix • Easy to calculate • A static model that cannot account for the joint nonlinear
distribution of variables• Can be applied to multi-dimensional PV

output

Copula Function • Can efficiently design a multi-variate
correlation model

• Only helpful for panel data

• A probability distribution model that disregards the
autocorrelation of PV output series across time

Deep Learning Networks • Can accurately explain the complicated
relationship among various variables

• A significant quantity of computation

• A low level of efficiency
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reasonable and widely applicable ADN dispatching model, the

coordination optimization of active and reactive power is

considered, and a variety of methods are adopted to linearize

the nonlinear constraints for an easy solution. Finally, the

effectiveness and rationality of the proposed methodologies

are demonstrated considering a rural ADN in China as an

example. The major contributions of this study are as follows:

1) To characterize the time-varying characteristics of PV-output

spatial correlation, the DCC-GARCH model is proposed in

this study to establish a dynamicmodel of the correlation. The

model also allows for intraday short-term forecasting of DCC,

which can measure the spatial correlation.

2) To address the uncertainty problem of PV output in the

optimization dispatching of an ADN, a time-varying

ellipsoidal uncertain set based on the DCC-GARCH model

is proposed to improve the robustness of photovoltaic output

modeling. By introducing the uncertainty set, the MILP

model for ADN optimal dispatching can be transformed

into mixed integer robust optimization (MIRP).

The remainder of this paper is organized as follows. Section 2

describes the dynamic spatial correlation and proposes a time-

varying spatial correlation model for the PV outputs. Section 3

explains the time-varying ellipsoidal uncertainty set of the PV

outputs and constructs a robust dispatch model of ADN. In

Section 4, the numerical results for a rural ADN in China are

presented to verify the effectiveness of the proposed model.

Finally, the conclusions are presented in Section 5.

2 Multidimensional dynamic spatial
correlation model of PV output based
on DCC-GARCH

2.1 Dynamic changes of PV output spatial
correlation

Owing to the influence of micro-meteorology, PV power

stations in the same area show different output variations.

Relevant research has shown that there is a high correlation

between the outputs of these PV stations, which is known as

spatial correlation. The five PV stations in Zhangjiagang, Suzhou

is taken as an example, which are shown in Figure 1. The PV

output data in 2018 is used to draw Figure 2, which has been

standardized by the installed capacity. And the sampling interval

is 5 min.

Figure 2 displays the scatter plots of the power distribution of

PVs at various time scales and dimensions, as well as the

accompanying confidence intervals. As shown in Figure 2, the

confidence ellipses of the same PVs at different times are

considerably different, which implies that the spatial

correlation of the same PVs varies over the time. In Figures

2A–C, the time scale is a month. The confidence ellipse for

January is longer and thinner than those for March and May,

resulting in a stronger spatial correlation. Figures 2D–F reflects

the changes of three-dimensional (3D) confidence ellipses of

PV1, PV2, and PV3 outputs across three consecutive days from

April 6th to April 8th. On April 8th, the ellipsoid is the most

elongated and has the shape of a prolate ellipsoid. Thus, the

FIGURE 1
Location of five PV stations.
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spatial correlation among the three PV stations is the strongest

for the 3 days. In addition, on comparing Figures 2D–F with

Figures 2A–C, it can be observed that the smaller the time scale is,

the more noticeable is the fluctuation of spatial correlation of PV

output.

Figure 2 illustrates that the spatial correlation of PV output has

a significant time-varying feature, with the smaller time scale

indicating a larger variation. However, most existing studies

have built static models of spatial correlation and do not

predict the spatial correlation itself. Based on this, a dynamic

spatial-correlation model based on the DCC-GARCH model is

proposed in this paper to realize the numerical characterization

and prediction of spatial correlation with time-varying

properties.

2.2 Dynamic spatial-correlation model
and prediction based on DCC-GARCH

Suppose that the output time-series of k PV stations is

PPV
t � [PPV

1,t , . . .P
PV
i,t , . . .P

PV
K,t]T, where PPV

i,t denotes the output

time series of the ith PV station. Defining the mean of PPV
i,t as

�PPV
i,t , the mean equation of each series is represented by the

ARMAmodel, and the DCC-GARCHmodel of PV output spatial

correlation is expressed as

�P
PV
i,t � ci + ∑parma

a�1
φi,a

�P
PV
i,t−a + ∑qarma

b�1
θi,be

PV
i,t−b (1)

hPVi,t � ωi +∑p
x�1

λi,x(ePVi,t−x)2 + ∑q
y�1

δi,y(hPVi,t−y) (2)

PPV
t �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
PPV
1,t

/
PPV
i,t

/
PPV
i,t

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � �PPV
t + ePVt (3)

HPV
t � DPV

t RPV
t DPV

t (4)
DPV

t � diag( ���
hPV1,t

√
, · · ·,

���
hPVi,t

√
, · · ·,

���
hPVk,t

√ ) (5)

RPV
t �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
ρ11 ρ12 / ρ1k
ρ21 ρ22 / ρ2k
/ / / /
ρk1 ρk2 / ρkk

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � Q′−1
t QtQ

p−1
t (6)

FIGURE 2
Power distribution and confidence interval of PV1-PV2 and PV1-PV2-PV3 at partial time. (A) PV1-PV2-January, (B) PV1-PV2-March, (C) PV1-
PV2-May, (D) PV1-PV2-PV3 April 6th, (E) PV1-PV2-PV3 April 7th, and (F) PV1-PV2-PV3 April 8th.
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Qt �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
q11 q12 ... q1k
q21 q22 ... q2k
... ... ... ...
q2k ... ... qkk

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
� ⎛⎝1 − ∑M

m�1
αm −∑N

n�1
βn⎞⎠ �Q + ∑M

m�1
αmξt−mξt− m

′ +∑N
n�1

βnQt−n (7)

�Q � T−1∑T
t�1
ξtξ

′
t (8)

Equations 1, 2 establish the ARMA-GARCH model for the

output of each PV station. Equation 1 is the mean equation using

the ARMAmodel, and Equation 2 refers to the variance equation

of the GARCHmodel, where the residual term {ePVi,t } is subject to

N (0,
���
hPVi,t

√
). ci, wi, φa, θb, λx and δyare constant coefficients.

parma and qarma are the orders of ARMA, and p and q are the lag

orders of the GARCH. Eq. 3 is the variance equation, which can

be calculated using the GARCH model. To ensure that the

variance is positive, the parameters must satisfy ωi > 0,

λi,x >0, δj,y >0, and (∑p
x�1λi,x +∑q

y�1δi,y)< 1.
Equations 3–8 build the DCC-GARCH model. In Eq. 3, ePVi,t

denotes the residual term, which is subject to N (0, HPV
t ). The

covariance matrix HPV
t of PPV

t can be decomposed into a DCC

matrix RPV
t and two standard-deviation matrices DPV

t , as shown

in Equation 4. Eq. 6 defines RPV
t which is disintegrated into

matricesQ*
t andQt.Q*

t refers to a diagonal matrix whose elements

are the square roots of the diagonal values ofQt. In Eq. 8, ξt refers

to a residual vector after standardization that satisfies ξt
(DPV

t )−1ewt �Q is an unconditional variance matrix of ewt ,
satisfying Eq. 8.

The DCC (1,1)-GARCH (1,1) model is more frequently. In

the simplified model, Eqs 2, 7 are simplified to Eqs 9, 10,

respectively. The DCC can then be written as Eq. 11.

hPVi,t � ωi + λi(ePVi,t−1)2 + δi(hPVi,t−1) (9)
Qt � (1 − α − β) �Q + αξt−1ξt−1

′ + βQt−1 (10)
ρij,t �

qij,t������
qii,tqjj,t

√

� (1 − α − β)�qij + αξi,t−1ξj,t−1 + βqij.t−1������������������������������������������������������((1 − α − β)�qii + αξ2i,t−1 + βqii.t−1)((1 − α − β)�qjj + αξ2j,t−1 + βqjj.t−1)√ (11)

where ωi, λi, and δi are the parameters to be estimated in GARCH

(1,1) and should be positive. α and β are positive parameters in

DCC (1,1) and satisfy α + β < 1.

Consider the covariance matrix of r-step ahead prediction is

Qt+r � (1 − α − β) �Q + αξt+r−1ξt+r−1
′ + βQt+r−1 (12)

where Et[ξt+r−1ξt+r−1]=Et[RPV
t+r−1], RPV

t+r � Q*−1
t+rQt+rQ*−1

t+r . Because
of the nonlinearity, the prediction cannot be directly solved

forward to provide a convenient method for prediction.

Hence, an efficient method is proposed to generate the r-step

ahead prediction of Q by approximating that �Q ≈�R and that

Et[QPV
t+1]=Et[RPV

t+1] (Engle and Sheppard, 2001). Using this

approximation, the DCC matrix RPV t can be predicted using

the following relationship

Et[RPV
t+r] � Et[Qt+r]

� ∑r−2
i�0
(1 − α − β)�R(α + β)i + (α + β)r−1Rt+1

(13)

So far, a dynamic spatial correlation model of PV output can

be obtained. In addition to accurately describing the PV output,

the model can also assess, compute, and predict the DCC of

different PV outputs. In this study, the relative value RPV
t is used

to characterize the DCC. The absolute value Qt, which denotes

the covariance matrix, is used to denote the time-varying

ellipsoidal uncertainty set and solve the optimal dispatching

model. RPV
t and Qt are interconnected using Eq. 11.

3 Robust dispatching model for ADN
considering the dynamic PV spatial
correlation

In contrast to the transmission network, the resistance

and reactance values of the ADN lines are close to each other,

and the coupling between active and reactive power is strong

(Sun et al., 2022). It is not sufficient to establish a unilateral

active- or reactive-power dispatching model based on the

traditional active- and reactive-power decoupling theory. The

reactive-power resources about the high proportion of PV

will affect the network loss and voltage quality (Antoniadou-

Plytaria et al., 2017; Hu et al., 2022). Active power

optimization can reduce generation costs, and reactive

power regulation can reduce network losses, together

achieving the goal of minimizing operating costs.

Therefore, first, this section establishes the active- and

reactive-power coordination dispatching model of the

ADN. Thereafter, to facilitate the solution, the nonlinear

constraints are linearized to form the MILP model. Finally,

considering the uncertainty of PV output, a time-varying

ellipsoid uncertainty set is proposed to construct a robust

dispatching model of ADN.

3.1 Objective function

Because economy is a significant evaluation indicator for

ADN, the lowest operating cost of ADN is chosen as the objective

function in this paper. The operational expense consists of the

cost of purchasing electricity from the grid, the dispatching cost

of curtailable loads, and the lifespan-loss cost of the energy

storage system (ESS), which is expressed as:

Min F � ∑T
t�1
(Fbuy(t) + FCL(t)) + FEss (14)
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Fbuy(t) � ∑
i

mbuy(t)PLoad
i,t Δt (15)

FCL(t) � ∑
i

mCL
i PCL

i,t Δt (16)

FEss � (πrep − πres)DPcy (17)
where Fbuy(t) and FCL(t) denote the cost of electricity purchase

and dispatching cost of the curtailable load at time t, respectively,

and FEss denotes the lifespan-loss cost of energy storage. In Eq. 15,

mbuy(t) denotes the unit cost of electricity purchased from the

upper grid. In Eq. 16, mCL
i denotes the demand-side response

compensation cost. In Eq. 17, πrep and πres denote the replacement

cost and residual value of the ESS, respectively, and DPcy denotes

the cycle degradation percentage of the ESS.

3.2 Constraints

The normal operation of the ADN must satisfy power flow

constraints. To achieve reasonably coordinated dispatching

within the system, it is also necessary to consider the

operating constraints of each device. In this study, we

consider the demand-side response constraints and the

operating constraints of an ESS, on-load tap changer (OLTC),

capacitor bank (CB), static var generator (SVG), and distributed

generation (DG), as well as the impact of ESS lifespan losses on

operational costs.

3.2.1 Power flow constraints
The injected and outflow powers at each node must be equal

for the ADN. Therefore, the branch flow model can be

expressed as

⎧⎨⎩ Pij,t � (u2
i,t − ui,tuj,t cos θij,t)gij − ui,tuj,tbij sin θij,t

Qij,t � −(u2
i,t − ui,tuj,t cos θij,t)bij − ui,tuj,tgij sin θij,t

i, j ∈ BNode, t ∈ T

(18)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Pi,t � ∑
(i,j)

Pij,t +⎛⎝∑N
j�1
Gij

⎞⎠v2i,t � PPV
i,t + PEssdis

i,t − PEsschar
i,t

−(PLoad
i,t − PCL

i,t )
Qi,t � ∑

(i,j)
Qij,t +⎛⎝∑N

j�1
−Bij

⎞⎠v2i,t � QPV
i,t + QEss

i,t + QCB
i,t + QSVG

i,t

−(QLoad
i,t − PCL

i,t tanϕ)

(19)

P2
ij,t + Q2

ij,t ≤ S2ij,max (20)

Eq. 18 gives the branch power flow equations, where θij,t is

the difference in the voltage phase angle between nodes i and j. gij
and bij are the electric conductance and susceptance of branch ij,

respectively. Eq. 19 shows the node power-balance equation,

where Gij and Bij are the conductance and susceptance of the

node to the ground, respectively. ϕ is the power-factor angle of

the load being reduced. Eq. 20 constraints the capacity of

branch ij.

3.2.2 OLTC operation constraints
OLTC can regulate the voltage by adjusting the position

of the tap, which is an important component for

maintaining voltage stability. A virtual node m can be

added to the branches that contain OLTC to separate the

transformer branch into an ideal transformer section and a

lossy section.

The voltage of the ideal transformer on the secondary side

can be expressed as

um,t � (δij,t)2uj,t, i, m, j ∈ BOLTC (21)

where δij,t represents the turn ratio of the transformer branch at

time t, which can be defined as a linear combination of the

following constraints.

δij,t � δij
min + Tij,tΔδij (22)

Δδij � (δijmax − δij
min)/Kij (23)

0≤Tij,t ≤Kij (24)

where δijmin and δijmax are the minimum and maximum OLTC

turn ratio, respectively. Tij denotes the actual tap position, which

is a non-negative integer variable. Δδij is the change in turn ratio

of each tap. Kij denotes the maximum number of OLTC tap

positions.

3.2.3 ESS operation constraints

uchar
i,t + udis

i,t ≤ 1,∀i ∈ BESS,∀t ∈ T (25)
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

uchar
i,t PEsschar

i ≤PEsschar
i,t ≤ uchar

i,t PEsschar
i

udis
i,t P

Essdis
i ≤PEssdis

i,t ≤ udis
i,t P

Essdis
i

(26)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

SOCi,0 � SOCi,set

SOCi,t � SOCi,t−1 + (PEsschar
i,t /ηchari Δt

−PEssdis
i,t /ηdisi Δt)/Enomal

i

SOCi ≤ SOCi,t ≤ SOCi

SOCi,end � SOCi,0

∀i ∈ BESS,∀t ∈ T (27)

Constraints (25) and (26) limits the active power of the

ESS at node i at time t. Constraint (27) limits the state of

charge (SOC) at node i at time t. In constraint (27), Enomal
i is

the rated capacity of the ith ESS. ηchari and ηdisi denote the

charging and discharging efficiencies, respectively. To ensure

that the ESS has the same operational performance in each

scheduling cycle, it is assumed that the initial value of the SOC

in this cycle is the same as the initial value of the SOC in the

following cycle.

3.2.4 ESS cycle life loss constraints
The ESS loss cost accounts for a significant portion of the

ADN operational cost. Because the ESS lifespan-loss might
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influence economic efficiency during operation, cyclic-life loss

constraints for the ESS are constructed in this paper using the

method proposed in the literature (Wang et al., 2016).

Assuming that the charging and discharging procedures have

the same impact on the cycle lifespan degradation, a full charging

and discharging cycle is divided into two distinct processes. The

daily degradation is the sum of the degradations during each time

interval, as shown in (28). For each period, the cycle lifespan

degradation can be calculated by deducting the two regular

degradations.

DPcy � ∑
t

degcyt (28)

degcyt � 0.5
∣∣∣∣degt − degt−1

∣∣∣∣ (29)

where degt denotes the cycle loss percentage corresponding to the

SOC at time t, which can be obtained from the degradation-SOC

curve, as shown in Wang et al. (2016).

Given that all the absolute values in Eq. 29 are less than 1, the

nonlinear function can be converted into a linear inequality

constraint by adding two binary variables d1 and d2. The

functions are as follows:

⎧⎪⎨⎪⎩
0≤ degcyt − 0.5(degt − degt−1)≤ 2d2

0≤ degcyt − 0.5(degt−1 − degt)≤ 2d1

d1 + d2 � 1
(30)

3.2.5 CB and SVG constraints
Reactive-power-compensation components in an ADN

typically fall into one of two types: the discrete component

CB and the continuous component SVG. The constraints of

the CB are as follows:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
yCB
i,t Q

CB,step
i � QCB

i,t

0≤yCB
i,t ≤YCB

i

yCB
i,t ∈ int

∀t ∈ T,∀i ∈ BCB (31)

⎧⎪⎪⎨⎪⎪⎩
∑
t∈T

δCBi,t ≤NCB,max
i

−δCBi,t YCB
i ≤yCB

i,t ≤ δCBi,t Y
CB
i

∀t ∈ T,∀i ∈ BCB (32)

Constraint (32) constrains the number of operations, where

where NCB,max
i is the upper limits of the operating quantity

during each dispatching. δCBi,t denotes the change in CB

compensation capacity at adjacent moments.

SVG is a continuous reactive power compensation device

that can effectively respond to the sudden changes in voltage or

overvoltage caused by DG fluctuations in an ADN. The

constraints of an SVG are as shown in Constraint (33):

QSVG,min
i ≤QSVG

i,t ≤QSVG,max
i ∀t ∈ T,∀i ∈ BSVG (33)

where QSVG,min
i and QSVG,max

i denote the lower and upper limits

of SVG-compensated reactive power, respectively.

3.2.6 PV-output constraints

⎧⎪⎨⎪⎩ 0≤PPV
i,t ≤PPV

i,t

−PPV
i,t tan ϕ ≤QPV

i,t ≤PPV
i,t tan �ϕ

∀t ∈ T,∀i ∈ BPV (34)

(PPV
i,t )2 + (QPV

i,t )2 ≤ SPVi ∀t ∈ T,∀i ∈ BPV (35)

The PVoutput constraints are presented in Constraints (34) and

(35). Constraint (34) denotes themaximumPV active power at time

t, whereas �ϕ and ϕ are the maximum and minimum power factor

angles, respectively. The maximum PV apparent power is limited by

Constraint (35) to ensure system economy and safety.

3.2.7 Demand-response constraints
Demand response (DR) is crucial for ADN dispatch and

optimization. It can reduce the uneven tide distribution caused

by DG uncertainty. By tracking DG generation, DR can provide

some regulation capability for the ADN. In this study, the main DR

we considered is the curtailable load with the following constraints:

PCL
i,t ≤ qCLi,t u

CL
i,t ∀i ∈ BCL,∀t ∈ T (36)

yCLi,t − zCLi,t � uCL
i,t − uCL

i,t−1 ∀i ∈ BCL,∀t ∈ T (37)
yCLi,t +zCLi,t ≤ 1 ∀i ∈ BCL,∀t ∈ T (38)

∑t+TCL CL
min −1

t′�t
uCLi,t′ ≥TCL

CL
miny

CL
i,t ∀i ∈ BCL,∀t ∈ T (39)

∑t+TCL CL
max −1

t′�t
zCLi,t′ ≥yCL

i,t ∀i ∈ BCL,∀t ∈ T (40)

∑
t∈T

yCL
i,t ≤NumCL ∀i ∈ BCL

(41)

where qCLi,t is the maximum reduction per unit time for each

curtailable load. uCLi,t denotes the condition of load reduction, and

yCL
i,t and zCLi,t denote that load reduction starts or stops,

respectively, whereas all of them are binary variables. TCLCLmin

and TCLCLmax are the minimum and maximum load-reduction

times. NumCL is the maximum quantity of loads that participates

in the DR throughout the day.

3.3 Model linearization

3.3.1 Successive linear approximation of
power flow

Despite the high computational accuracy of AC power flow,

its non-convex nonlinear properties render it unsuitable for
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integration into complex distribution network optimization

issues. Consequently, this study linearizes the power flow

equation to improve the solution efficiency while maintaining

appropriate computational accuracy. It then creates a linearized

optimization model for an ADN.

Constraint (18) is nonlinear because of the product of a

trigonometric function with the voltage. Suppose that an

initial point (vi,j,k, θi,j,k) is provided. The first-order Taylor

series expansion of the sine and cosine functions is

expressed as:

{ sin θij,t ≈ s1ij,t,kθ
1
ij,t,k + s0ij,t,k

cos θij,t ≈ c1ij,t,kθ
1
ij,t,k+c0ij,t,k

(42)

where,

{ s1ij,t,k � cos θij,t,k, s
0
ij,t,k � sin θij,t,k − θij,t,k cos θij,t,k

c1ij,t,k � −sin θij,t,k, c0ij,t,k � cos θij,t,k + θij,t,k sin θij,t,k
(43)

The power flow equation is formulated by incorporating (42)

and (43) into Equation 18.

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Pij,t � v2i,tgij − vi,tvj,t(gijc

0
ij,t,k + bijs

0
ij,t,k)

−vi,tvj,tθij,t(gijc
1
ij,t,k + bijs

1
ij,t,k)

Qij,t � −v2i,tbij + vi,tvj,t( − gijs
0
ij,t,k + bijc

0
ij,t,k)

−vi,tvj,tθij,t(gijs
1
ij,t,k − bijc

1
ij,t,k)

(44)

With v2i,t as an integral variable, the nonlinear terms in the

equation are vi,tvj,t and vi,tvj,tθij,t. To decompose these two

terms, we use the first-order Taylor expansion for θij,t near

the initial value, as shown in (45).

vi,tvj,tθij,t ≈ vi,t,kvj,t,kθij,t + (vi,tvj,t − vi,t,kvj,t,k)θij,t,k (45)

The vi,tvj,t can be uncoupled as (46). Subsequently, the first-

order Taylor expansion can be used to further approximate the

linearization of v2ij,t, as shown in (47).

vi,tvj,t � 1
2
[v2i,t + v2j,t − (vi,t − vj,t)2] � v2i,t + v2j,t

2
− v2ij,t

2

� Ui,t + Uj,t

2
− v2ij,t

2

(46)

v2ij,t ≈ 2vij,t,kvij,t − v2ij,t,k ≈ 2vij,t,kvij,t
vi,t + vj,t
vi,t,k + vj,t,k

− v2ij,t,k

� 2
vi,t,k − vj,t,k
vi,t,k + vj,t,k

(v2i,t − v2j,t) − v2ij,t,k

� 2
vi,t,k − vj,t,k
vi,t,k + vj,t,k

(Ui,t − Uj,t) − v2ij,t,k

� vsij,t,L

(47)

The linearized power flow constraints can be obtained by

substituting (45)–(47) into (44), as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Pk
ij,t � gijUi,t − gP,k

ij

Ui,t + Uj,t

2
− bP,kij (θij,t − θij,t,k)

+gP,k
ij

vsij,t,L
2

Qij,t � −bijUi,t + bQ,kij

Ui,t + Uj,t

2
− gQ,k

ij (θij,t − θij,t,k)
−bQ,kij

vsij,t,L
2

(48)

where

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
gP,k
ij � (gijc

0
ij,k + bijs

0
ij,k) + (gijc

1
ij,k + bijs

1
ij,k)θij,t,k

bP,kij,k � (gijc
1
ij,k + bijs

1
ij,k)vi,t,kvj,t,k

bQ,kij � ( − gijs
0
ij,k + bijc

0
ij,k) − (gijs

1
ij,k − bijc

1
ij,k)θij,t,k

gQ,k
ij,k � (gijs

1
ij,k − bijc

1
ij,k)vi,t,kvj,t,k

(49)

In Yang et al. (2016) and Yang et al. (2017), it has been

demonstrated by the examination of numerous instances that

successive linear approximation of power flow has high accuracy.

Its efficiency has a sizable advantage over heuristic methods owing

to the rapid development of commercial linear-programming tools.

Furthermore, compared with the second-order cone relaxation, the

successive linear approximation, which is based on the Taylor series,

has unrestricted objects and superior scalability.

3.3.2 Linearization of line capacity and DG
capacity

Constraints (20), (35) are elliptical nonlinear constraints on

capacity. Linearization can be realized using a linear

approximation with multiple rectangular constraints.

The line capacity constraint is transformed into (50). The

capacity constrained of DG inverter is transformed into (51).

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−Sij,max ≤Pij,t ≤ Sij,max

−Sij,max ≤Qij,t ≤ Sij,max

− �
2

√
Sij,max ≤Pij,t + Qij,t ≤

�
2

√
Sij,max

− �
2

√
Sij,max ≤Pij,t − Qij,t ≤

�
2

√
Sij,max

(50)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−SDG

i,t ≤PDG
i,t ≤ SDG

i,t−SDG
i,t ≤QDG

i,t ≤ SDG
i,t

− �
2

√
SDG
i,t ≤PDG

i,t + QDG
i,t ≤

�
2

√
SDG
i,t

− �
2

√
SDG
i,t ≤PDG

i,t − QDG
i,t ≤

�
2

√
SDG
i,t

∀t ∈ T,∀i ∈ BDG (51)

3.3.3 Linearization of ESS cycle lifespan loss
constraints

The constraints of the ESS cycle lifespan loss are non-convex

and nonlinear and have integer variables. Through the second

type of special-order sets (SOS2), the degradation-SOC curve can

be linearized and is expressed as:

SoCt � ∑
m

Δt,mSoCt,m (52)

degt � ∑
m

Δt,mdegt,m (53)
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∑
m

Δt,m � 1 (54)

∑
m

δt,m � 1 (55)

Δt,m ≤ δt,m + δt,m−1 (56)
where m is the number of SOC-curve segments of the ESS. Δt,m

and δt,m are the SOS2 variables at time t.

3.4.4 Linearization of OLTC operating
constraints

There are integer variables in the OLTC constraints. To avoid

the dimensional disaster caused by the non-deterministic

polynomial (NP) problem, the OLTC constraints are

linearized using following procedure:

Suppose λij,t,n is a binary variable,

Tij,t � ∑Nij

n�0
2nλij,t,n (57)

where

min
Nij

∑Nij

n�0
2n, s.t.∑Nij

n�0
2n ≥Kij (58)

While defining mij,t = δij,tUj,t, hij,t = λij,t,nUj,t, and gij,t,n =

λij,t,nmij,t, Eqs 59, 60 can be respectively obtained by multiplying

both sides of Equation 22 by Uj,t and mij,t.

mij,t � δij
minUj,t + Δδij∑Nij

n�0
2nhij,t (59)

δij,tmij,t � δij
minmij,t + Δδij∑Nij

n�0
2ngij,t,n (60)

Using the Big-M method, two equivalences can be achieved

by introducing a large number M:

hij,t � λij,t,nUj,t0{ 0≤Uj,t − hij,t ≤ (1 − λij,t,n)M
0≤ hij,t ≤ λij,t,nM

(61)

gij,t,n � λij,t,nmij,t0{ 0≤mij,t − gij,t,n ≤ (1 − λij,t,n)M
0≤gij,t,n ≤ λij,t,nM

(62)

Thus far, OLTC operation constraints have been linearized,

converting the model to a mixed integer model. Additionally,

daily modifications of the OLTC must be restricted, as shown

in (63).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δij,t,up + δij,t,do ≤ 1

∑Nij

n�0
2nλij,t,n −∑Nij

n�0
2nλij,t−1,n ≥ δij,t,up − δij,t,doKij

∑Nij

n�0
2nλij,t,n −∑Nij

n�0
2nλij,t−1,n ≤ δij,t,up − δij,t,do

∑
t∈T

δij,t,up + δij,t,do ≤Nj
max

(63)

where δij,t,up and δij,t,do are binary variables that define the

increasing and decreasing of OLTC ratio at time t. Nj
max is

the maximum time of changes during operation.

3.4 Time-varying ellipsoidal uncertainty
set of PVs

It is vital to describe the uncertainty set formany optimizations

dispatching problems based on robust optimization. Among the

different ways to contribute to uncertainty sets, the box uncertainty

set is over conservative, and the polyhedral uncertainty set cannot

express the correlation between uncertain parameters. Therefore, a

more flexible ellipsoidal uncertainty set is adopted to describe the

uncertainty of PV output. The specific ellipsoidal uncertainty set is

as follows

Ψα: (XPV
t − �XPV

t )TΣ−1(XPV
t − �XPV

t )≤ Γα (64)

where XPV
t denotes a multivariate PV-output variable of

dimension k at time t that can be forecasted by historical PV

output data, and �XPV
t is the mean value of XPV

t ; Σ is the predicted

covariance matrix, which is obtained from the historical data; Γα,

which is usually called the uncertainty budget, denotes the

coverage rate of observations.

In this study, the ARMA model is used to obtain the PV

output predicted value �XPV
t of dimension k at every time t. The

covariance matrix Qt predicted using DCC-GARCH is regarded

as Σ, which changes over time and represents the spatial

correlation of different PVs. The uncertainty budget, which

controls the robustness of the optimization model, is chosen

by different confidence levels of the PV output data.

Ψα: (XPV
t − �XPV

t )TQ−1
t (XPV

t − �XPV
t )≤ Γα (65)

3.5 Solution method

Through the modeling process of Sections 3.1–Sections 3.2,

we obtained the active and reactive power coordination

dispatching model of the ADN. After the linearization process

of the constraints mentioned in Section 3.3, the model proposed

in this study is transformed into a mixed integer linear

programmed (MILP) optimization model.

Considering the uncertainty of PV output, the time-varying

ellipsoidal uncertainty set was developed in Section 3.4.

Introducing this set, a robust constraint, into the MILP

model, we can obtain a mixed integer robust programmed

(MIRP) optimization model that can be computed using

solvers. The detailed flowchart of modeling process in this

study is presented as Figure 3.
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4 Case studies

4.1 Dynamic spatial correlation model and
prediction based on DCC-GARCH

First, the dynamic spatial correlation model of PV output is

analyzed, and the data are from the output of PV system in

Figure 1 in Suzhou, China. The data of March 1–24 in 2018,

during which the weather was sunny, were selected for modeling

and prediction. The interval was set to 20 min from 8:00 to 16:00,

which can display the changes in the spatial correlation between

PVs. After the Augmented Dickey-Fuller (ADF) test, normality,

and Lagrange multiplier (LM) test, the results indicate that the

historical PV data can be modeled using ARMA and DCC-

GARCH, with the ARMA model of PV output being shown in

Supplementary Table S1. The parameters of the five-dimensional

DCC-GARCH model being shown in Table 2.

The standardized residual series were re-evaluated after the

model was constructed. The results indicated no correlation

FIGURE 3
Flowchart of the robust dispatching model of ADN considering PV time-varying spatial correlation

TABLE 2 Parameters of five-dimensional DCC-GARCH model.

ω λ δ α β

PV1 0.002628 0.7385 0.2535

PV2 0.001509 0.7150 0.1840

PV3 0.002897 0.8221 0.1477 0.1273 0.8468

PV4 0.002967 0.7325 0.2240

PV5 0.002138 0.7442 0.2538
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between variables, proving that the model had successfully

eliminated the autocorrelation and heteroscedasticity of the data

itself. As shown in Table 2, α and β are positive. The sum of α and β

(0.974) is less than 1, which indicates that the model is stable, and

there is a valid dynamic correlation between the five PVs. Parameter

α indicates the influence of the current residual on the time series

volatility at the next moment, and a higher α indicates that the time

series is more sensitive to the recent residual. Parameter α +β

indicates the disappearance speed of current fluctuations in the

future, namely, the duration of the spatial correlation of PV output.

The higher the value α +β is, the longer is the correlation duration.

From Table 2, the result of fitting β is larger than α, indicating that

the current dynamic heteroscedasticity of each series arises mainly

from the residual of the previous period. The sum of α+β is close to

1, which implies that the spatial correlation has strong continuity.

The DCC matrix Rt of the PV output was calculated using the

DCC-GARCHmodel, with the DCC curve between two pairs under

20 min time resolution being drawn as shown in Figure 4 below.

According to the comparison between Figure 1 and Table 3, it

can be observed that distance is one of the factors that affect

DCC. The closer the PVs are, the higher is the DCC value.

Otherwise, owing to the dynamic change of DCC, the spatial

correlation between the two PVs shows different magnitude

relationships at different times. This phenomenon is mainly

related to temperature and weather.

Comparing Figure 4 with the weather conditions shown in

Supplementary Table S2, the maximum and minimum

temperatures varied significantly from March 9 to 13.

However, the temperature difference remained largely the

same owing to five consecutive days of partly cloudy weather.

Therefore, the DCC was mainly above 0.9, indicating a high

spatial correlation among the PVs during this period.

Additionally, the DCC varied dramatically owing to the more

pronounced temperature difference fluctuations on March

1–7 and March 5–21. On these days, the weather in the

location was cloudy and rainy.

Therefore, the following conclusions can be drawn:When the

temperature difference fluctuates more steadily, the DCC

changes smoothly, and the DCC is more prominent when the

weather is fine. When the temperature difference fluctuates

sharply, usually accompanied by inclement weather, the

A

D E

B C

FIGURE 4
DCC diagrams of PV output. (A) DCC12, DCC13, (B) DCC14, DCC15, (C) DCC23, DCC24, (D) DCC25, DCC34, and (E) DCC35, DCC45.

TABLE 3 The average DCC of different PVs.

Average Average

DCC12 0.747911 DCC24 0.804797

DCC13 0.756521 DCC25 0.810146

DCC14 0.777482 DCC34 0.811955

DCC15 0.788915 DCC35 0.844137

DCC23 0.793603 DCC45 0.858636
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change in solar radiation causes a considerable change in the PV

output, which in turn causes a variation in the DCC.

Data from March 1 to 24 were used as the test set, and the

forecast step was set to 24. The DCC-GARCHmodel was used for

the rolling forecast to obtain the DCC from 8:00 to 16:00 on

March 25 (with an interval of 20 min). The predicted values of

the DCC are compared with the actual values in Figure 5, and the

mean square error (MSE) is shown in Supplementary Table S3.

It can be observed that the errors are within the acceptable range,

and the prediction results are accurate. However, in most

instances, the prediction values are more prominent than the

actual values because of the rapid variation in cloud cover.

4.2 Case description

Robust ADN dispatching is verified in the next section. The

grid structure is abstracted from a rural distribution network in

Anhui, China, as shown in Figure 6. There are five PV stations

(different from Figure 1), one ESS, one SVG, and three CBs.

The case uses 24 h as the dispatch period and 60 min as the

dispatch interval. The capacities of the PV stations were set to

3MW, 2.4MW, 2MW, 2.4MW, and 4 MW. The parameters of

the ESS are as follows: The ESS capacity is 1MW; the initial

charge state SOCi,0 is 0.5; ηchari and ηdisi , the efficiency of

charging and discharging, are set to 88% and 90%,

respectively; and the depth of discharge is 90%. For the

OLTC (at node one), the maximum number of OLTC tap

positions Kij was set to 16. dijmin and dijmax were set to 0.857 and

1.048, respectively. For the DR, the compensation cost value

was set to 100 yuan/MWh. Additionally, the electricity price

purchased from the power grid adopts a peak-to-valley sales

tariff. The load in the system includes residential and

agricultural loads.

A B

D E

C

FIGURE 5
Comparison of DCC predicted value and actual value. (A) PV1-PV2, PV1-PV3, (B) PV1-PV4, PV1-PV5, (C) PV2-PV3, PV2-PV4, (D) PV2-PV5, PV3-
PV4, and (E) PV3-PV5, PV4-PV5.

FIGURE 6
A typical rural distribution system.
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To verify the significance of considering the time-varying

characteristic of the PV-output spatial correlation, the numerical

tests were mainly conducted in the following two cases:

Case A. Robust dispatching model for the ADN without

considering the time-varying characteristics of PV-output

spatial correlation.

Case B. Robust dispatching model for the ADN with time-varying

characteristic consideration of PV-output spatial correlation.

4.3 Dispatching results for case A

When the time-varying characteristic of PV-output spatial

correlation is not considered, the correlation coefficients among

the five PVs can easily be derived from the Pearson coefficient. In

this case, the ellipsoidal uncertainty set is static, as shown in Eq.

64. The objective function and related parameters can be

determined as follow:

Figure 7A depicts the PV output curves, and Figure 7B

illustrates the active power changes of PCC and the SOC curves

of ESS for Case A. It can be observed that when the time-varying

spatial correlation is ignored, the PV-output curves are jagged. Some

PV-power valleys occur aroundmidday, which leads to the apparent

fluctuations of the PCC active power in Figure 7B. To secure the

balance of power supply for the entire system, the SOC state of ESS

begins charging immediately at 12:00when the PV output is low and

reaches full power at 13:00. The full power condition lasts for nearly

7 h to guarantee that the load is supplied throughout the night so

that the objective function is minimized to the greatest extent.

The maximum number of OLTC changes within the

dispatching period was set to no more than two. Three CBs

were connected to nodes 9, 27, and 44. The maximum number of

access CB groups was set to five, and the maximum number of

changes was two. As shown in Supplementary Figure S1, the

FIGURE 7
Partial-component-change curves for Case A. (A) PV output, (B) Active power changes of PCC and SOC changes of ESS.

TABLE 5 Results of robust dispatching.

Confidence
coefficient (%)

Objective function
(yuan)

Total PV
output (MW)

PV absorption
rate (%)

Transmission
losses (MW)

99 43663.394 31.603 75.6 0.451

95 54631.883 31.343 75.0 0.448

90 67956.374 31.055 74.3 0.448

85 76864.216 30.892 73.9 0.486

80 92331.939 30.681 73.4 0.440

TABLE 4 Dispatching results of MILP.

Objective function (yuan) Total PV output (MW) PV absorption rate (%) Transmission losses (MW)

103101.694 30.499 73.0 0.461
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variations in OLTC and CB both satisfied the limits. The

maximum number of access CB groups during the

dispatching period was five. This means that a high

proportion of PV in the ADN will cause reactive power

shortages and other problems, requiring timely action of

reactive-power compensation equipment to ensure stable

system operation. In the proposed coordinated dispatching

model of ADN, OLTC and CB operate together with the ESS

to achieve active management of the ADN and always ensure the

voltage quality of the entire system supply.

4.4 Dispatching results for case B

Considering the dynamic trait of PV-output spatial

correlation, the covariance matrix Qt, interconnected with the

DCC by Eq. 11, can be used in the uncertainty set, where the

time-varying ellipsoidal uncertainty set is obtained, as shown in

Eq. 65. In addition, because the dispatching interval is 1 h, the PV

output time was set as 8:00–16:00, according to the actual

situation. The covariances between PVs are shown in

Supplementary Figure S2, which indicates the spatial

correlation variation. The covariance curves for different PVs

share a similar trend: a strong correlation at noon and a weak

correlation in the morning and evening, which is caused by the

illumination intensity and temperature.

Subsequently, a model for the robust dispatching of ADN

that considers time-varying spatial correlation was developed.

Considering the influence of different uncertainty budgets on

the ellipsoidal uncertainty set, the objective function and

related parameters were obtained under different

uncertainty budgets, as listed in Table 5, where the PV

consumption rate is the ratio of the actual output to the

ideal output.

A B

FIGURE 8
PV output under different uncertainty budget for Case B. (A) uncertainty budget 99%, (B) uncertainty budget 80%.

FIGURE 9
Active power changes of PCC and SOC changes of ESS for Case B. (A) uncertainty budget 99%, (B) uncertainty budget 80%.
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First, the effect of time-varying spatial correlation is

considered. Comparing Table 5 with Table 4, without time-

varying spatial correlation, it can be observed that the total

cost of operation increases owing to the reduction in PV

output, which increases the cost of power purchase from the

upper grid. On the other hand, the decrease in PV output affects

the charging and discharging status of the ESS, thus reducing the

ESS benefits.

Figure 8 illustrates the PV output, and Figure 9 reveals the

active power changes at the point of common coupling (PCC)

at node 1 and the SOC tendencies of the ESS. Compared with

Figure 7, under any uncertainty budget, the curves of the PV

output and PCC output are smoother, and the value of the PV

output at each node is higher when the time-varying spatial

correlation is considered. In Figure 8, the PCC output is in

the trend of the morning and evening peaks and noon trough.

Because most of the loads are residential loads, the peak

period of electricity consumption is from 20:00 to 22:00.

During this period, the PCC output reaches its peak, and

the ESS is in a discharged state to ensure the load supply. The

SOC curves indicate that the ESS is releasing energy during

the morning peak of electricity consumption after 7 a.m.

and charges during the peak of the PV generation. In

conclusion, considering the time-varying spatial

correlation of PVs is helpful for comprehensively

evaluating the output characteristics of PV and optimizing

the dispatching results.

Secondly, we consider the influence of the uncertainty

budget. As can be observed from Table 5, as the uncertainty

budget increases, the overall operating cost decreases, and the

PV consumption rate increases progressively. This is caused by

the selection of the uncertainty budget influencing the

robustness of the system operation: the greater the

uncertainty budget is, the more points are included in the

ellipsoidal uncertainty set, and similarly, the more

conservative are the results (Wu et al., 2022). Because the

total cost of operation only includes the cost of power

purchase and energy storage operation, not the cost of PV

operation, to minimize the objective function, a high PV output

caused by the high uncertainty budget will become the main

power supply of the grid, which will reduce the cost of power

purchase from the upper grid and the total cost of operation.

Under different circumstances, the network loss varies based on

the dispatching status of the PV output and the upper-grid

supply.

Under uncertainty budgets of 99% and 80%, Figures 8, 9

shows quite different curves. When the uncertain budget is 99%,

the output value of the PV at each moment is slightly larger than

that under the 80% budget, and the output curve of the PCC is

smoother. Because the total operating cost considers the lifespan

loss cost of the ESS, to minimize the objective function as much

as possible, the charging and discharging times of the ESS are

reduced under an uncertainty budget of 99% with higher

conservatism.

Because the case is a rural distribution network, a low load

demand is accompanied by high PV penetration. In the high PV

output period, combining the peak–valley spread revenue of the

ESS, surplus power will be sold to the upper grid at the purchase

price. This approach can improve the PV consumption rate and

result in PCC power for negative values from 8:00 to 16:00. In the

entire dispatching process with an uncertainty budget of 99%, the

ESS benefit is 649.108 yuan, which appropriately reduces the total

operation cost.

In the daytime, the voltage of each node connected to the PV

system increases significantly, as shown in Supplementary Figure S3.

Owing to the PV power cut-in at 8:00 and cut-out at 16:00, all

five node voltages exhibited considerable fluctuations.

Additionally, more PVs with larger capacities were

connected to Line I, resulting in a higher overall node

voltage than that of Line III.

5 Conclusion

In this study, a robust dispatching model for an ADN was

proposed, which considers PV-output spatial correlation and

uncertainty. A dynamic spatial correlation model was

proposed to characterize the time-varying characteristics

of PV output spatial correlation. Based on this, a time-

varying ellipsoidal uncertain set was constructed and

applied to the ADN dispatching model, which improved

the robustness of PV-output model. Case studies on a

rural distribution network in China demonstrated the

validity and rationality of the proposed methods. The

results indicated that:

(1) The DCC derived using the DCC-GARCH model correctly

characterized the spatial correlation of PV output and

reflected the time-varying properties of the spatial

correlation.

(2) The value of DCC is related to the weather conditions and

temperature difference in the area where the PV is located:

When the temperature difference swings more

consistently, the DCC changes more smoothly; When

the weather is favorable, the DCC is greater. When the

temperature difference varies dramatically, which is

generally accompanied by severe weather, the DCC also

changes.

(3) The time-varying ellipsoidal uncertainty set constructed

using the DCC can be well applied to the optimal

Frontiers in Energy Research frontiersin.org15

Ma et al. 10.3389/fenrg.2022.1012581

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.1012581


dispatching model of ADN. Considering the time-varying

characteristics of the spatial correlation, it is advantageous to

build a complete PV output model and optimize the

dispatching results.
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Nomenclature

A. Sets

BNode set of all nodes

T set of dispatching time

BOLTC set of OLTC nodes

BESS set of ESS nodes

BCB set of CB nodes

BSVG set of SVG nodes

BPV set of PV nodes

B. Parameters

Sij,max maximum capacity of branch ij

PEsschar
i ,PEsschar

i maximum and minimum of charge power of ith

ESS at time t

PEssdis
i ,PEssdis

i maximum and minimum of discharge power of ith

ESS at time t

SOCi,0, SOCi,set, SOCi,end the initial value, the set initial value,

and the end value of SOC during the dispatch cycle

SOCi,SOCi maximum and minimum state of charge at node i

QCB,stepi
i compensation capacity of OLTC per grade

YCB
i maximum capacitor number connected to the grid

PPV
i,t maximum active power of ith PV at time t

SPVi maximum capacity of ith PV

C. Variables

PLoad
i,t Actual active power demand on the load side

PCL
i,t Demand-side response power at node i at time t

Pij,t ,Qij,t Active power and reactive power of branch ij at time t

ui,t Node voltage at node i at time t

Pi,t ,Qi,t Injected active and reactive power at node i at time t.

PEssdis
i,t , PEsschar

i,t ESS discharging and charging power at node i at

time t

QCB
i,t QSVG

i,t Reactive power of CB and SVG at node i at time t

QEss
i,t Reactive power of ESS inverter at node i at time t

uchari,t udisi,t Binary status of charging or discharging of ith ESS at

time t

SOCi,t State of charge at node i at time t

yCBi,t The number of capacitor groups in operation, which is

integer
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