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With the implementation of China’s “double carbon” strategy, the usage scale of

electric vehicles has grown rapidly. Therefore, how tomaintain the ideal voltage

and energy curve in the distribution network with high penetration of electric

vehicles is a challenging problem. In this paper, the random behaviors of fast

charging, ordinary charging and discharging modes of electric vehicles have

been analyzed and the mathematical formulation of the algorithm has been

presented. Then, the strategy of coordinated charging-discharging stack of

electric vehicles is proposed. The improved particle swarm optimization

algorithm based on mixed real number and binary vector is used to solve

the optimization model. The results of several case studies have also been

presented in this paper to show that optimum capacitor switching and

transformer tap adjustment solutions can be found to minimize the total

operation cost including energy consumption, power quality and reactive

power compensation equipment action cost. The paper demonstrates that

the impact of high-penetration electric vehicles on the energy and voltage

control of the distribution network has been solved. The proposed EV

coordinated stacking method can make electric vehicles charge and

discharge in an orderly queue, and ensure that the line flow does not

exceed the limit. Through the proposed control strategy, the voltage curve

is obviously improved, and the cost of the distribution system with large-scale

EVs can be effectively reduced.
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1 Introduction

In recent years, with the rapid development of electric vehicles (EV), the scale of them

has increased significantly and shows a sustained growth potential in the world. Large-

scale EVs charging and replacing power stations are novel large-scale random loads for

power grids, and their concentrated charging behavior will cause sudden increase of

distribution load, voltage drop, network losses and a series of problems[ (Zhang et al.,

2016), (Ruan et al., 2019)]. Different from the traditional load, EVs are used as energy
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consumer and storage resources to exchange electric power with

grid in both directions (Liu et al., 2014). When power supply is in

shortage, EVs in turn support the stability and reliability of

distribution network[ (Kang et al., 2021)] (Wang et al., 2022). In

addition, there is a trend of increasing inductive load in modern

power grid (Xu et al., 2022), and the improvement of

permeability of EVs will adversely affect the power flow and

quality of distribution networks whether they are in charging or

discharging state (Zhao et al., 2021). This effect is manifested in

the sharp increase of active and reactive power at centralized

charging, which will cause bus voltage to decrease (Su et al., 2017)

and cause line losses to increase. Therefore, in order to improve

voltage distribution and reduce reactive power consumption,

transformer tap adjustments and capacitor switching frequencies

increase[ (Zhang et al., 2022)]- (Zeng et al., 2012). Aiming to

challenges brought by high permeability EVs and their unique

characteristics (Zeng et al., 2012), it is necessary to design a more

reasonable charging and discharging mechanism to improve the

effective utilization rate of reactive power resources, so that the

distribution network can maintain an optimal power flow and

power quality.

EVs have bidirectional energy flow characteristics and

high flexibility, which consume electrical power from

integration points of distribution network by charging or

inject electrical power into them by discharging (Morro-

Mello et al., 2021). In addition, the charging and

discharging behaviors of a large number of EVs have

certain randomness (Chen et al., 2015). Many researchers

have been involved in control strategies for supporting role of

EVs in distribution networks. Melo H (Melo et al., 2018)

pointed out that the bidirectional charging and discharging

technology between EVs and power grid was becoming

commercial application, which made EVs parked for a long

time available for dispatching and requisitioning on the power

grid and realized the function of peak shaving and valley filling

through bidirectional interaction of active power. Aiming at

the challenge brought by the randomness of EV charging to

the operation of distribution network, a forecasting method of

EV charging load interval based on multi-correlation daily

scenario generation was proposed (Huang et al., 2021). Li (Li

et al., 2016) considered the reverse transmission behavior of

EV to power system based on mobile social network, and

proposed a prediction method of EV charging and discharging

behavior under the constraint of time-of-use electricity price.

Liu (Liu et al., 2020) proposed a distributed robust chance

constraint model considering discrete reactive power

compensators, which considered the influence of renewable

energy in active distribution networks. Li (Li et al., 2018) used

particle swarm optimization algorithm to solve the demand

response model of EVs in plug-and-play mode, and improved

the reliability of radial distribution system through V2G

mode, but did not consider the constraint of line power

flow exceeding limit.

Regarding the optimization techniques opted for EV

integration, the literature identifies two types of approaches:

centralized control and decentralized control. A typical

centralized approach is presented in (Cheng et al., 2015),

where all EVs are connected to a centralized control unit. But

the proposed system suffers from two major disadvantages: first,

the system requires performant data acquisition communication

networks, and second, EV needs, as an energy consumer and a

mobility device, are not taken into consideration. Paper

(Cardona et al., 2018) presented a decentralized approach to

EV charging. In addition to the need for a performant

communication network, this approach requires that all EVs

are connected to high-performance charging stations. However,

charging stations that are capable of performing these tasks

uaually cost a lot.

EVs are considered to be one of the important parts of

distribution networks under the development of vehicle-to-

grid technology among a wide variety of distributed network

energy resources. A large number of EVs can be used as flexible

storages or controllable load s to participate in different types of

ancillary services in a distribution network (Vincent et al., 2019).

The load profile of the distribution network is flattened in

(Huang et al., 2020) by utilizing large-scale vehicle-to-grid-

enabled EVs through the charging process of EVs in the

distribution network (Brinkel et al., 2020). A smart charging

strategy is proposed in (Moghaddam et al., 2017) for EV charging

stations to address the issue of finding an optimal charging

station.

To sum up, while EVs serve as mobile, rechargeable and

dischargeable energy storage elements, they provide many

flexible supports to the local grid. But there is no significant

randomness research on driving habits and charging capacity of

large-scale electric vehicles in relevant research at present. In

addition, the interaction between high permeability electric

vehicles and power grid may lead to the voltage drop

exceeding the lower limit at monitoring points, and there is a

lack of relevant research to solve this problem at present.

Therefore, this paper will study how to coordinate the

charging of large-scale electric vehicles in an orderly manner,

and control the electric vehicles in fast charging, general charging

and discharging modes and various reactive power sources in

their distribution network in an orderly and coordinatedmanner,

so as to solve the problem that the power flow of distribution

network with large-scale electric vehicles exceeds the stability

limit. The voltage control and power consumption of distribution

network reach ideal value. In this paper, the impact of EV load

profiles on the distribution network under the stochastic

charging behavior is assessed, which shows that EV charging

should be properly coordinated and planned to avoid the

voltage drop.

The core contribution and innovation of this paper lies in

exploring a voltage and energy control model for a distribution

network with high permeability EVs whose random behaviors of
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fast charging, normal charging and discharging were analyzed,

proposing a coordinated charging-discharging stack strategy for

EVs, and putting forward an improved mixed real and binary

vector swarm optimization algorithm to solve the proplem. Based

on the proposed model, optimum capacitor switching and

transformer tap adjustment schemes were found to minimize

the total operation cost including energy consumption, power

quality and reactive power compensation equipment action cost,

and the impact of random charge and discharge behavior on the

power grid was reduced. In the case studies, the effectiveness of

the proposed model and algorithm was verified by comparing

and analyzing various scenarios before and after reactive power

compensation of baseline load in distribution network and before

and after the access of high permeability electric vehicles. Finally,

based on the proposed coordinated stack method for electric

vehicles, the reactive power compensation equipment was

optimized and adjusted to ensure the safe and stable

operation of the distribution network.

Voltage energy control model of
distribution network

Objective function

The increasing power demand of modern distribution system

with a variety of intelligent devices will lead to the increase of

reactive power loss, and then lead to the increase of voltage drop

on the demand side. Capacitor bank switching and load tap

switching of on-load voltage regulating transformer are one of

the effective ways to solve this problem, which can minimize bus

voltage deviation (Kisacikoglu et al., 2015). However, due to the

time-varying load of high permeability EVs, the switching of

capacitor banks and the adjustment of transformer taps need to

closely follow the variability and randomness of the load. In order

to achieve this goal, a multi-objective optimization model for

large-scale centralized voltage and energy control for high

permeability EVs is proposed in this paper to minimize the

operation cost of distribution network. The objective functions

are as follows:

OF � Ecost + TCcos t + SCcos t + VDcos t (1)

Where, Ecost is the energy consumption cost of distribution

network, VDcos t is compensation cost for bus voltage

deviation, SCcos tis the switching cost of shunt capacitors,

TCcos t is cost of adjusting transformer taps. In order to

consider the total cost of cash cost and maintenance cost of

the maximum allowable adjustment times in the life of the main

transformer (Tao et al., 2020).

In the optimization model, the cost will be converted into

unit ratio. However, the switching cost of shunt capacitor is

similar to the adjustment cost of main transformer tap, which is

finally converted into the cost per MVar.

The energy consumption cost is calculated as follows:

Ecos t � λpEp + λqEq (2)

WhereEp(Eq) is the daily total active (reactive) energy

consumption; λp(λq) is the active (reactive) power cost per

kW (kVar).

The compensation cost caused by bus voltage deviation is not

only related to the voltage offset, but also related to the load on

the bus. The heavier the load, the greater the loss caused by

voltage deviation. Calculated by Eq 3:

VDcos t � ∑
h∈H

∑
i∈N

pD
i,hUC

VD
i,h (3)

UCVD
i,h �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if V min < vi,h <V max

CV

V LL
max − V max

(vi,h − V max) if V max < vi,h <V LL
max

CV

V LL
max − V max

(vi,h − V max) if V LL
min < vi,h <V min

CV otherwise

(4)
Where vi,hand pD

i,h are the voltage and active power on the bus at a

moment respectively; CVis penalty imposed when the bus voltage

value exceeds the lower (Vmin) or upper (Vmax) limit of the

voltage.

It can be inferred from Eq 4 that when the bus voltage varies

between 0.95 pu (Vmin) and 1.05 pu (Vmax), there will be no

penalty cost. Indicates the extreme value of the accident voltage

that the distribution network can bear. If it is lower than V LL
min ,

the low-frequency and low-voltage devices will act to cut off the

load, and if it is higher than V LL
max , the dispatcher should take

measures such as emergency shutdown of the generator.

Constraints

One of the main constraints in distribution systems is that the

active and reactive power flow satisfy the following equation

(Fang et al., 2022), (Cai et al., 2015), (Kim and Dandurand, 2022):

PN(t) � ∑Nbus

i�1
Ui

L(t)Pi
L(t) + ∑NCS

s�1
∑NEV,S

j�1
Dj

EV(t)Pj
EV(t) +∑Nbr

b�1
Pb
loss(t)

(5)

QN(t) � ∑Nbus

i�1
Ui

L(t)Qi
L(t) +∑Nbr

b�1
Qb

loss(t) (6)

Where, PN(t) andQN(t) are the active and reactive power injected
into the distribution network by the superior power grid at time t,

which is always injected through the bus on the low voltage side of

the main transformer; Pb
loss(t)and Qb

loss(t) are the active power loss
and reactive power loss of branches respectively; Pi

L(t) and Qi
L(t)

the active load and reactive load of bus i respectively; Pj
EV(t)is the

charging power of the jth EV in the sth parking lot or the active
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power injected into the power grid; The charge/discharge state of the

jth EV is defined by Dj
EV(t). When the electric vehicle is in the

charging mode, the value of Dj
EV(t) is 1, and when the electric

vehicle is in the discharging mode, the value of Dj
EV(t) is -1. In

addition, Nbus represents the total number of nodes in the

distribution system; Nbr represents the total number of branches

in the distribution system;NCSindicates the total number of parking

lots;NEV,S indicates the number of EVs in the s parking lot at time t.

Ui
L(t) represents the ratio of all other uncontrollable loads to the

total load on bus i except for the load participating in the demand

response. According to general conditions, the proportion of all

controllable loads on a bus, including those involved in demand

response and interruptible loads, is set to 20%. Then we will have

UL
min = 0.8,UL

max = 1.

Coordinated charge and discharge
stack method for EVs

Charge and discharge coordination
strategy of EVs

If the charging power of a large-scale EVs cluster exceeds the

thermal stability threshold of the connected grid line at the same

time, the grid cannot meet the charging request. At this time, the

EVs in the fast charging mode should first change the charging

mode to normal charging until the current carrying capacity of

the distribution line decreases to the normal range. If all EVs in

fast charging mode on this line are changed to normal charging

mode, the line may still exceed the stable limit; Or many EVs are

in discharge mode, and the charging power to the power grid is

too large, which leads to the problem of EV power spillage

(EVPS). The solution to these two cases is to put some EVs in

the queue and wait for charging orderly.

The charging and discharging power of EVs is as follows:

Pi
EV �

⎧⎪⎪⎨⎪⎪⎩Di
EV*MPBi

ηi
in the charging mode

Di
EV*MPBi*ηi in the discharging mode

(7)

Where, η is the charging and discharging efficiency of EVs;MPBi

is the nominal capacity of the battery of the ith EV.

Eq. 7 shows that considering the charging and discharging

efficiency, the power grid needs to provide more power than the

battery capacity to charge in the charging mode; Accordingly, there

is also power loss when EVs inject electricity into the power grid in

discharge mode. In order to simplify the analysis, it is assumed that

the EV can operate in two different states: (i) the EV is fully charged

and can deliver power to the power grid, and (ii) the EV is exhausted

and needs to be recharged, regardless of the intermediate state. There

are two charging modes: normal charging and fast charging, and the

number of EVs allowed in fast charging mode is determined by the

thermal stability limit of distribution network lines.

Assuming that the EV arrives at the station at Tai and leaves

at Tdi, this period is called parking duration PTD:

PTD � Tdi − Tai (8)
Where, PTD depends on the wishes of EV owners and follows a

random distribution pattern. However, due to the thermal

stability limitation of parking lot lines, EVs may need to

queue up to charge and discharge after entering the parking lot.

According to (Leemput et al., 2015), the charging speed of the

EV in the fast charging mode is assumed 10 times faster than its

normal charging speed in this paper, and the duration of the EV

to keep charging is TSiPEV:

TSiPEV � { 1 if the charging mode is fast
0.1 if the charging mode is normal

(9)

If the EV is in fast charging mode, the charging time will be

reduced by 90%, and the active power is Pj
EV(t) when charging:

Pi
EV(t) � {Pi

EV,min if the charging mode is normal
Pi
EV,max if the charging mode is fast

(10)

Where, Pj
EV,max(t)/Pj

EV,min(t) = 10.

Therefore, for the second parking lot at time t, where some

vehicles are charging and the other vehicles are discharging, the

total power delivered to or obtained from the power grid is as

follows:

PS
L(t) � ∑NEV,S

j�1
Dj

EV(t)Pj
EV(t) � ∑NC

EV,S

j�1
Pj
EV(t) − ∑ND

EV,S

j�1
Pj
EV(t) (11)

Where, NC
EV,SandN

D
EV,Sare the total number of cars charged and

discharged in the first parking lot at a time respectively.

If PS
L> 0, the direction of power is that the power grid flows

into the parking lot, otherwise, it means that the parking lot is

transmitting electric energy to the power grid. The constraint

conditions of thermal stability limit of transmission lines are as

follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
SSL(t)≤ SSmax ∀t ∈ {1, 2, 3, ..., T}

SSL(t) �






















































⎛⎝ ∑Ns
FC(t)

i�1
Pi
EVFC,max + ∑Ns

NC(t)

i�1
Pi
EVNC,min − ∑Ns

D(t)

i�1
Pi
EVD,min

⎞⎠2

+ (QS
L(t))2

√√
Ns

FC(t) +Ns
NC(t) � Ns

C(t)
Ns

C(t) +Ns
D(t) � Ns

EV(t)
(12)

Where,NS
D(t) andNS

C(t) are the number of EVs in charging and

discharging modes at all times; For the total number of EVs in the

first parking lot at all times is NS
EV(t); The number of EVs in

normal charging mode is NS
NC(t); NS

FC(t) is the number of EVs

in fast charging mode; S S
max (t) is the thermal stability limit of the

transmission line between the first parking lot and the large

power grid; SSL(t) is the apparent power of the first parking lot at
the moment; QS

L(t) is reactive power flowing through the line

connecting the first parking lot with the power grid at all times;

Pi
EVFC,max, P

i
EVNC,min, and Pi

EVD,min are the fast charging power,
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general charging power and discharge power of EVs in

parking lots.

Considering that EVs need to queue up for charging after

arriving at the parking lot, the priority stack table of vehicles is

obtained according to the time when each EV arrives at the

parking lot. Assuming that the number of EVs arriving at the

parking lot and their willingness to charge (fast charge or general

charge) or discharge follow a random distribution, the following

charging coordination strategy is established in the parking lot:

1) Check whether there are unoccupied charging piles in the

parking lot every 20min. If so, the car ranked first in the stack

table will go to the charging pile. If the power grid has sufficient

active power, it will enter the next step. If the power grid is at the

peak of power consumption, the car willing to discharge will be

preferred. 20 min is the time window assumed in this paper. If the

load on the power line is high, the electric vehicle to be fast

charged will wait 20 min to see whether the load on the power

line is still high after 20 min. If the load drops at that time and the

conditions for fast charging are met, the electric vehicle can be

quickly charged in the high-power charging mode. If the load on

the power line is still high, the owner of the electric vehicle will

continue to wait for the next 20 min, or the owner will give up

waiting and switch to normal mode charging.

2) The power of fast charging of electric vehicles is more than

10 times higher than that of ordinary charging. When a large

number of electric vehicles are in the state of fast charging, the

aggregation effect makes the down-flow of the distribution

network very large. The allowable capacity of a typical 10 kV

distribution line is about 6MVA, the safety current limit is 340A,

and the rated capacity of the 110 kV main transformer supplied to

it is 40MVA (GB50293-1999). Therefore, it is necessary to limit the

total charging power of electric vehicle charging piles connected to

the same 10 kV distribution line. Otherwise, the line will cause the

relay protection device arranged on the 10 kV circuit breaker to act

due to exceeding the stability limit, which will cause the circuit

breaker to trip and then the line will lose power. If the car wants to

charge quickly, it must check whether the stability limit of the line

connecting the parking lot and the power grid is allowed. If

allowed, the vehicle can go to the charging pile to charge,

otherwise it should wait for another 20min, and then call the

next vehicle with general charging intention in the priority list.

Solution of swarm optimization algorithm
based on mixed real number and binary
vector

In this paper, mixed real number and binary vector particle

swarm optimization algorithm is used to solve the optimization

problem (Brinkel et al., 2020). The solution format of the

optimization model is a matrix containing decision variables

and objective function values in a 24-h time range. The solutions

in each time period are as follows:

SM � [sm1 sm1 ... sm24]T (13)

Among them,

sm � [CS1 ... CS1 Tapstatus OF] (14)

Where,CSi is a 0–1 binary variable, which indicates the switching

state of the ith capacitor; Tapstatus is the gear of transformer tap;

OF is the total operating cost of distribution network with the

objective function in Eq. 1.

In each iteration, a population representing the switching

of capacitor banks and the state change of transformer taps

will be generated. Capacitor banks can be switched on or off at

will, and the switching situation can be solved by discrete

binary particle swarm optimization[ (Holmquist et al., 1993;

Jiang et al., 2008; Wu et al., 2010; Ma et al., 2011; Guan et al.,

2013; Anonymous, 2021)], and its evolution process is as

follows:

vk+1i � ωvki + c1r1(pk
i,best − xki ) + c2r2(gk

i,best − xki ) (15)
s(vk+1i ) � 1/(1 + exp(−vk+1i )) (16)

xi(t) � { 1， rand < s(vk+1i )
0， otherwise

(17)

Where, vki is the velocity of the kth iterative particle in the

dimensional space; xki is the position of particle i in dimensional

space in the kth iteration; pk
i,best is the optimal solution of a single

particle; gk
i,best is the global optimal solution; c1and c2are the

acceleration factors of the value [0, 2]; r1, r2, and rand are random

function with a range of (0, 1); ω is non-negative optimization

weight, variable inertia weight is adopted in this paper.

The expression is as follows:

ω � ω max − (ω max − ω min)t
T max

(18)

Where, t is the current evolutionary algebra; Tmaxis the

maximum number of iterations.

At the beginning of the search, a larger value of ω is taken,

and the maximum value is taken, so that each particle searches

for the optimal solution with a larger step size and avoids falling

into the local optimum. In the later stage, ω gradually decreases

until the particles can carpet search near the optimal solution,

thus ensuring the convergence of the algorithm at the global

optimal position.

In this paper, the adjustment gear of the main variable taps is

integer, and the traditional particle swarm optimization

algorithm and binary particle swarm optimization algorithm

are powerless. In this paper, a discrete particle swarm

optimization algorithm is designed to deal with the

optimization variables as integer. In this paper, we define a

new operation of fetching random numbers, which generates

random integers from the ranges of [0, c1(pk
i,best − xki )] and [0,

c2(gk
i,best − xki )], respectively. It will be defined as: generating

integers with the range of [0, |F|], and the above is substituted
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into the formula, where the values of position and velocity are

integers.

vk+1i � ωvki + rand[c1(pk
i,best − xki )] + rand [c2(gk

i,best − xki )] (19)

|vk+1i |< v max, the constant is the dimension vector, which

represents the speed limit. If the distribution network contains

controllable load, CL � 1 − UL will be defined as controllable

load and added to sm.

sm � [CS1 ... CS1 Tapstatus CL OF] (20)

Therefore, the iterative solution formula is:

vk+1i �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

vki , xki � 0
vki , xki ≠ 0, pk

i,best � gk
i,best � 0

vki + rand[c1(pki,best − xki )] + rand [c2(gki,best − xki )]
, xki ≠ 0, pk

i,best ≠ 0, gk
i,best ≠ 0

vki + rand(v max) + rand [c2(gki,best − xki )]
, xki ≠ 0, pk

i,best � 0, gk
i,best ≠ 0

vki + rand[c1(pki,best − xki )] + rand (v max)
, xki ≠ 0, pk

i,best ≠ 0, gk
i,best � 0

(21)

xk+1i �
⎧⎪⎪⎨⎪⎪⎩ r(1, 2, ..., LTap), xki � 0

r(1, 2, ..., LTap), xki ≠ 0, pk
i,best � gk

i,best � 0

xki + vk+1i , Other

(22)

Where the iented, r(−LTap, ..., 0, 1, ..., LTap), is the integer from

−LTap to LTap.LTap is main variation tap gear.

Coordinate charge and discharnteger
from to is represge stack flow

The improved particle swarm optimization algorithm based

on mixed real numbers and binary vectors is used to realize the

energy and voltage control of distribution network system with

high permeability EVs. Figure 1 is a flow chart of the proposed

optimization problem. The first stage is to form a coordinated

charge and discharge stack table.

1) According to Figure 1, first read the original data (grid

data, parking lot capacity, etc.) and generate the random

parameters of EVs and a 24-h all-weather priority list of each

parking lot according to formula. Scan the unoccupied charging

pile in the first parking lot at the first 20 min time node, and

summon the first car in the priority list if there is any spare time.

2) Judge whether to supply power to the power grid,

determine the initial number of EVs in each parking lot and

the charging/discharging state using the normal distribution

function, and then determine whether the charging mode is

general charging or fast charging.

3) Check whether the line power will exceed the thermal

stability limit and whether the charging and discharging power of

EVs will overflow. If the distribution line reaches the limit, the

number of charging and discharging EVs must be modified. In

order to further prevent the line load from exceeding the limit,

the number of EVs with fast charging will be limited, while EVs

with general charging will be given priority, transferred to the

charging area and removed from the stack table.

4) Find other unoccupied charging piles in the next 20min

time period. After the 24-h stack table in the parking lot is

generated, go to the next parking lot until all parking lots are

scanned.

In the second stage, the mixed real number and binary vector

particle swarm optimization algorithm is used to solve the

problem. There will be n decision variables related to

FIGURE 1
Flow chart of coordination algorithm for charge and
discharge of EVs.
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capacitors and one variable related to transformer taps in the

solution space sm. The steps are as follows:

5) Formation of initial population. The initialization Eq 13,

14, and 20 and the solution vector defined in the formula other

than the objective function OF are used to construct the

capacitor, main transformer tap state and controllable load state.

6) Construct the evaluation function in vector optimization.

In this step, the fitness of each vector is calculated based on the

objective function in Eq 1.

7) Population renewal based on evaluation function. The new

vector is calculated through four stages: reproduction, mutation,

boundary checking and selection. Replication combines multiple

vectors to determine the best information, and iteratively

searches for the best solution by using Eqs 21, 22)

8) Termination conditions. When the accuracy is 0.0001, the

solution of the objective function is the same in two consecutive

iterations. If the termination condition is not met, the process will

be iterated from Step 2.

Case studies

Model assumptions and cases description

Based on IEEE 69-bus system, the model and solution method

proposed in this paper are tested, as shown in Figure 2. The total

active load of the system is 3801.5 kW and the total reactive load is

2694.6 kVar. Ten three-phase shunt capacitors with a capacity of

300 kVar in the system are located at nodes 9, 19, 31, 37, 40, 47, 52,

55, 57 and 65, which can be connected to or disconnected from the

system; The on-load voltage regulating transformer is located at the

first node of distribution network. The first gear of transformer tap is

0.02 p. u. and the maximum 3 grades can be adjusted in seven gears,

so that the voltage variation range of the first node is within [0.94,

1.06] p. u.

When calculating the cost function, the adjustment cost of

compensation capacitor SCCost and tap of on-load voltage

regulating transformer TCCost are 9.18 yuan/MVAR and

18.35 yuan/tap, respectively (Tao et al., 2020). Where V LL
min is

0.8 pu, 1.2 pu and 23.46 yuan/kWh. λpand λq are set to 0.41 yuan/

kWh and 0.14 yuan/kVarh, respectively. In the hybrid real and

binary vector particle swarm optimization algorithm

c1 � c2 � 1.5, the number of particles in the population is 90,

the number of objective functions is 4, the variable inertia weights

ωmax is 0.8, ωmin is 0.4, and the maximum particle optimization

speed Vmax is 10 and the minimum Vmin is-10. The simulations

were run in MATLAB (The MathWorks, Inc. Natick, MA,

United States) on a desktop computer equipped with an Intel

Corei5-7200U 2.60 GHz CPU, 8.00 GB memory, and 64 bit

Windows 10 operating system (Datta and Senjyu, 2013; Yao

et al., 2019).

Three scenarios are used to analyze and verify the voltage and

energy control effect of the proposed algorithm in distribution

network. Scenario 1: Power flow distribution and operating cost

of distribution network under load baseline within 24 h; Scenario

2: Without EVs, the distribution network cost evaluation of

reactive power compensation is carried out by means of

capacitor switching and on-load voltage regulating

transformer tap adjustment; Scenario 3: Consider the situation

with high permeability EVs on the basis of Scenario 2.

Scenario 1: Power flow distribution and
operating costs under baseline load

Because the proposed optimization algorithm is not applied

in Scenario 1, the results are compared with other scenarios as

nominal values to prove the effectiveness of the proposed

algorithm in other scenarios. The typical daily load level with

a time step of 1 h in distribution network is shown in Figure 3. All

FIGURE 2
IEEE 69-node distribution network system.
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simulation analysis in this paper uses the daily load curve in

Figure 3. According to Figure 3, within 24 h, the load at 15:00 is

the nominal load, the load at 1:00 is light load level, the load at 11:

00 is heavy load level, and the load at 1:00 and 11:00 are

0.73 times and 1.25 times of the nominal load respectively.

The voltage curves of each node of distribution network under

light load, nominal load and heavy load level are shown in Figure 4. As

can be seen from Figure 4, the increase of load will lead to more

voltage drop of the whole system. Nodes 49 and 50 have the heaviest

load, and the nominal loads of both nodes are 384.7 kW and

274.5 kVar, accounting for 1/10 of the total load of the system.

Therefore, the node voltage on the branches from these two nodes

drops seriously, and the lowest voltage in the whole distribution

network appears at the terminal node 65. The other section of voltage

drop line is in the branch from nodes 11 and 12 to node 27, because

the load of nodes 11 and 12 is also heavy, both of which are 145kW

and 104kVar. In addition to the network loss cost, the voltage of some

nodes is lower than the lower limit of 0.95, but higher than the critical

voltage of 0.8, so there is voltage deviation cost.

Table 1 lists the active and reactive power losses based on the

above three load levels and the comprehensive operating costs

defined in Eq. 1. The total cost of the whole 24 h is 290,800 yuan.

In scenario 1, because reactive power compensation is not used,

SCcos t and TCcos t are zero. For specific gravity load and nominal

load level, it can be seen that in IEEE 69-bus distribution network

system, the load will increase by 25%, the network loss will

increase by 64%, and the energy consumption cost will increase

by 27% because the network loss accounts for a low proportion of

the total load. When the load is heavy, the node voltage drops

more, and the voltage deviation cost will double by 110%, which

will bring a substantial increase in the total cost, increasing

by 96%.

Scenario 2: Power flow distribution and
operating cost after reactive power
compensation

In Scenario 2, reactive power compensation equipment is put

into use, and particle swarm optimization algorithm based on

mixed real number and binary vector is used to solve the optimal

state of capacitor switching and transformer tap, so as to

minimize the total operating cost. Figure 5A shows the

change process of the optimal fitness function. It can be seen

that it has converged after five iterations, and the convergence

speed is fast. Figure 5B reflects the optimization process of

capacitor bank switching at each node in these five iterations,

and the transformer tap is adjusted to +1 gear.

In order to prove the effectiveness of the optimization

algorithm proposed in this paper, the results of Scenario one

and Scenario two under different load levels (light, nominal and

heavy) are compared. Figure 6 shows the voltage situation of each

node under the optimal capacitor switching and transformer tap

adjustment strategy. It can be seen that after the reactive power

compensation equipment in Scenario two is put into operation,

the voltage of each node is obviously improved compared with

that in Scenario one under light, nominal and heavy load levels,

and the power quality is improved.

The total voltage control cost of IEEE 69-bus distribution

network system in scenario two is shown in

Table 2.Ecostrepresents the energy consumption cost defined

in Eq. 1, the voltage deviation cost VDcos t defined in Eq. 1,

and OF is the total operating cost. Comparing Table 1 with

Table 2, it can be seen that a large part of the operating cost of

Scenario one is related to the cost of voltage deviation, while in

Scenario 2, the cost has been significantly reduced due to the

improvement of voltage curve, especially in the case of light load,

the cost of voltage deviation is zero. Thanks to the reactive power

optimization strategy in this paper, the main transformer tap and

capacitor act correctly, the total active and reactive power losses

of the distribution system are reduced, and the total cost is

reduced by more than 50%.

FIGURE 3
Typical daily load level.

FIGURE 4
The volume profile of IEEE 69-bus distribution system in
scenario 1
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Scenario 3: Comparative analysis of high
permeability electric vehicles before and
after they are connected to the
distribution network.

Scenario three analyzes the influence of large-scale EVs on

distribution network voltage and energy control before and after

being connected to distribution network. There are five large

charging parking lots in the distribution network. The location of

the nodes, the number of charging piles and the stability limit of the

distribution lines from each parking lot to the power system are

shown in Table 3. The current carrying capacity of distribution lines

determines the maximum number of EVs allowed in fast charging

TABLE 1 Operation cost of distribution network in scenario 1

Load level/p.u Ep/kW Eq/kVar λp/kW λq/kVar Ecost/yuan VDcos t/yuan Total cost/yuan

Light load (0.73) 2775.095 1967.058 114.26 52.03 1475.01 2303.63 3778.65

Nominal load (1) 3801.5 2694.6 224.99 102.16 2053.16 9717.68 11770.85

Heavy Load (1.25) 4751.875 3368.25 369.04 167.11 2608.13 20463.54 23071.67

FIGURE 5
Evolution profile of fitness and switching states of capital
banks. (A)Fitness function (B) Optimal process of switching
capacitor banks at each node.

FIGURE 6
Voltage of each bus based on the optimal capacitor switching
and transformer tap adjustment scheme. (A) Fitness function (B)
Nominal load 1p. U (C) Heavy load 1.25 p. u.
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mode, so as to ensure that the line power flow does not exceed the

limit. Among them, the thermal stability limit of connecting lines in

parking lots 1, two and four is lower.

Assume that the general charging power of each EV is 7 kW

and the fast charging power is 70 kW. The connection between

EV and power grid and its charging and discharging states are

randomly distributed. This paper uses normal probability

distribution to evaluate. According to the proposed EV

coordinated charge and discharge stack method, orderly queue

charge and discharge is carried out to ensure that the line power

flow does not exceed the limit. Figure 7 shows the number of EVs

occupying charging piles in each parking lot within 24 h. Queue

in and out of the stack table according to the process shown in

Figure 1, assuming that the remaining power of EVs when they

arrive at the parking lot is randomly selected from four values: 10,

20, 30 and 40%. In order to protect the battery, trickle charging

will be adopted when charging to 90%. In the fast charging mode,

the time from full discharge to full charge of EVs is 2 h, while in

the general charging mode, it is 9 h, and it takes about 4 h from

full charge to full discharge of batteries to the power grid. In order

to simplify the analysis, this paper assumes that the PTD of the

EV that wants to use the fast charging mode is 2H, while the PTD

of the owner of the EV that wants to use the general charging

mode is 9H. During this period, the owner will not pick up the

car, and the electric car can be charged or discharged with

constant power according to the demand of the power grid.

After obtaining the information of EVs in each parking lot as

shown in Table 3, the EVs are charged and discharged in an

orderly and coordinated way, and the particle swarm

TABLE 2 Operation cost of distribution network in scenario 2

Load level/p.u Ep/kW Eq/kVar λp/kW λq/kVar Ecost/yuan VDcos t/yuan Total cost/yuan

Light load (0.73) 2775.10 1967.06 92.63 42.4 1475.01 0 1475.01

Nominal load (1) 3801.50 2694.60 187.62 85.46 2053.16 2883.51 4936.67

Heavy Load (1.25) 4751.88 3368.25 313.39 142.23 2608.13 11323.80 13931.93

TABLE 3 Details of parking lot and charging pile in distribution
network system.

Lot Bus # Number
of charging stations

Thermal
stability limit (kVA)

1 30 60 1455

2 32 100 5823

3 45 60 1455

4 48 60 1455

5 63 100 5823

FIGURE 7
Distribution of the number of electric vehicles in coordinated
charging and discharging stacks within 24 h.

FIGURE 8
The evolution profiles of fitness and switching state of capital
banks. (A) Light load 0.73 p. u. (B) Optimization of Capacitor Bank
Switching at Each Node U.
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optimization algorithm based on mixed real numbers and binary

vectors is applied to solve the problem, and the best switching

strategy of capacitor bank and transformer tap is obtained.

Figure 8 is the evolution curve of distribution network

operation cost fitness and capacitor bank switching state with

high permeability EVs, and the optimal switching strategy is

found after six iterations. Because of the high load at this time, the

sum of charging and discharging power of EVs reaches

3145.9 MW, and the total active load of the system is

equivalent to 182.75% of the original one. In order to

maintain the voltage stability, the optimization result is that

all capacitor banks are put into operation, and the transformer

tap is adjusted to the highest grade of 1.06 p. u.

Figure 9 shows the voltage comparison of each node before and

after reactive power compensation when the high permeability EV is

connected, with light load of 0.73 p. u, nominal load of 1p.u. and heavy

load of 1.25 p. u. The three load levels correspond to the loads at 1:00,

15:00 and 11:00 respectively in the typical load curve of Figure 3. The

load of EVs is determined by the number of vehicles occupying

charging piles and the charging and discharging status in Figure 7.

Compared with scenario 2, the voltage drop at all three load

levels increases. Take heavy load as an example as shown in

Figure 9C. If reactive power compensation equipment is not

implemented, the voltage at the lowest point node 65 of

distribution network voltage is only 0.83 p. u. In fact, if it is

lower than 85% of rated voltage for more than 3 s, it will cause the

action of automatic load shedding device according to voltage,

thus cutting off a large number of loads. If the duration exceeds

1 h and the voltage deviation fails to recover to less than 10% of

the rated voltage, it will meet the general power grid accident

identification standard of State Grid Corporation (Anonymous,

2021). After the optimal control proposed in this paper, the

voltage of the whole distribution network can be maintained

within the normal range of [0.95, 1.06] p. u. .

In the case of high penetration electric vehicle access, the total

cost of distribution network operation without control measures

is shown in Table 4, and the total cost of distribution network

operation based on the control strategy in this paper is shown in

Table 5. The table also shows the switching results of optimal

main transformer taps and capacitors under different load

conditions. In order to compare with the distribution network

without large-scale EVs in Table 2, the energy consumption of

charging and discharging EVs is not included in Tables 4, 5, but

the reactive power exchange and network loss increase caused by

large-scale EVs will be included in the total cost.

Comparing the baseline load in Table 4 with that in Table 1,

although the load of EVs is not included in Table 4, the high

permeability EVs still cause the increase of active and reactive

power network losses, which leads to the increase of total active

load and reactive load of distribution network system compared

FIGURE 9
Voltage of each node before and after active power
compensation when high-penetration EVs are connected. (A)
Light load 0.73 p. u. (B)Nominal load 1p. U. (C)Heavy load 1.25 p. U.

TABLE 4 Energy and voltage control cost for distribution network with high permeability electric vehicle.

Load level/p.u Ep/kW Eq/kVar λp/kW λq/kVar Ecost/yuan VDcos t/yuan Total cost/yuan

Light load (0.73) 3011.56 2075.03 235.94 108.10 2835.56 12962.48 15798.03

Nominal load (1) 4195.76 2870.75 392.90 178.39 3435.58 26091.04 29526.62

Heavy Load (1.25) 5343.46 3627.82 588.90 265.88 4015.25 43083.26 47098.50
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with Table 1. In terms of cost, the addition of EVs causes a

significant increase in voltage drop, which makes the voltage

deviation cost double compared with Scenario 1, resulting in a

double increase in the total cost of distribution network.

Compared with the operation cost of distribution network

without reactive power compensation in Tables 4, 5 reflects

the fact that after adopting the control strategy proposed in

this paper, the network loss will be reduced to a large extent both

at the light load level and at the heavy load level, which brings

about the reduction of total active/reactive load and the reduction

of energy consumption cost. In addition, in combination with

Figure 9, it can be seen that the voltage deviation is significantly

reduced, which leads to the conclusion that the voltage deviation

cost in Table 5 is about 1/6 of that when no control measures are

taken, so the total cost is significantly reduced.

The control strategy proposed in this paper can effectively deal

with themulti-objective control problem of the lowest power quality

and operation cost when a large number of EVs with dynamic

random charging and discharging activities are connected to the

distribution network. The total cost of distribution network in

scenario three of large-scale EVs (Table 5) is at the same level as

that in scenario twowithout EV load (Table 2), which shows that the

proposed optimization algorithm can flexibly adjust the switching

strategies of transformer taps and capacitor banks to offset the

impact of EVs on distribution network and reduce the impact of

randomness on distribution network.

Conclusion

This paper presented how tomaintain the stability of the system

voltage and to minimize the operation cost of the power grid by

controlling the switching of capacitors and the adjustment of

transformer taps in the distribution network. The core

contribution in this paper is to design a voltage and energy

control model for a distribution network with high permeability

electric vehicles whose random behaviors of fast charging, normal

charging and discharging were analyzed, proposing a coordinated

charging-discharging stack strategy for EVs, and putting forward an

improved mixed real and binary vector swarm optimization

algorithm to solve the proplem. Then, the improved swarm

optimization algorithm based on mixed real numbers and binary

vectors is used to solve the problem, and the best capacitor switching

and transformer tap adjustment strategy is found.

The effectiveness of the proposed optimization model and

solution algorithm is proved by the analysis of three different

scenarios. They were selected for the simulation, including power

flow and operating costs under baseline load, power flow and

operating cost after reactive power compensation, and comparative

analysis of high permeability electric vehicles before and after they are

connected to the distribution network. The simulation results

demonstrated the effectiveness of the proposed control strategy.

The voltage drop of the distribution network caused by the accessT
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of a large number of electric vehicles is reliably compensated, and the

distribution of active and reactive power also tends to be reasonable.

The total operating cost of the distribution system can be effectively

reduced. The proposed coordinated charging-discharging stack

strategy provided a new way for a large number of electric vehicles

to be charged and discharged in an orderly manner.
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