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Sensors in the primary circuit of a pressurized water reactor (PWR) are normally

designed with redundant structures to improve system safety and reliability.

However, reliability of the actual system is often lower than that obtained by

theoretical calculation due to the inevitable occurrence of commonmode fault

(CMF), which is a dependent failure event that can cause multiple failures in

redundant channels. CMFmay increase the reliability deviation of the system by

orders ofmagnitude and, hence, seriously affects the reliability of the system. To

mitigate the CMF of redundant sensors in nuclear power plants, an artificial

neural network (ANN) can serve as a data-driven analytic model to monitor

sensor parameters, to identify any possible abnormal status of the sensors, and

provide an early warning. In this study, by using the high-fidelity dataset

obtained in a full-scope PWR simulator as training, validation, and test data,

a relevant parameter-based ANN black-box model (RPANN) was established by

employing the back-propagation (BP) learning algorithm, which was then

defined as an analytic redundancy. Time series-based ANN checking models

(TSANNs) were also established for each of the input and output parameters of

the RPANN in order to identify its abnormal state based on historical data in the

past. When combined with the existing hardware redundancy, the ANN-based

analytic redundancy can serve as an online monitoring tool of the hardware

status and an online diagnosis strategy for sensor faults. Furthermore, ANN-

based analytic redundancy can replace faulty hardware sensors to analytically

reconstruct the reading of the monitored sensor parameter without having to

reduce the reactor output power or even shut down the reactor for emergency

maintenance so that the on-site calibration frequency of hardware sensors in

redundant channels can be effectively reduced. This is not only of vital

importance in reducing operation and maintenance costs of existing PWR

power plants but also plays an important role in building reactor operation

schemes with rapid and frequent changes in power output in the future.

Simultaneously, the diverse redundancy combining analytic software

redundancy and physical hardware redundancy can effectively reduce the

threat of CMF of hardware sensors on the operation safety of reactor systems.
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Introduction

The modern large-scale pressurized water reactor (PWR)

power plant is a large and complex system. Judgment of the state

of the nuclear power plant (NPP) by a control and safety system

depends strongly on accurate and reliable signals provided by

various sensors. Hence, a large number of sensors measuring

various physical parameters are, hence, installed in a PWR power

plant, and some of them are inevitably exposed to extreme

environments of high temperature, high pressure, and high

radiation. With accumulation of plant operation time, the

performance and reliability of the sensors are easily affected,

and fault conditions may occur inevitably (Hashemian, 2010).

Once a faulty sensor provides a wrong signal, its chain effects

might cause the control system to perform protective actions,

which may lead to unnecessary power reduction or accidental

shutdown of the reactor, and, in the worst case, even lead to

damage of reactor equipment or components.

In the current state, large-scale PWR power plants are

normally defined as the base load of the power grid. For this

purpose, reactors are maintained in a steady-state condition of

full power output for most of the operation time. Consequently,

relevant parameters remain relatively stable during the operation.

However, with the fast and continuous development of

renewable energy sources represented by wind and solar

power, the proportion of unstable energy supply increases

rapidly in the power grid. Hence, it is necessary to develop

operation schemes also for NPPs, which enable PWRs to

participate in peak shaving in the future to ensure overall

stability of the power grid (Subki, 2020). The increase and

decrease of the reactor power output during peak shaving are

fast transient processes. Parameters of the reactors will change

frequently and rapidly during these fast transients, which

imposes further higher requirements for rapid and accurate

control of the reactor. The basis of all these depends on

sensor output of accurate and reliable signals.

To sum up, it is of crucial importance to identify possible

faults of sensors in a rapid manner to guarantee safety of NPPs. If

a sensor fault cannot be identified and handled in time, possible

chain effects will impose a threat to the safety, economy, and

reliability of the entire power plant. Therefore, many functions

and structures in PWR power plants, especially those safety-

related nuclear-level sensors in the primary circuit, are designed

and equipped with redundant structures to improve the safety

and reliability of the system. Although each individual sensor in a

redundant sensor group has a small probability of experiencing

an abnormality, due to the fact that redundant sensors are, in

general, of the same hardware type and their working

environment is also quite similar, redundant sensors may face

the inevitable situation of two or more units having the same

mode failure at the same time, i.e., the so-called common mode

fault (CMF) (Yu et al., 2020). CMF is a dependent failure event,

which can cause multiple failures of redundant channels in a

system that may increase the reliability deviation of the system by

one or several orders of magnitude and hence seriously affects the

reliability of the system.

In order to minimize the impact of CMF on the operation

safety of NPPs, current operating regulations of PWRs require

that at least one sensor in the redundant channels must be on-site

calibrated in each refueling cycle (Hashemian, 2010). However,

on-site calibration requires maintenance personnel to enter an

environment of high temperature and high radiation, which

consumes a lot of manpower and material resources

(Khentout et al., 2018). In addition, in the future operation

scheme of participating in peak shaving, the state of the

power plant may change more rapidly and more frequently,

which brings further challenges to the reliability of sensors. If the

current method of on-site calibration is further used, it is

plausible to anticipate that the on-site calibration frequency of

the sensors will increase exponentially, which largely increases

the operation cost of the power plants. Therefore, it is of high

interest to develop more reliable, more intelligent, and more cost-

efficient, nondestructive fault diagnosis methods.

The traditional method of monitoring the sensor fault is

achieved by monitoring the residual error between the target

sensor and its redundant components (Ray and Phoha., 2000),

also known as physical redundancy (Chen et al., 2015). However,

CMF cannot be avoided by physical redundancy. Therefore,

analytical redundancy was proposed (Hwang et al.2010) as

one of the possible solutions. As reviewed by Tambouratzis

et al (2020), during the period 1990–2015, various

computational intelligence paradigms, including the artificial

neural network (ANN), have been employed in monitoring,

diagnosis, and fault detection of relevant sensors and

components of power plants. Nearly 50 studies have shown

that the ANN is a useful tool to provide feasible solutions to

sensor monitoring also in NPPs. Because of its simplicity,

robustness, and simultaneously high prediction accuracy, the

back-propagation (BP) algorithm and its variants remain the

most preferred (28 out of a total of 49 reviewed studies) learning

algorithm when constructing an ANN.

In this study, a nondestructive online intelligent fault

diagnosis scheme based on the ANN was proposed. By

using the high-fidelity dataset provided by a full-scope PWR

simulator as training, validation, and test data, a relevant

parameter-based ANN (RPANN) black-box model was

established by employing the BP learning algorithm, which

is then defined as analytic redundancy. For each of the input
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and output parameters of the RPANN, a time series-based

ANN (TSANN) checking model was also established for self-

checking purposes in order to identify any possible abnormal

state of the RPANN caused by abnormal input parameters. In

compliance with the “diversity principle” (Littlewood, 1996), a

distributed online sensor fault detection scheme (DOFD) was

then proposed by combining the ANN-based analytic

redundancy and the existing hardware redundancy. The

ANN-based analytic redundancy can be used for online

monitoring of the hardware status and online diagnosis of

possible sensor faults. Furthermore, the ANN-based analytic

redundancy provides an effective surrogate for replacing the

responsibility of faulty hardware sensors. Reference values of

the monitored parameter can be continuously output by ANN-

based analytic redundancy without having to reduce the

reactor power output or even shut down the reactor for

emergency maintenance. Faulty hardware sensors can be

temporally isolated from the redundancy set. Further in-

depth repair or/and replacement of the faulty sensor can be

postponed to the next scheduled periodic maintenance of the

power plant. In this manner, the on-site calibration frequency

of hardware sensors in redundant channels can be effectively

reduced. This is of vital importance in reducing operation and

maintenance costs of existing PWR power plants and also plays

an important role in building reactor operation schemes with

rapid and frequent changes when participating in peak shaving

in the future. At the same time, the diverse redundancy

combining analytic software redundancy and physical

hardware redundancy can effectively reduce the threat of

CMF of the hardware sensor on the operational safety and

reliability of the reactor power plants.

Methods and methodology

CPR1000 full-scope PWR simulator

ANN is a data-driven black box model. Hence, its prediction

ability depends strongly on the data used for training the ANN.

To ensure its prediction accuracy, it is necessary to train the ANN

with data as close as possible to the real state of a nuclear power

plant. At the same time, to strengthen its generalization ability,

data used for training and validation of the ANN model should

be expanded, in addition to steady-state operational conditions,

to more working conditions, for instance, transient conditions

during power change. However, real plant data from commercial

PWR power plants are normally of confidential nature. More

importantly, to ensure safety and stability of the power plant,

PWRs are kept in steady-state operation for most of the time, and

relevant data of the power plant during transient conditions are

fairly limited.

A full-scope PWR simulator, on the contrary, can provide high-

fidelity, almost real-state data of NPP through the whole-chain and

all-round simulation of a typical large commercial PWR power

plant. Compared to the traditional point reactor model, the full-

scope simulator has the advantage of providing a complete dataset

covering all the important components of an actual PWR power

plant. At the same time, by changing the input parameters of the

simulator, plant data covering a wider range of working conditions,

including transient and even accidental conditions, can also be

provided (Ayo-Imoru and Cilliers., 2017; Peng et al., 2017; Kim

et al., 2018). Therefore, a full-scope PWR simulator can be used as a

provider of reliable plant data for ANN training.

In this study, the CPR1000 full-scope PWR simulator (Ni

et al., 2016) based on the China Pressurized Reactor (CPR1000)

in the CGN Ningde Nuclear Power Plant was employed. The

complete high-fidelity dataset obtained in the full-scope

simulator was used as the training, validation, and test data of

the ANN models established in this study. CPR1000 is a three-

loop PWR with a maximal output power of 1000 MWe, which is

one of the most mature, advanced, second-generation NPPs in

operation in mainland China in the current state. As an example,

a simplified schematic diagram of the primary circuit of the

CPR1000 full-scope PWR simulator is depicted in Figure 1. In

addition to the reactor core, relevant components, including the

three-loop steam generators (SGs), coolant pumps, and the

primary-circuit pressurizer, are all considered and modeled in

the simulator.

Establishment and training of ANNs

Basic description of the BP algorithm
In this study, training of the ANN models was carried out

using the BP toolbox embedded in MATLAB software according

to the back-propagation (BP) algorithm (Rumelhart et al. 1986).

Taking the exemplary ANN depicted in Figure 2 as an example, it

consists of the input layer of i input variables (x1, x2, . . .xi), a

single hidden layer of n neural units, and the output layer of j

output values (y1, y2, . . .yj). The respective target values are

designated as (ŷ1, ŷ2, ŷ3 . . . ŷj). The iterative learning process

in the BP algorithm is divided into the following two stages:

Stage 1: forward propagation for calculation of error between

ANN output and the target. In the first iterative step, a random

weightwin,i is assigned to each input variable xi of the input layer.

The cumulative result∑i
1(win,i · xi) is then defined as input of the

activation function of the nth neuron unit in the hidden layer. The

result of any neuron in the hidden layer under the action of the

activation function (sigmoid-shape tansig function) is given as

tansig⎡⎣∑i
1

(win,i · xi)⎤⎦ � 2

1 + e
−2(∑i

1
win,i ·xi+bn)

− 1 (1)

where bn is the bias of the nth neuron unit. The output layer then

again adopts a tansig function of all the neuron units to finally
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obtain the predicted output values (y1, y2, . . .yj). The last step

of forward propagation is to calculate the quadratic deviation χ2

between the target value and the output value predicted by the

ANN according to

χ2 � 1
2
∑j
1

(yj − ŷj)2 (2)

Stage 2: back propagation of the quadratic deviation for

modification of weights and bias in order to minimize the

quadratic deviation χ2. The Levenberg–Marquardt gradient

descent algorithm (Gavin 2013) is adopted to calculate the

partial derivative of the quadratic deviation with respect to

weight and bias, then adjust the weight and bias using the

partial derivative, and finally converge the quadratic deviation

to a prespecified range after a certain number of iterations of

forward propagation and back-propagation.

Preparation of full-scope simulator data for ANN
training

In this study, pressure sensor of the primary-circuit

pressurizer in a typical PWR was chosen as the objective

sensor of investigation. The monitored sensor parameter is,

FIGURE 1
Simplified schematic diagram of the primary circuit of a three-loop PWR power plant in the CPR1000 full-scope simulator.

FIGURE 2
BP learning algorithm: forward propagation to calculate the quadratic deviation and back propagation of error to modify weights and bias.
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hence, the pressure of the primary-circuit pressurizer. A relevant

parameter-based ANN (RPANN) black-box model established

with its output is then the predicted pressure of the primary-

circuit pressurizer. The following five relevant thermal-hydraulic

parameters were chosen to define the input variables of the

RPANN input layer:

1) average value of the core power, which is defined as the

average value of the six sensors measuring the core power in

CPR1000;

2) average coolant temperature of the core, which is defined as

the average value of primary-circuit hot leg temperature and

primary-circuit cold leg temperature;

3) average steam flow rate of the steam generator, which is the

average value of the steam flow rates of the three loops in

CPR1000;

4) average feed water flow rate of the steam generator, which is

the average value of the feed water flow rates of the three loops

in CPR1000; and

5) water level of the pressurizer.

Furthermore, for each of the five input variables, and also for

the monitored pressurizer pressure, a time series-based ANN

(TSANN) checking model was also established based on

historical data of the respective parameters as input

parameters in order to identify a possible abnormal state of

the respective variables. All the aforementioned thermal-

hydraulic variables were retrieved from the CPR1000 full-

scope simulator to construct the dataset for training of the ANNs.

It should be noted that the training datasets of RPANN and

TSANNs cover the same range of operation conditions. In this

study, four transient operation conditions were chosen, all of which

begin with a steady-state operation of 1000 MWe full power (FP)

for 1400 s, after which, the reactor power is gradually reduced from

FP to 180MWe at a constant rate of 0.5% FP/min, 0.6% FP/min,

0.8% FP/min, and 1.0% FP/min and then finally maintained at

180 MWe for ~7000 s. For verification of the generalization ability

of ANNs, an additional transient condition of reducing the reactor

power at a constant rate of 0.75% FP/min was also defined. It

should be noted that the rate of 0.75% FP/min is still covered within

the range defined by the four transient conditions from 0.5% FP/

min to 1.0% FP/min. Before training of the ANNs, different data

preparation strategies were adopted for RPANN and TSANNs,

which will be described in the following section.

The CPR1000 full-scope PWR simulator calculates the

required thermal-hydraulic parameters every second.

Consequently, the raw data retrieved from the simulator show

two characteristics. First, the raw data would contain many

duplicated values, especially for the periods during steady-

state operation. Second, more importantly, the raw data would

contain noisy, stochastic fluctuations of rather small amplitudes.

Essentially speaking, the RPANN is a black-box, mathematic

approximation of the rather complex and nonlinear relation

between the five input parameters and the target output of

pressurizer pressure. If training of the RPANN is performed

with simulator raw data, the large size of the dataset will not only

cause unnecessary waste of computing resources but also affect

the convergence speed of the neural network. Furthermore, the

presence of small-amplitude noisy fluctuations would lead to

overfitting of the ANN, in which the error of the training dataset

decreases with the training process, but the error of the

verification dataset increases.

Thus, before training of the RPANN, it is necessary to

perform a data cleaning for elimination of some duplicate and

noisy data by resampling the raw data retrieved from the full-

scope simulator. An appropriate choice of the sampling time

interval is, therefore, of vital importance. With a reasonable

sampling time interval, the original tens of thousands or even

hundreds of thousands of data points retrieved from the full-

scope simulator can be reduced to thousands of data points, and

the essential characteristics of the dataset can still be kept.

Under the same transient condition of power reduction, a

sensitivity study of the sampling time interval was conducted. As

depicted in Figure 3, the change of the pressure output by the

pressure sensor of the primary-circuit pressurizer is shown with

transient time. The solid blue line in the figure stands for the

original raw data retrieved from the CPR1000 full-scope

simulator, which gives the pressure output every second. The

dotted red line in the figure is the curve after data cleaning with a

sampling time interval of 20 s, while the dashed–dotted purple

line is the curve with a sampling time interval of 50 s. This means

the size of the cleaned data is only one-twentieth and one-fiftieth

of the original dataset. Overall, a rather good agreement is

observed between all three curves, despite the relatively large

difference in the sampling time interval.

The two largest local differences, as marked with the two red

arrows (a) and (b) in Figure 3, are then depicted in an enlarged

view in Figures 4A,B, respectively. As observed in Figure 4A, the

original raw data retrieved from the full-scope simulator show

high-frequency noisy fluctuation with small amplitude even

during the beginning ~1300 s of steady-state operation. After

data cleaning with a sampling time interval of 20 s, the curve of

transient pressure change becomes much smoother, and the

high-frequency fluctuation with small amplitudes also

disappears. But, the transient changing trend of the pressure

during the period of 1300 s–1400 s was still kept with the

sampling time interval of 20 s. If the sampling time interval is

further increased to 50 s, the cleaned data show a slight offset

compared with the original curve, as depicted in Figure 4A and

Figure 4B. Therefore, the sampling time interval is finally

determined as 20 s based on a balance between economy and

accuracy. The data after cleaning not only retain the essential

characteristics of the original data but also eliminate most of the

unnecessary noises to avoid possible overfitting of the ANNs.

Therefore, the cleaned data with a sampling time interval of 20 s

are then used as a dataset to train the RPANN.
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The basic principle of a time series-based ANN (TSANN) is

to predict the future output based on historical data in a certain

past period of time. Therefore, time-continuous data should be

used to train the TSANN in order to improve its perception

ability of the data changing trend. Therefore, the original raw

dataset retrieved from the full-scope simulator was used to train

the TSANN, for which the Z-score standardization is adopted in

this study. After preparation of the dataset for both the RPANN

and TSANN as described above, the dataset was then divided into

the training set, validation set, and test set, which, by default,

account for 70, 15, and 15% of the dataset, respectively. The

training set is used to train the ANNs according to the BP

algorithm, as described earlier, i.e., to calculate the gradient and

modify the weight and bias of the neurons in the hidden layer.

The validation set is used to validate the trained neural network

model. The optimal weight of the validation set is used to update

the network. The test set is then used to test whether the ANNs

have fully learned the dataset, i.e., to verify the prediction ability

of the trained ANNs for the so-called unfamiliar data different to

the training and verification set.

Topology of the RPANN and TSANNs
Figure 5 shows the topology of the RPANN constructed in

this study. The input layer consists of five input parameters,

i.e., average value of the core power, average coolant temperature

of the core, average steam flow rate of the steam generator,

average feed water flow rate of the steam generator, and water

level of the primary-circuit pressurizer. The pressure sensor of

the primary-circuit pressurizer is the objective sensor of

investigation in this study. Therefore, pressure of the

pressurizer was specified as the single output variable of the

RPANN. A single hidden layer with 150 hidden neural nodes was

defined for the RPANN based on a balance between the

performance and computational complexity of the neural

network. It should be noted here that despite the data

cleaning with a resampling time interval of 20 s, the RPANN

still needs 150 neural nodes to fully learn the rather complex

relation between the inlet thermal-hydraulic parameters and the

objective pressure of the pressurizer.

For each of the five input variables of the RPANN, as well as

for the objective pressure of the primary-circuit pressurizer, a

time series-based ANN (TSANN) checking model was also

established as a self-checking unit of each parameter.

Therefore, the purpose of the TSANN for each variable is to

identify any possible abnormality of the parameters based on

historical data. The TSANNs established in this study share the

same topology, as depicted in Figure 6. To predict a particular

parameter value at time t as the output, the parameter values in

the past 10 s, i.e., at the time t − 1, t − 2, t − 3. . .. . .t − 10 were

chosen as the input, with which a single hidden layer with

15 hidden neural nodes was sufficient to give an accurate

prediction. The rather simple structure of TSANNs is of

advantage for possible online training and updating of the

TSANNs, if necessary, for online fault diagnosis. The choice

of the parameter values in the past 10 s as input variables was

kept for all the TSANNs established in this study. Nevertheless, it

should be mentioned here that if the objective sensor of

investigation is not the pressurizer pressure sensor, it is also

possible to update/modify the choice of the past 10 s as input

values for the TSANN.More historical data than those of the past

FIGURE 3
Sensitivity study of the sampling time intervals (the red arrows indicate the two largest local differences between different sampling intervals,
which will be reviewed in Figure 4).
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10 s might be necessary to construct a good TSANN with high

accuracy and simultaneously good generalization ability.

Proposal of a distributed online sensor
fault detection scheme

As shown in Figure 7, a “Distributed Online sensor Fault

Diagnosis scheme” (henceforth termed DOFD scheme) was

proposed in this study using both RPANN and TSANNs. As

mentioned earlier, the objective sensor of investigation is the

pressure sensor of the primary-circuit pressurizer. The output

parameter of the DOFD scheme is then the monitored target

sensor output, i.e., pressure of the primary-circuit pressurizer.

The core of the fault diagnosis scheme is the trained RPANN, as

depicted in Figure 5, which has established a relation to predict

the monitored pressurizer pressure based on the five relevant

thermal-hydraulic input variables (x1, x2, x3, x4, x5), i.e., the

FIGURE 4
Local enlarged view of the two largest local differences between different sampling time intervals. (A) Local enlarged view between 1000 and
1400 s. (B) Local enlarged view between 6500 and 7000 s.
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average value of the core power, average coolant temperature of

the core, average steam flow rate of steam generator, average feed

water flow rate of steam generator, and water level of the

primary-circuit pressurizer. Furthermore, for each of the five

input variables of the RPANN and also for the monitored target

sensor output, a TSANN with its structure, as depicted in

Figure 6, was established. It should be mentioned and

emphasized here that the sole purpose of the TSANNs is for

self-checking of the parameters based on their respective

historical data trend. Only if no abnormality was found in the

five input parameters, the predicted value by RPANN can then be

regarded as accurate.

First, the proposed DOFD scheme provides an ANN-based

analytic redundancy that can give a theoretical prediction of the

monitored sensor parameter. The detailed procedure is explained

in the following text:

1) for a certain given operational condition, physical hardware

sensors in the actual PWR reactor will provide the five

relevant parameters (x1, x2, x3, x4, x5) via measurement.

Before entering the RPANN for prediction of the monitored

parameter, the five relevant parameters will be checked for

abnormality via TSANNs established for each of the

parameters.

2) TSANNs established for the five relevant parameters,

i.e., TSANN-x1 to TSANN-x5 will provide a prediction of

x1 to x5 based on their respective historical data trend in the

past 10 s (as specified in Topology of the RPANN and TSANNs

Subsection) retrieved from the historical reactor data. The

predicted values by TSANNs for x1 to x5 will be compared

with measured values by physical hardware sensors for self-

checking. The mathematical algorithm for self-checking is

defined according to the interquartile range (IQR)-based

outlier detection method (Han et al., 2011), which will be

explained at the end of this subsection.

3) If no abnormality is found based on historical data, the

measured five relevant parameters (x1, x2, x3, x4, x5) will

FIGURE 5
Topology of the relevant parameter-based ANN black-box
(RPANN) model for pressure of the primary-circuit pressurizer.

FIGURE 6
Topology of the time series-based ANN (TSANN) checking models for input parameters of the RPANN and for pressure of the primary-circuit
pressurizer.
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be transferred to the RPANN for prediction of the monitored

sensor parameter, i.e., to obtain a predicted primary-circuit

pressurizer pressure. In this manner, the RPANN, along with

TSANNs as self-checking modules, builds up an “ANN-based

analytic redundancy”, as marked with a dotted red line in

Figure 7. With this software redundancy, an analytic

“measurement” of the pressure in the primary-circuit

pressurizer can be conducted.

Furthermore, by combining the ANN-based analytic

redundancy and the three existing redundant hardware

sensors #1, #2, and #3, the proposed DOFD, as depicted in

Figure 7, can perform online fault diagnosis of the three hardware

sensors. It should be noted that the prerequisite of online fault

diagnosis is that all the five input parameters of the RPANN are

in normal condition. The detailed procedure and algorithm of

online fault diagnosis will be explained in the following text:

1) in case no abnormality is reported for the five input variables (x1,

x2, x3, x4, x5), the analytic prediction provided by the RPANN

serves as the reference of the value of the monitored parameter

since the trained RPANN has fully learned the relation between

(x1, x2, x3, x4, x5) and the monitored pressure in the primary-

circuit pressurizer. Furthermore, the TSANN established for the

monitored pressure, i.e., TSANN-y, as shown in Figure 7, will

also give an estimation of the monitored parameter based on its

historical data in the past 10 s.

2) With the two analytically predicted values by the RPANN and

TSANN-y as a reference, the measured values #1, #2, and

#3 by the redundant hardware sensors will be compared. The

same algorithm defined according to the interquartile range

(IQR)-based outlier detection method (Han et al., 2011) was

used, which will be explained at the end of this subsection.

3) A faulty condition of a hardware sensor will only be

confirmed if the difference between the measured value by

the hardware sensor and the predicted values of both the

RPANN and TSANN-y is larger than the prespecified lower-

bound threshold.

4) If a faulty condition is confirmed at one of the hardware

sensors, the difference between the measured value and the

ANN-based predicted values will trigger an error warning

for fault diagnosis. Fault warning information, including

fault onset time, historical trend chart of the actual sensor

output, and the predicted reference value by the neural

network, will be printed out for online inspection by the

plant operator.

Last but not the least, in addition to online fault diagnosis, the

proposed DOFD, as depicted in Figure 7, can replace the function

of the faulty hardware sensors to continuously provide reference

output of the monitored parameter. The detailed procedure and

the associated benefits are summarized as follows:

1) once an abnormality of a hardware sensor is detected by

DOFD, the faulty sensor will be isolated from the redundancy

set. Diagnosis data of the faulty hardware sensor will be

printed out for more in-depth inspection by the plant

operator.

FIGURE 7
Distributed online sensor fault diagnosis (DOFD) scheme proposed in this study based on the RPANN and TSANNs.
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2) More importantly, the ANN-based analytic redundancy can

replace the function of the faulty hardware sensor to further

provide prediction of the monitored sensor parameter. As a

metaphor, the ANN-based analytic redundancy can perform

an analytic “measurement” of the monitored parameter, so

the setting of a triple redundancy is still retained even if one of

the hardware sensors experiences abnormality.

3) In this manner, no change has to be implemented for the

reactor such as power reduction or even shutting down for

emergence maintenance. Possible on-site repairment or

replacement of the faulty sensors can be carried out in the

next scheduled periodic maintenance of the power plant. This

is of high interest for economy of the power plant since the

reactor can be maintained in full-power mode until the next

scheduled maintenance.

The above-mentioned algorithms for detecting abnormality

in the hardware sensors based on predicted values of the RPANN

and TSANNs are defined according to the interquartile range

(IQR)-based outlier detection method (Han et al., 2011), which is

described as follows:

(1) Step 1: calculation of the interquartile range (IQR).

At a given time t, the absolute deviation |Δt| between the

predicted value by the ANN, termed as yANN,t, and the actual

output of the hardware sensor ŷt is calculated as

|Δt| �
∣∣∣∣ŷt − yANN,t

∣∣∣∣ (3)

Then, a buffer array that can store 100 values was created.

The values of the absolute error at the time t |Δt| and at the

preceding 99 s, i.e., from |Δt−1| to |Δt−99|were stored and sorted in
the buffer array in the ascending order. The value at the 75%-

position of the sorted array is defined as the upper quartile Q3,t,

while the value at 25%-position is defined as the lower quartile

Q1,t. The interquartile range (IQR) at time t, termed as IQRt, is

then given as

IQRt � Q3,t − Q1,t (4)

(2) Step 2: determination of the fault warning threshold.

The fault threshold as the lower bound at the time t is then

calculated as

Tht � kiqr × IQRt (5)

Hence, it is important to find an appropriate value of kiqr
depending events of interest (Lin and Wu, 2019). It should be

noted that in an actual PWR power plant, stochastic fluctuations

of physical parameters even during a steady-state operation are

inevitable. Therefore, hardware sensors normally allow a ± 1%

measurement uncertainty. To avoid misjudgment within the

range of measurement uncertainty, the value of kiqr is set as

21.5 in this study, with which the uncertainty of ± 1% will be

filtered out and not be identified as a fault event.

(3) Step 3: comparison of |Δt| with Tht for fault detection.

In case |Δt| is smaller than the predefined lower-bound

threshold Tht, the hardware sensor is assumed to be in normal

condition. No action or attention should be paid. However, if

the deviation |Δt| is larger than the predefined threshold Tht,

this means that the hardware sensor might experience an

abnormality. Furthermore, to avoid misjudgment caused by

sporadic outlier data, a fault warning will be activated only if

this abnormality lasts for 10 s without interruption. In this

manner, sporadic exceptions will also be filtered out and will

not activate any fault alerts. The fault warning information

includes fault onset time, the historical trend chart of the actual

sensor output, and the predicted reference value by the neural

network.

To summarize, with the proposed fault diagnosis scheme

(DOFD), as depicted in Figure 7, online monitoring and fault

diagnosis of the hardware sensors in a redundant set of physical

hardware sensors can be readily realized. Furthermore, the

DOFD scheme can provide analytic “measurement” of the

monitored sensor parameter, with which the setting of a triple

redundancy is still retained even if one of the hardware sensors

experiences abnormality.

Results and discussion

Construction and training of the RPANN
and TSANNs

As mentioned previously, the pressure sensor of the

primary-circuit pressurizer is chosen as the target sensor of

investigation in this study, for which the relevant parameter-

based ANN (RPANN) black-box model was established. For

the four transient conditions as defined in the Preparation of

full-scope simulator data for ANN training subsection, the

dataset retrieved from the CPR1000 full-scope PWR simulator

was first resampled and then used as the training, validation,

and test of the RPANN.

The training cure of the RPANN is depicted in Figure 8, in

which the mean squared errors (MSE) between the predicted

value and the expected target value are shown with

progression of the learning process. The blue, green, and

red lines represent the MSE of the training, validation, and

test set, respectively. After ~1000 epochs of iteration, the MSE

of the training, validation, and test set all converged to the

order of magnitude of 10−5. A slight increase of the MSE was

observed after 1522 epochs of iteration. To avoid overfitting of

this further upward trend, training was manually stopped at

1605 epochs, after which the MSE of the training set shows no

more decreasing trend.

The final linear regression relations between the

predicted values and the target values are depicted in

Figure 9. “Output” denotes the predicted value by the

trained RPANN, while “Target” denotes the expected
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target value of the pressurizer pressure, which is obtained

from the full-scope PWR simulator. As observed in the

figure, an excellent good agreement exists between

“Output” and “Target”. With the trained RPANN, an

accurate prediction can be provided for all the training,

validation, and test set.

FIGURE 8
Training curve of the relevant parameter-based ANN black-box model (RPANN).

FIGURE 9
Linear regression relations between the predicted values and the target values for the RPANN.
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To further verify the generalization ability of the trained

RPANN, an additional operational condition for verification was

defined as follows: at a constant rate of 0.75% FP/min, the reactor

power is reduced from the steady-state condition of full power

(1000 MWe output) to a lower power output of 180 MWe and is

then maintained stable at 180 MWe. This operational condition

is different to the four operational conditions defined for training

of the RPANN. Figure 10 then compares the predicted pressure

FIGURE 10
Verification of the generalization ability of the RPANN.

FIGURE 11
Training curve of the time series-based ANN checking model (TSANN) established for pressure of the primary-circuit pressurizer.
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by the trained RPANN (dotted red line) with that retrieved from

the full-scope PWR simulator (solid blue line). Although the

operational condition defined for verification is not used for

training, validation, or test of the RPANN, the pressure changing

trend predicted by RPANN agrees well with that given by the full-

scope simulator. Despite some deviations observed at the

inflection points in the figure, the maximal deviation between

the predicted values and the target values is still less than 0.2%.

This reflects a strong generalization ability of the RPANN

established based on relevant parameters.

As mentioned above, time series-based ANN (TSANN)

checking models were established for the five input variables

of RPANN and for the pressure of the primary-circuit

pressurizer. The structure of the TSANNs is the same as

shown in Figure 6. As an example, the training curve of the

TSANN established for pressurizer pressure is depicted in

Figure 11. The mean squared error (MSE) converges to the

order of 10−5 after about 3000 epochs of iteration. Overall, the

best performance with the smallest MSE was achieved at

3297 epochs of iteration. A slight increase of the MSE was

observed in the validation set after 3500 epochs; hence, the

training was then stopped to avoid overfitting.

Figure 12 shows finally the linear regression relation between

the TSANN output and the expected target. With the trained

TSANN, the predicted output shows an excellent agreement with

the expected target for the training set, verification set, and

test set.

To further verify the generalization ability of the trained TSANN,

Figure 13 compares the predicted pressure by the TSANN (red

dotted line) with the expected pressure given by the full-scope

simulator (solid blue line) for the verification conditions of

reducing the reactor power from 1000MWe to 180MWe at a

constant rate of 0.75% FP/min. The predicted transient changing

trend of the pressure agrees well with the expected value depicted

with a solid blue line with amaximal deviation less than 0.1%.Hence,

this also reflects a strong generalization ability of the TSANN

established based on historical data.

Feasibility study of the proposed
distributed online sensor fault detection
scheme

As reviewed in a recent EPRI technical report (Rusaw and

EPRI Project Manger, 2014) based on a large amount of statistical

data and extensive experiences of instrument calibration

collected at 18 different NPPs, constant-bias fault (CBF) is

found to be the most frequent sensor fault mode in NPPs that

account for ~40% of all statistical drift faults. Therefore, in this

study, feasibility investigation on the practical application of the

proposed distributed online sensor fault detection (DOFD)

scheme was conducted by taking typical examples of CMF of

hardware sensors. It should be noted that feasibility investigation

was conducted in this study based on the CPR1000 full-scope

FIGURE 12
Linear regression relations between the predicted values and the target values for the TSANN established for pressure of the primary-circuit
pressurizer.
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PWR simulator so that the “PWR reactor” in Figure 7 was

replaced with the full-scope simulator.

The so-called “constant-bias fault” (CBF) is characterized by

a constant bias between the actual output of the sensor and the

expected output of the sensor. Mathematical representation of

CBF can be described as

yt � ŷt(1 + ΔCBF) (6)

where yt is the actual output of a faulty sensor experiencing

CBF at time t, ŷt is the expected output of the sensor under

normal condition at time t, and ΔCBF accounts for a constant

percentage of bias between the expected sensor output and

the actual sensor output. Detailed specifications of the

operational condition defined for investigation are given as

follows:

1) After 1400 s steady-state operation of the full power output of

1000 MWe, the reactor power is gradually reduced to a lower

power output of 180 MWe at a constant rate of 0.75% FP/min.

This operation condition is defined above for verification of

the generalization ability of ANNs.

2) A sporadic relative deviation of +1% was assumed to occur at

one of the redundant pressure sensors of the primary-circuit

pressurizer measuring at 600 s counting from the operating

zero hour. Furthermore, a fragment of relative deviation (less

than +1%) lasting for 4 s was assumed to occur at one of the

redundant hardware sensors at the time period from 650 to

653 s counting from the operating zero hour. The motive for

assuming sporadic deviations is to test whether the proposed

online fault diagnosis scheme can filter out sporadic

fluctuations of stochastic nature.

3) A constant-bias fault (CBF) was assumed to occur at one of the

redundant pressure sensors of the primary-circuit pressurizer,

beginning at the time of 1001 s counting from the operating

zero hour. Considering the fact that the threshold of fault

warning in the traditional means of hardware redundancy is

± 5% relative error and the measurement uncertainty of a

hardware sensor is typically ± 1%, the relative bias of the sensor

in test condition is set as ΔCBF � +2%.

Figures 14A,B are the printed-out monitoring curves of the

pressure changing trends after the +2% constant-bias fault has

been identified by the fault diagnosis (DOFD) scheme. The solid

lines in both subfigures (a) and (b) denote the pressure by the

actual sensor output. As mentioned previously, in the feasibility

investigation conducted in this study, the so-called actual sensor

output was provided by the full-scope simulator. The dotted line

in subfigure Figure 14A is the pressure predicted by the RPANN

in the DOFD scheme, with the prerequisite that no abnormality

was detected in all the five input parameters of the RPANN. The

dotted line in subfigure Figure 14B is then the pressure predicted

by TSANN-y established for the pressurizer pressure.

The following can be observed in Figure 14A:

1) Before the onset of CBF at 1001 s, the actual sensor output

agrees well with the analytically predicted value by the

RPANN. Due to the setting in the IQR-based outlier

detection method, the sporadic relative deviation of +1% at

FIGURE 13
Verification of the generalization ability of the TSANN established for pressure of the primary-circuit pressurizer.
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600 s and the deviation fragment of less than +1% during

650–653 s were successfully filtered out. No fault warning was

reported by the RPANN in the DOFD scheme.

2) At the time of 1001 s, due to the occurrence of a +2% CBF in the

hardware sensor, the actual sensor output increases by +2% from

the expected pressure of 15.40–15.71MPa. With the trained

RPANN, however, the expected pressure can still be provided

despite the +2% CBF in the hardware sensor. The difference

between the actual output and the predicted output by the

RPANN at 1001 s will trigger an early warning of a faulty

condition in themonitored hardware sensor at its onset of 1001 s.

3) With progression of the transient process, the +2% CBF

persists in the faulty hardware sensor. The RPANN can

still provide the correct value. According to the IQR-based

algorithm described above, a warning of difference exceeding

the lower-bound threshold has already been initiated at the

time of 1001 s from the RPANN. After 10 s without

interruption, the persistent warning indicates then a faulty

condition might have occurred in the monitored hardware

sensor and a fault warning was then triggered at 1011 s.

The printed-out monitoring curve with TSANN-y is

different, which is depicted in Figure 14B:

1) Before the onset of CBF at 1001 s, the actual sensor output agrees

in general well with the analytically predicted value by TSANN-y.

However, the sporadic relative deviations have a certain impact

on the predicted pressure by the time series-based ANN.

Nevertheless, no fault warning was reported by TSANN-y.

2) The time series-based TSANN-y can also detect the abnormal

status of the hardware sensor after the occurrence of +2%CBF

at 1001 s. The persisting difference between the actual sensor

output and the prediction by TSANN-y has also triggered a

fault warning at 1011 s. Together with the fault warning

triggered by the RPANN at 1011 s, the constant-bias fault

condition, hence, can be confirmed.

FIGURE 14
Monitoring curve of the pressure in the primary-circuit pressurizer with the RPANN and TSANN for the case of a +2% constant-bias fault
occurring at 1001 s. (A) RPANN. (B) TSANN-y.
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3) However, the sudden change of the pressure due to the+2%CBF

is not learned by TSANN-y. Consequently, TSANN-y cannot

further provide an accurate estimation of the expected pressure.

Upon confirmation of the constant-bias fault condition at 1011 s

by both the RPANN and TSANN-y, the faulty hardware sensor

can be isolated from the redundancy set. The predicted pressure

by the RPANN can then be further used as a reference value to

analytically reconstruct the reading of the pressurizer pressure as

a replacement for the faulty hardware sensor.

To summarize, the DOFD scheme proposed in this study can

serve as online monitoring and fault diagnosis of redundant

hardware sensors. A reconstruction of readings of faulty

hardware sensors can also be conducted with analytically

prediction by the previously trained RAPNN. In this manner,

the operation condition of the reactor can be retained despite the

onset of faulty conditions in the redundant sensors. This is of

high interest for reducing maintenance cost and enhancing

economic competitiveness of a nuclear power plant since the

reactor can be operated in full-power mode until the next

scheduled maintenance. Possible on-site repair or replacement

of the faulty sensors can be postponed and conducted in the next

scheduled periodic maintenance of the power plant.

Conclusion and outlooks

In view of the problem that redundant hardware sensors with

the same functional structure and in the same working

environment in PWR nuclear power plants are vulnerable to

common mode faults (CMF), analytic software redundancy

based on an artificial neural network (ANN) was constructed in

this study by using the high-fidelity dataset provided by a full-

scope PWR simulator. In compliance with the “diversity

principle,” a distributed online sensor fault detection (DOFD)

scheme was then proposed by combining the ANN-based analytic

redundancy and the existing hardware redundancy. Taking the

pressure sensor of the PWR primary-circuit pressurizer as an

example, the feasibility of the DOFD scheme to realize the

functions of sensor monitoring, fault diagnosis, early warning,

and reading reconstruction is preliminarily investigated. The main

results and conclusions derived are summarized as follows:

1) due to the limited availability of actual real plant data, a full-

scope PWR simulator was employed in this study to provide

high-fidelity data close to the actual operation state of a typical

1000MWe PWR power plant for the offline training and

validation of the ANN. Compared to the traditional point

reactor model, the full-scope simulator has the advantage of

providing a complete dataset covering all the important

components of an actual PWR power plant. Furthermore, it

is also easy to expand the training and validation data for ANNs

covering a wide range of possible operational conditions or even

accidental conditions of a PWR power plant in order to enhance

the generalization ability of the ANNs established in this study.

2) By using the complete dataset obtained in a full-scope PWR

simulator as training, validation, and test data, a relevant

parameter-based ANN black-box (RPANN) model was

established by employing the BP learning algorithm.

Combining the ANN-based analytic redundancy with the

existing hardware redundancy, a distributed online sensor fault

detection (DOFD) scheme was proposed. Its feasibility of online

monitoring of the hardware status and an online diagnosis of

sensor faults was successfully demonstrated with the pressure

sensor in the primary-circuit pressurizer as an example.

3) More importantly, the ANN-based analytic redundancy can also

replace the faulty hardware sensor to provide an analytically

reconstructed reading of the monitored sensor parameter

without having to reduce the reactor power output or even

shut down the reactor for emergency maintenance. On-site

calibration frequency of hardware sensors in redundant

channels can, hence, be effectively reduced. This is of vital

importance in reducing the operation and maintenance costs

of existing PWR nuclear power plants. The diverse redundancy

in the DOFD scheme combining analytic software redundancy

and physical hardware redundancy can effectively reduce the

threat of CMF of redundant hardware sensors on the operational

safety of the reactor systems.

Compared to hardware redundancy, the ANN-based software

redundancy proposed in this study shows the advantage of cost-

efficiency and high flexibility that can be customized according to

the requirement of the monitored objective sensor. However,

before its possible deployment in an actual PWR power plant,

the following points should be considered in future studies:

1) First, it should be noted that the core of the sensor fault detection

scheme proposed in this study is a relevant parameter-based

ANN black-box (RPANN) model. Essentially speaking, the

RPANN is a mathematical approximation of the physical

relation between the chosen input thermal-hydraulic variables

and the objective sensor parameter. Hence, the choice of input

thermal-hydraulic variables is of vital importance for

performance of the RPANN. A PWR power plant is a large

system, and the physical relations between different thermal-

hydraulic parameters are rather complex. An appropriate choice

of input variables for the RPANN, hence, requires expert

experience, if the proposed online sensor diagnosis scheme is

to be deployed in actual PWR power plants in the future.

2) Furthermore, it should be pointed out that the preliminary

investigation conducted in this study on the feasibility of the

proposed DOFD is based on a known constant-bias fault

(CBF). The fault mode and the associated impact on the

actual sensor output were already well-defined. However, if

the proposed DOFD scheme is to be deployed in a real PWR

power plant, its responsibility of online sensor monitoring and
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fault diagnosis should be fulfilled without any given

information on the fault mode or the related consequences.

Therefore, more comprehensive investigations of the proposed

DOFD scheme on the diagnosis of more fault modes, especially

those frequently encountered in actual PWR power plants,

should be conducted in future studies.

3) Last but not the least, the proposed DOFD scheme also has

important application prospects in the next generation of

advanced small modular reactors (SMRs). Since SMRs are

usually deployed in remote areas and used for multifunctional

purposes, the working condition of SMRs will be more rapidly

changing. Simultaneously, the number of maintenance

personnel of SMRs will be much lesser than that of

traditional PWRs. Therefore, SMRs will require more online

intelligent fault diagnosis methods of important sensors, such as

the one proposed in this study.
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