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Integrated energy systems (IESs) are developing rapidly as a supporting

technology for achieving carbon reduction targets. Accurate IES predictions

can facilitate better scheduling strategies. Recently, a newly developed

unsupervised machine learning tool, known as Generative Adversarial

Networks (GAN), has been used to predict renewable energy outputs and

various types of loads for its advantage in that no prior assumptions about

data distribution are required. However, the structure of the traditional GAN

leads to the problem of uncontrollable generations, which can be improved in

deep convolutional GAN (DCGAN). We propose a two-step prediction approach

that takes DCGAN to achieve higher accuracy generation results and uses a

K-means clustering algorithm to achieve scenario reduction. In terms of

scheduling strategies, common two-stage scheduling is generally day-ahead

and intraday stages, with rolling scheduling used for the intraday stage. To

account for the impacts on the prediction accuracy of scheduling results,

Conditional Value at Risk (CVaR) is added to the day-ahead stage. The intra-

day prediction process has also been improved to ensure that the inputs for each

prediction domain are updated in real-time. The simulations on a typical IES show

that the proposed two-step scenario prediction approach can better describe the

load-side demands and renewable energy outputs with significantly reduced

computational complexity and that the proposed two-stage scheduling strategy

can improve the accuracy and economy of the IES scheduling results.
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1 Introduction

The IES is an important way of improving energy efficiency

through the integrated planning and coordinated operation of

multi-energy systems (Wu et al., 2016). Optimal scheduling of

IES is a prerequisite for achieving a balance between supply and

demand and efficient use of energy in IES with multi-energy

coupling characteristics (Xue, 2015; Sun et al., 2018). While the

uncertainty is high for multiple sources and loads in IES

(Shabanpour-Haghighi and Ali Reza, 2016). Considering this,

Accurate predictions can help decision makers to provide more

economical scheduling strategies (Patel, 2005; Holttinen et al.,

2007; Wu et al., 2012; Hu and Li, 2019), and they can also achieve

more consumption of renewable energy (Yang et al., 2022).

Existing scenario generation methods are mainly model-

driven and data-driven. The former contains many classic

methods. A. Shamshad et al. (2005) used first and second-

order Markov chains for wind speed scenario generation. Wu

et al. (2007) used Monte Carlo methods to construct scenario

trees for generation units and load prediction. The time series

method is also a widely used technique for scenario generations.

Morales et al. (2010) used the autoregressive moving average

(ARMA) model to generate spatio-temporal scenarios with a

given generation profile by assuming a linear correlation of the

wind samples. Díaz et al. (2016) studied ARIMA models in state

space (SS) and then extended the SS models to include correlated

wind speeds at different locations. The method was enhanced by

using an artificial neural network with a normal distribution

approximation to capture non-linear dependencies and create

representative scenarios (Vagropoulos et al., 2016). Although

easy to implement, with simple statistical assumptions, model-

driven methods are prone to over-fitting. And the above methods

use historical data to build probability models that follow

particular distributions and combine them with sampling

methods to obtain the generated scenarios. This may limit the

variety of scenarios generated and is not compatible with the

actual complex application environment.

In recent years, data-driven methods have developed rapidly.

They mainly utilize deep learning algorithms, and the

development of artificial intelligence techniques allows data-

driven scenario generation methods to describe the

uncertainties of energy sources and loads more realistically

(Chen Q et al., 2019; Cheng et al., 2021; Guo L. N et al.,

2021). A radial basis function neural network algorithm was

combined with a particle swarm optimisation approach to

generate scenes using numerical weather forecasts as input

(Sideratos and Hatziargyriou, 2012). Liao et al. (2022)

redesigned the structure and parameters of the original pixel

convolutional neural network and obtained more accurate

prediction results. Li et al. (2022) combined back propagation

neural networks with an improved particle swarm algorithm to

develop a prediction method for electricity consumption.

Compared to model-driven methods, data-driven methods can

better characterize integrated energy systems. However, the

performance of these methods relies on a careful selection of

input features and is therefore not sufficiently flexible and reliable

in practice (Cheng and Yu, 2019).

Another data-driven method is based on generative

adversarial networks (GAN) (Goodfellow et al., 2014), which

is known as a set of innovative generative models for

reproducible scenario generation and has received a lot of

attention in recent years. GAN was proposed in 2014

(Goodfellow et al., 2014). It was first used for image

recognition but has recently also shown great results in the

prediction of sources and loads for integrated energy systems

(Lei et al., 2021; Hu et al., 2021). Chen Y et al. (2019) used GAN

to generate scenarios of real wind and photovoltaic (PV) power

distributions without complex statistical assumptions and

sampling. Dong et al. (2022) used GAN to generate renewable

energy scenarios with high accuracy. Chen Y et al. (2018)

proposed a Bayesian GAN to successfully capture different

patterns of historical data. Compared with other data-driven

methods, these GAN-based ones can provide a more accurate

generation process by reflecting the dynamic characteristics of

energy resources with a full diversity of patterns (Dong et al.,

2022).

Although a GAN-based scenario generation method can be

applied to different situations easily, the problems of training

difficulties, pattern collapse, and uncontrollable generated

scenarios still arise in applications (Radford et al., 2016).

Deep convolutional GAN (DCGAN) introduces

convolutional generative networks, which has greatly

improved network stability, convergence speed, and

generated data quality (Radford et al., 2016; Wang and Liu,

2020).

On the other hand, the plenty of scenarios generated by the

above methods become redundant initial inputs, significantly

increasing the solution complexity and computational burden (Li

et al., 2016; Hu et al., 2019). To reduce the number of scenarios

generated, Lin et al. (2022) developed a multi-scenario stochastic

programming model. Heitsch and Römisch, 2003 proposed

simultaneous backward approximation and fast forward

selection based on probabilistic distances. However, the time

complexity of such methods is at least proportional to the

problem size, and the computational cost is enormous when

the number of original scenarios is large. When processing

sources and loads data of IES, Clustering and scenario

reduction are very similar in basic ideas (Kwedlo and

Łubowicz, 2021). The K-means clustering algorithm is an

unsupervised learning algorithm and its computational

complexity is not as sensitive to the size of the original

scenario as traditional scenario reduction methods (Wang

et al., 2018; Niu et al., 2021). Li et al. (2021) performed a

clustering analysis of PV output based on this method, which

effectively achieved scene reduction and improved prediction

accuracy.
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Meanwhile, the two-stage scheduling (day-ahead and

intraday scheduling) approach is commonly used in cases

such as electricity markets and optimal scheduling (Handschin

and Slomski, 1990; Guo S et al., 2021; Cheng L. F et al., 2022).

Zhou et al. (2016) investigated the scheduling method for

aggregators to arbitrage in the intraday electricity market by

using trading data from the day-ahead electricity market. Li and

Zhang, 2021 used a multi-time scale model for day-ahead and

intraday prediction of PV outputs. Cheng L. F et al. (2022)

proposed a new dynamic robust optimisation scheduling strategy

for coordinated microgrid operations, including both day-ahead

scheduling scales and intraday scheduling scales. Yang et al.

(2022) proposed a hierarchical rolling scheduling model.

All of the above studies have verified the feasibility and

economy of two-stage scheduling through specific examples,

but these scenarios are focused on power systems and rarely

appear in IES. The uncertainties of sources and loads are even

greater in IES, and even if the prediction accuracy can be

improved, for example through the two-step prediction

approach proposed in this paper, the design of the objective

function requires further thought. Considering this, we introduce

the Conditional Value-at-Risk (CVaR) (Asensio and Contreras,

2016; Cheng Z. P et al., 2022) into the objective function of the

day-ahead stage to quantify the risk associated with uncertainties.

To reduce the errors between the generated scenarios and the

actual scenarios and to ensure the economy and reliability of the

IES scheduling plan, we proposed a two-stage optimisation

strategy combined with the traditional ones. The strategy

takes into account the risks at the day-ahead stage,

dynamically adjusts the intraday state based on the day-ahead

scenario information and uses a scheduling plan to improve the

accuracy of the optimisation results and further match the actual

scenario requirements.

The main contributions are as follows:

•A two-step prediction approach that takes DCGAN to

achieve higher accuracy in generation results and that uses

a K-means clustering algorithm to for scenario reduction is

proposed. DCGAN can describe the uncertainties of sources

and loads through unsupervised learning more realistically. It

also solves the problems of training difficulties and pattern

collapse that occur in GAN in data training. The K-means

clustering algorithm effectively overcomes the shortcomings

of some reduction methods that are sensitive to the size of the

original scenario and better achieves a trade-off between

computation time and solution accuracy. The scenario

prediction approach proposed in this paper combines

scenario generation and scenario reduction and achieves

accurate prediction results.

•A two-stage IES scheduling strategy that considers multiple

energy flows on day-ahead and intraday is developed. In the

day-ahead scheduling stage, the CVaR was introduced for risk

consideration. The intraday stage enables intraday rolling

optimisation based on the results of day-ahead scheduling.

This approach effectively reduces errors in the prediction of

IES sources and loads due to the single day-ahead scheduling,

improving the accuracy of IES scheduling results while

reducing system scheduling costs.

2 Two-step scenario prediction
approach

Scenario prediction provides the data basis for scenario

reduction, with the objective function is the optimisation of

the generated data. The proposed scenario prediction

approach first develops a step of DCGAN-based scenario

generation, followed by a step of a K-means clustering

algorithm-based scenario reduction step. Scenario reduction

optimises the scenario generation with the highest scenario

retention as the optimisation goal. The prediction method

ensures that the reduced scenario set learns sufficiently about

the implicit distribution of the historical real data set under the

interaction of multiple non-linear factors, while significantly

reducing the computational cost. The overall flow of the

scenario prediction is shown in Figure 1.

2.1 Step 1: Scenario generation by deep
convolutional GAN

The scenario generation stage feeds the historical dataset

into DCGAN for the generation of scenarios. DCGAN is

improved from GAN. GAN, which was proposed in

2014 and was initially used in the field of image recognition,

is inspired by the zero-sum game in game theory. The two sides

of the game are the generator (G) and the discriminator (D)

(Lin et al., 2022). The generator simulates the generation of new

data samples by learning the underlying distribution of real

data. The discriminator is used to determine as accurately as

possible whether the input data is real data or fake data

generated by the generator. The game is played until G and

D reach a “Nash equilibrium”. However, the discriminator is

not able to determine whether the generator is generating the

specified data as the generator’s generation content cannot be

controlled, making it prone to problems such as pattern

collapse and uncontrollable generation process during

training (Dong et al., 2022). To address this problem,

DCGAN introduces convolutional neural networks in the

generators and discriminators of the GAN to replace the

multi-layer perceptron in the GAN. This improves the

effectiveness of the generator in generating data and the

ability of the discriminator in discriminating data, and

DCGAN can learn the mapping relationships between noise

distributions that satisfy the conditions and the real data

training set (Iliyasu and Deng, 2020).
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In the proposed DCGAN, we use a two-part alternating

optimisation procedure in its training process, which can be

understood as a maximum-minimum optimisation problem. The

first part maximises V(D,G) from the discriminator side and the

second part maximises V(D,G) from the generator side. The

objective function for DCGAN training is:

min Gmax D V(D,G) � Ex~PX[logD(x)] + Ez~PZ[log(1
−D(G(z)))] (1)

whereE represents the expected value;D(G(z)) is the probability that
the generated dataG(z) will be judged true in D;D(x) represents the
probability that the real datax will be judged true inD; the distribution

of the noisy dataz isz ~ PZ;PX is the real distribution of the electrical,

gas and thermal load and PV output data x.

The scenario generation network is trained by gaming the

generators and discriminators of DCGAN. The network learns the

implicit patterns in historical datasets and generates generative

datasets judged to be “true,” which can be used to simulate

electricity, gas and heat loads and PV outputs. This provides a rich

and reliable collection of data for subsequent IES scheduling plans.

2.2 Step 2: Scenario reduction by K-means
clustering

The computation of DCGAN-generated scenarios increases

exponentially with the size of the scenario, so scenario reduction

is performed at this stage to reduce the computation of

subsequent scheduling. The K-means clustering method

continuously computes the shortest distance from each sample

point to the centre of mass by iteration, updating the position of

the centre of mass so that the loss function corresponding to the

clustering result is minimised. The loss function is defined as the

sum of squares of the errors from the sample points to the centre

of mass SSE, representing the superiority or inferiority of the

clustering effect.

SSE � ∑k
q�1

∑
p∈Cq

∣∣∣∣p −mq

∣∣∣∣2 (2)

where Cq is the qth cluster, p is the sample point in Cq,mq is the

centre of mass of Cq (the mean of all samples in Cq), k is the

number of cluster centres.

FIGURE 1
The overall flow of the two-step containing scenario generation and reduction.
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The ElbowMethod, which is easy to implement and effective,

is adopted to confirm the number of K-means clustering centres

(Chen Q et al., 2019). All scenarios are classified into k categories.

The attributes and characteristics of the reduced data scenarios

are significantly different. The probability of each scenario after

reduction is the number of scenarios in the category divided by

the total number of scenarios.

3 Two-stage scheduling objective

Typical components in an IES are shown in Figure 2. As can

be seen, there are multiple sources and multiple loads in the IES,

which is more complex than the power systems. The source side

includes electricity and natural gas, and the load side includes

electrical, gas and thermal loads. New energy generation and

energy storage are also considered.

Figure 3 demonstrates the common two-stage scheduling

structure. Day-ahead and intraday stages are considered for

scheduling IES resources and economic scheduling models are

developed. The day-ahead plan is based on a 24-h scheduling

cycle with a 1-h time scale. Considering that the uncertainties of

scenario prediction can have an impact on the economy of IES

scheduling, the day-ahead plan combines CVaR to optimise the

economics of the next day’s integrated energy system to

determine the day-ahead prediction results. However, due to

prediction errors, it is often difficult to meet the actual energy

demand of customers before the day plan. In the intraday stage,

the intraday rolling optimisation method based on DCGAN

predictions is used to correct the day-ahead plan for

FIGURE 2
The structure of IES.

FIGURE 3
Two-stage optimisation process.
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equipment outputs. The prediction horizon is Nh, and the

control horizon is nh (i.e., in a single prediction, the

equipment output schedule for the next N hours is optimised

by predicting the loads and outputs for the nextN hours, but only

the outgoing arrangements for n momentary points will be

implemented). The day-ahead stage is used as the initial input

to the intraday stage, and the intraday stage corrects the day-

ahead stage. The two-stage optimisation process for the day-

ahead and intraday stages is shown in Figure 3.

3.1 Scheduling objective in the day-ahead
stage

To achieve better scheduling of the integrated energy system,

a day-ahead optimisation model is constructed with the sum of

energy purchase cost, operation cost and renewable energy

consumption cost as the economic optimisation objective.

minf � ∑T
t�1
⎛⎝ceP

t
e + cgV

t
g + chP

t
h + caP

t
a +∑

i∈I
ciP

t
i
⎞⎠ (3)

where, ce, cg and ch are the cost factors for electricity, gas and heat

respectively; Pt
e and Pt

h are the amount of energy purchased by

the system from the superior electricity and heat networks

respectively at time t; Vt
g is the amount of gas purchased by

the system from the superior gas network at time t; ca is the

penalty factor for light abandonment; Pt
a is the amount of light

abandoned by the system at time t; I is the set of energy

conversion equipment; ci is the operating cost factor for

equipment i; Pt
i is the output of the equipment at time t.

CVaR is often introduced into system models for risk

management when dealing with optimisation problems that take

uncertainties into account, such as in power systems. The CVaR

quantifies the worst-case tail loss, i.e., the expected loss over the value

at risk (Fu et al., 2020). Due to the large errors in day-ahead

scheduling, CVaR is introduced in this paper to quantify the risk

posed to IES scheduling in the presence of the uncertainties of

sources and loads. The objective function is as follows.

minfAH � λE(f) + (1 − λ)CVaRα(f) (4)

where, E(f) is the desired operating cost; CVaRα is CVaR for a

confidence level of α ; λ is the trade-off between the desired operating

cost and the risk of operating cost fluctuations; f is the objective

function of the multi-scenario conventional scheduling model.

Eq. 4 can be transformed into:

minfAH � λ · ∑
b∈Ωb

πb
⎡⎢⎢⎣∑24
t�1
⎛⎝ceP

t
e + cgV

t
g + chP

t
h + caP

t
a +∑

i∈I
ciP

t
i
⎞⎠⎤⎥⎥⎦

+ (1 − λ) ·⎛⎝ζ + 1
α

∑
b∈Ωb

πbzb⎞⎠
(5)

s.t. zb ≤∑24
t�1
⎛⎝ceP

t
e + cgV

t
g + chP

t
h + caP

t
a +∑

i∈I
ciP

t
i
⎞⎠ − ζ , zb ≤ 0

(6)
where, Ωb is the set of previously reserved scenarios; bmeans the

bth scenario in the set of previously reserved scenarios; πb is the

probability of the bth scenario occurring; ζ and zb are

intermediate parameters with no clear physical meaning.

According to the components considered in Figure 2, the

constraints for the day-ahead stage include:

Pt
GT,e + Pt

e − Pt
HP,e − Pt

EB,e − Lt
e � 0 (7)

Pt
g − Pt

GT,g − Pt
GB,g − Lt

g � 0 (8)
σhηHE(Pt

h + Pt
HRSG,h + Pt

HP,h + Pt
EB,h + Pt

GB,h) − Lt
h � 0 (9)

0≤Pt
BAT,in ≤Pmax

BAT, in 0≤Pt
BAT,out ≤PBAT,out

max (10)
Wmin

BAT ≤Wt
BAT ≤WBAT

max (11)
Pi

min ≤Pt
i ≤Pi

max,∀i ∈ I (12)
Pdown
i,r ≤Pt+1

i − Pt
i ≤Pup

i,r ,∀i ∈ I (13)

where, Pt
GT,e is the power generated by the gas turbine at time t;Pt

HP,e

is the input electric power of the heat pump at time t;Pt
EB,e is the input

electric power of the electric boiler at time t; Lte is the electric load of

the consumer at time t;Pt
GT,g is the gas consumption of the gas turbine

at time t; Pt
GB,g is the gas consumption of the gas boiler at time t; Ltg is

the gas load of the consumer at time t; σh is the heat distribution

coefficient; ηHE is the efficiency of the heat exchange equipment;

Pt
HRSG,h is the heat power generated by the waste heat boiler at time t;

Pt
HP,h is the output heat power of the heat pump at time t;Pt

EB,h is the

output heat power of the electric boiler at time t; Pt
GB,h is the output

thermal power of the gas boiler at time t; Lth is the thermal load of the

user at time t; Pt
BAT,inand Pt

BAT,out are the charging and discharging

power of the storage device respectively; PBAT,in
max and PBAT,out

max

are themaximumcharging and discharging power respectively;Wt
BAT

is the stored electrical energy at time t; WBAT
min and WBAT

max are

the minimum and maximum stored electrical energy respectively;

Pi
min and Pi

max are the minimum and maximum output of device i

respectively; Pdown
i,r and Pup

i,r are the downward and upward climbing

power of device i respectively.

3.2 Scheduling objective in the intraday
stage

The expression for the integrated energy system intraday

optimisation objective function is as follows.

minfIN � ∑t0+1
t�t0

⎛⎝ceP
t
e + cgV

t
g + chP

t
h + caP

t
a +∑

i∈I
ciP

t
i
⎞⎠ (14)

The intraday stage also uses the DCGANmethod for scenario

generation. The difference is that the intraday scenarios are based

on the previous moment’s data as input, and a large collection of
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historical data is used as a learning sample to generate the next set

of scenarios every other moment, moving backward in time

window in turn until a set of intraday scenarios is generated. The

intraday scenario expressions are as follows.

⎧⎨⎩ xs,t0+kΔt � f(xp,t0+kΔt, us,t0+kΔt)∑ πs,t0+kΔt � 1 ∀k � 1, 2, . . . , n − 1
(15)

where, s is the total number of scenarios at t0 + kΔt time, xs,t0+kΔt
is the scenario of sources and loads at t0 + kΔt time, xp,t0+kΔt is
the scenario of sources and loads at the previous time, us,t0+kΔt is
the historical scenario of sources and loads at t0 + kΔt time;

πs,t0+kΔt is the probability of the scenario at t0 + kΔt time.

The components in the IES remain unchanged, so the

constraint in Eq. 13 remains the same, i.e., Eqs 7–13.

4 Case study

4.1 Simulation setup

The data of electricity, gas and thermal loads and PV

output are chosen (Tian et al., 2019; Chen Y et al., 2018; Chen

B. Y et al., 2018). The number of scenarios per arithmetic case

is 2,880, and the data is 11,520. The hardware platform used

for DCGAN training is an AMD-Ryzen5-5600H CPU and an

NVIDIA-GeForce-RTX3050Ti GPU. The DCGANmodel uses

Tensorflow 2.4.0 as the framework for deep learning. To

reduce the time required for scenario generation, the GPU

is called upon for efficient parallel computing to increase the

efficiency of model training. The scenario generation part is

trained by Pycharm calling the virtual environment created in

Anaconda, and the scenario reduction part is implemented by

Matlab. The prediction domain in intraday rolling

optimisation is taken as 4 h and the control domain as 1 h.

The confidence level α is 0.9 and the risk appetite weighting

factor λ is 0.4. The scheduling model was solved via a CPLEX

solver.

In terms of DCGAN structure parameters, both D and G

include three convolutional layers, with a step size of 1 and

7 convolutional kernels. To accelerate convergence and

mitigate overfitting, a batch normalisation layer with a

momentum of 0.8 is added between the convolution layers.

The number of G convolutional layer filters is 80, 60, and 40 in

that order, and the number of D convolutional layer filters is

120, 140, and 160 in that order. The activation function for the

three convolutional layers of G is ReLU, the activation

function for the three convolutional layers of D is

LeakReLU, and Tanh is used as the activation function in

the final layer. The specific parameter settings of DCGAN are

shown in Table 1.

The main economic parameters and equipment parameters

involved in the system are shown in Tables 2, 3 respectively.

4.2 Analysis of scenario prediction results

4.2.1 Analysis of prediction results for the day-
ahead stage

As shown in Figures 4, 5, the scenarios generated by GAN

and DCGAN respectively are retained by K-means clustering.

The top part of each subfigure shows the generations, and the

bottom part shows the reductions. The number of retained

scenarios was determined by the elbow method. The core

metric of the elbow method is the sum of the squared errors

(SSE), determined by Eq. 2. The elbow method was used on the

data generated by GAN and DCGAN, respectively, and the

resulting number of cluster centres was both 3. The original

120 days of initial historical data is reduced to three scenarios

with probability, and each scenario has significantly different

attributes and features after the reduction. The probability values

for each of the reduced retained scenarios are shown in Table 4.

The mean absolute percentage error (MAPE) is chosen as the

basis for comparison of the generated and retained scenarios with

the actual data. The comparisons of the GAN-generated and

DCGAN-generated scenarios with the real scenarios are shown

in Figures 6, 7 respectively. As shown in Table 5, Compared to

GAN, DCGAN is a more stable method for generating scenarios

of sources and loads and can capture a range of iconic features of

real scenarios, such as peaks and valleys, distributions, etc., more

accurately. MAPEA is calculated from Eq. 15.

MAPEA � ∑k
i�1
(pi ·MAPEi) (16)

Where, pi is the probability of occurrence of the corresponding

scenario; MAPEi is the MAPE of the corresponding scenario.

4.2.2 Analysis of prediction results for the
intraday stage

Intraday predictions are based on day-ahead predictions. In

the two-stage prediction, the first stage involves predicting the

input day-ahead scenario to assess uncertainties, and the second

stage uses DCGAN to continuously predict shorter intervals of

time-based on the day-ahead scenario, with the input of a

continuously updated set of day-ahead scenarios for the

rolling predictions. The comparisons of the day-ahead and

intraday stages’ retained scenarios with the actual scenarios

are shown in Figure 8.

In contrast to the day-ahead prediction, which has a 24 h

prediction domain, the intraday prediction has a 4 h

prediction domain and a 1 h control domain. The intraday

prediction uses the prediction domain data as the training set

and the control domain results are the intraday prediction

results for that hour, rolling the prediction until the 24 h

prediction is completed. The difference in time interval Δt
leads to a difference in the data input to DCGAN between the

day-ahead and intraday stages, which affects the scenario
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prediction results. Prediction errors for intraday and day-

ahead stage scenario generation using DCGAN are shown in

Table 6. It can be seen that all three scenarios correspond to a

different degree of decrease in MAPE. The MAPEA is 3.87%,

which is further reduced compared to the MAPEA in the day-

ahead stage of 5.08%.

TABLE 1 Structural parameters of D and G.

Network layer Structure and parameter size Explanation of terms

Layer
number

Generator Discriminator

Layer1,
2, 3

Convolution layer (filter,
kernel_size, step size)

1 8, (3,3), 1 8, (3,3), 1 Convolution
layer

For extracting image features

2 16, (3,3), 1 16, (3,3), 1 Kernel_size Determining the field of view for
convolution

3 8, (3,3), 1 32, (3,3), 1 Activation
function

For non-linear integration

Batch normalisation Momentum = 0.8 Step size Defining the step length of the kernel
when traversing

Activation function LeakyReLU Alpha = 0.2 Batch
normalisation

Making the distribution of individual
features of the input data similar

Dropout Rate = 0.1 Momentum For accelerated and consistent learning

Layer4 Dense Units = 1 LeakyReLU,
Tanh

Activation functions

Activation function 4 Tanh — Units Output dimension of this layer

TABLE 2 System economic parameters.

Economic parameters Price

The low calorific value of natural gas 35.5 MJ/Nm3

Natural gas prices 3.45 yuan/m3

Electricity price 0.32 yuan/kWh from 00:00 to 7:00

1.07 yuan/kWh from 09:00 to 11:00 and from 17:00 to 22:00

0.65 yuan/kWh for other time

Household PV O and M costs 0.025 yuan/kWh

Cost of abandoned light 7 yuan/kWh

TABLE 3 System equipment parameters.

Equipment Rated output
(kW)

Minimum load
factor

Power generation
efficiency

Heat generation
efficiency or
COP

Operation and
maintenance costs

CHP unit 250 0.2 24.3% 0.8 0.06

Gas boiler 100 0.1 — 0.96 0.02

Ground source heat pump 200 0.1 — 4.5 0.026

Electric boiler 72 0.2 — 0.98 0.013

Heat exchanger — — — 0.9 0.2
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4.3 Analysis of the results of the
scheduling operation

4.3.1 Analysis of the results of the day-ahead
scheduling stage

In the day-ahead stage, DCGAN and GAN are used for

scenario generation respectively, and the retained sources and

FIGURE 4
GAN-generated scenarios for: (A) electricity loads; (B) gas loads; (C) heat loads; (D) PV outputs; reduced scenarios by K-means clustering in the
corresponding GAN-generated scenarios for: (E) electricity loads; (F) gas loads; (G) heat loads; (H) PV outputs.

FIGURE 5
DCGAN-generated scenarios for: (A) electricity loads; (B) gas loads; (C) heat loads; (D) PV outputs; reduced scenarios by K-means clustering in
the corresponding DCGAN-generated scenarios for: (E) electricity loads; (F) gas loads; (G) heat loads; (H) PV outputs.

TABLE 4 Probability of occurrence of retained scenarios.

Method Scenario1 (%) Scenario2 (%) Scenario3 (%)

GAN 35.00 36.67 28.33

DCGAN 25.83 46.47 27.50
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FIGURE 6
Comparisons of the scenarios generated by GAN in the day-ahead stage with the actual scenarios.

FIGURE 7
Comparisons of the scenarios generated by DCGAN in the day-ahead stage with the actual scenarios.

TABLE 5 Prediction errors for scenario generations in the day-ahead
stage using DCGAN, GAN.

Method Scenario MAPE (%) MAPEA (%)

DCGAN 1 6.10 5.08

2 4.43

3 5.25

GAN 1 10.11 9.39

2 9.65

3 8.16

FIGURE 8
Comparisons of the day-ahead and intraday stages’ retained scenario with the actual scenario.

TABLE 6 Prediction errors for intraday and day-ahead stages’ scenario
generation using DCGAN.

Method Scenario MAPE (%) MAPEA (%)

Intraday prediction 1 5.04 3.87

2 3.33

3 3.70

Day-ahead prediction 1 6.10 5.08

2 4.43

3 5.25
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FIGURE 9
Comparisons of day-ahead scheduling results based on DCGAN scenario generation and GAN scenario generation:(A) electricity; (B) natural
gas; (C) heat power; (D) cost.
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loads data are weighted by the corresponding probabilities to

obtain the scenarios involved in the actual scheduling, and the

comparisons of the scheduling results are shown in Figure 9. As

can be seen in Figure 9, PV equipment operates between 8:00 and

15:00, taking full advantages of the low O&M costs of PV

equipment and increasing PV consumption. Electric boilers

are put into use in large numbers at valley time tariffs to meet

the larger heat loads in winter. 14:00-23:00 is the peak period for

electricity consumption. Considering the peak electric charges

and heat load demand, CHP works a lot during this period to

meet the larger demand for electric and heat loads at a lower cost.

During the day-ahead optimisation stage, the joint scheduling of

the power systems, natural gas systems and thermal systems

effectively relieves the pressure on the supply-demand balance

and increase PV consumption. The differences in predicted data

lead to different IES scheduling results. When scheduling based

on DCGAN and GAN for scenario prediction respectively, the

distribution and peaks of each energy flow are the same, but there

are more differences in the scheduling results (especially for

electrical energy). The difference between the actual value and

the scenario generated by DCGAN is 5.08%, which is less than

the error of 8.26% between the scenario generated by GAN and

the actual value. Therefore, the scheduling results based on

DCGAN for scenario generation are executed in the day-

ahead scheduling stage.

For CVaR, Figure 10 explores the impact of a change in

confidence level α on the total cost results of day-ahead

scheduling.

Figure 10 shows the impact of different confidence levels on

the total cost of ownership. Five scenarios are compared with

settings α = 0.8, 0.85, 0.9, 0.95 and 0.99 (with a risk factor of λ =

0.4). As the confidence level increases, the total cost of scheduling

also increases, reflecting the increased level of risk aversion on the

part of the decision-maker. Smaller values indicate that the

decision-maker has a lower requirement for the safety and

reliability of the system and prefers a scheduling approach

that improves the economic efficiency of the system

operation. The risk factor λ is set to 1, i.e., the CVaR is not

considered during the day-ahead scheduling stage. The

comparison of the corresponding scheduling costs at this

point with the scheduling costs for the scenarios set out

(0.9 for α and 0.4 for λ) is shown in Table 7.

4.3.2 Analysis of the results of the intraday
scheduling stage

In the intraday scheduling stage, 01:00-05:00 of the day is

taken as the first Prediction Domain, and the first period, i.e., 01:

00-02:00, is selected as the Control Domain, and the data input

from 01:00-05:00 is used to develop the scheduling plan in the

Prediction Domain, obtain the scheduling plan for that period,

and execute the scheduling decisions in the Control Domain

only. Scroll to the next period 02:00-06:00, select 02:00-03:00 as

the optimisation result for that period, and so on until the

operation optimisation is completed, and obtain the

scheduling decision for the whole period of that day. The

scheduling results for electricity, gas and heat for the intraday

stage of the IES are shown in Figure 11.

The multi-energy flow scheduling in both day-ahead

planning and intraday scheduling is on an hourly time scale,

but the intraday prediction is more accurate than the day-ahead

prediction, so the day-ahead scheduling instructions have been

amended. The different scheduling strategies of the decision-

makers result in different scheduling costs. The total cost of the

two-stage rolling scheduling is 20,756.24yuan, which is 8.66%

less than the cost of the day-ahead scheduling, making the two-

stage scheduling more economical. Day-ahead scheduling input

data is predicted on a 24-h basis, and due to its greater prediction

error, the sources and loads uncertainties of the integrated energy

system are greater and the predicted day-ahead scenario set error

is greater. Decision-makers tend to make conservative scheduling

decisions when considering large uncertainties, thus requiring

consideration of conditional value-at-risk and resulting in higher

scheduling costs. The time interval between the two stages of the

scheduling update is 1 h, which produces a much smaller error.

The two-stage rolling optimisation can be used to smooth out the

uncertainties of sources and loads and give a more realistic

decision solution so that the intraday rolling optimisation

results in an improved scheduling economy.

5 Conclusion

In this paper, a DCGAN-based scenario prediction approach is

used for multiple sources and loads of IES. At the same time, a two-

stage scheduling model based on different objective functions to

obtain better scheduling results from both day-ahead and intraday

stages is also developed, which improves the economy while

ensuring accuracy. The conclusions are as follows.

FIGURE 10
Relationship between total cost and confidence level α.
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TABLE 7 Comparison of day-ahead scheduling costs considering CVaR and not considering CVaR.

Scenario Not considering CVaR (λ � 0) Considering CVaR (λ � 0.4, α � 0.9)

Cost/yuan 21,153.34 22,553.41

FIGURE 11
(Continued).
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(1) A two-step prediction approach is proposed in the scenario

prediction process. We generate data of sources and loads

based on DCGAN and use a K-means clustering algorithm

for scenario reduction. The proposed scenario prediction

approach efficiently and accurately characterises the load-

side demands and renewable energy outputs of the IES,

significantly reducing the computational complexity and

providing reliable support for energy scheduling.

(2) A two-stage scheduling strategy is developed by

considering scenario prediction and scheduling update

time scales. While further reducing prediction errors, the

scheduling results considering CVaR are obtained for the

intraday stage and the ones for the day-ahead stage

improve the economy of IES.

This paper focuses on the problem of optimising IES

scheduling at different time scales in the presence of

uncertainties of sources and loads. Future work will explore

the relationship between the relevant parameters of CVaR and

DCGAN parameters to further achieve the trade-off between risk

and prediction accuracy. The prediction and scheduling results of

the sources and loads of IES in different prediction and control

domains will also be considered.
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Nomenclature

Variables

G generator

D discriminator

V(D,G) objective function for DCGAN training

E expected value

D(G(z)) probability that the generated data G(z) will be judged
true in D

D(x) probability that the real data x will be judged true in D

z ~ PZ distribution of the noisy data z

PX real distribution of the electrical, gas and thermal load and PV

output data x

Cq the qth cluster

p the sample point in Cq

mq the centre of mass of Cq

k is the number of cluster centres

ce, cg, ch cost factors for electricity, gas and heat respectively

Pt
e, P

t
h amount of energy purchased by the system from the

superior electricity and heat networks respectively at time t

Vt
g amount of gas purchased by the system from the superior gas

network at time t

ca penalty factor for light abandonment

Pt
a amount of light abandoned by the system at time t I set of

energy conversion equipment

ci operating cost factor for equipment i

Pt
i output of the equipment at time t

E(f) desired operating cost

CVaRα CVaR for a confidence level of α

λ trade-off between the desired operating cost and the risk of

operating cost fluctuations

f objective function of the multi-scenario conventional

scheduling model

Ωb set of previous reserved scenarios b the bth scenario in the set

of previously reserved scenarios

πb probability of the bth scenario occurring

ζ , zb intermediate parameters with no clear physical meaning

Pt
GT,e power generated by the gas turbine at time t

Pt
HP,e input electric power of the heat pump at time t

Pt
EB,e input electric power of the electric boiler at time t

Lte electric load of the consumer at time t

Pt
GT,g gas consumption of the gas turbine at time t

Pt
GB,g gas consumption of the gas boiler at time t

Ltg gas load of the consumer at time t

σh heat distribution coefficient

ηHE efficiency of the heat exchange equipment

Pt
HRSG,h heat power generated by the waste heat boiler at time t

Pt
HP,h output heat power of the heat pump at time t

Pt
EB,h output heat power of the electric boiler at time t

Pt
GB,h output thermal power of the gas boiler at time t

Lth thermal load of the user at time t

Pt
BAT,in Pt

BAT,out charging and discharging power of the storage

device respectively

PBAT,in
max PBAT,out

max maximum charging and discharging

power respectively

Wt
BAT stored electrical energy at time t

WBAT
min WBAT

max the minimum and maximum stored

electrical energy respectively

Pi
min Pi

max the minimum and maximum output of device i

respectively

Pdown
i,r Pup

i,r the downward and upward climbing power of device i

respectively

s total number of scenarios at t0 + kΔt time

xs,t0+kΔt scenario of sources and loads at t0 + kΔt time

xp,t0+kΔt scenario of sources and loads at the previous time

us,t0+kΔt historical scenario of sources and loads at t0 + kΔt time

πs,t0+kΔt probability of the scenario at t0 + kΔt time

pi probability of occurrence of the corresponding scenario

MAPEi MAPE of the corresponding scenario
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