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1 Introduction

The high penetration of renewable energy sources in distribution networks increases

the difficulty of centralized operation and regulation (Chai et al., 2018; Magdy et al., 2021;

Zhang et al., 2022). To improve the integration and schedulability of distributed energy,

various distributed control methods based on the distributed generation cluster are

proposed in (Muhtadi et al., 2021; Patel et al., 2022). The premise of realizing distributed

control of distribution network is the reasonable division of distribution network cluster,

which can be found in many studies. The electric distance is one of the most commonly

used indicators of cluster division in distribution networks (Lagonotte et al., 1989). Ref

(Islam et al., 2014). separated the network into multiple regions clusters in view of the

electrical distance, and proposed a decentralized adaptive emergency control scheme to

stabilize the voltage of power system. According to the improved modularity index, the

distribution network with distributed photovoltaic systems was divided into multiple

clusters (Zhao et al., 2017). Furthermore, k-means algorithm was applied in (Cotilla-

Sanchez et al., 2013) to divide the power network. Vinothkumar et al., comprehensively

considered the planning prospect of distribution network and used hierarchical clustering

algorithm to obtain the best siting for distributed generation (Vinothkumar and Selvan,

2014). The indexes and algorithms of cluster division are studied in (Cotilla-Sanchez et al.,

2013; Vinothkumar and Selvan, 2014; Liang et al., 2020), which take different demands of

distribution network operation planning and scheduling into account. However, there are

rare studies that consider the shared energy storage in cluster division.

In this paper, a dynamic partition method of the shared energy storage and prosumers

based on community detection algorithm is proposed. The main opinions of this paper

are as follows: 1) A comprehensive performance index of cluster division considering

network structure and function is proposed. The local comprehensive index and global

comprehensive performance index are established on the basic of the structural index and

the functional index. The former is the combination of the electrical coupling index and

spatial distance index, and the latter adopts the storage load demand matching index.
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Based on the comprehensive performance index, the shared

energy storage and prosumers in the whole region are divided

into multiple internally closely connected and externally non-

interfering storage prosumer clusters ulteriorly; 2) A hierarchical

method based on the adaptive k-means clustering is put forward

of shared energy storage. Through the adaptive k-means

clustering algorithm, the energy storage resources, which

belong to the same cluster, are finally segmented into multiple

shared energy storage sets with different loss characteristics and

transient response characteristics.

2 Cluster partitioning of active
distribution networks with prosumers

2.1 Cluster division indicators of active
distribution networks

Firstly, the shared energy storage and prosumers are

preliminarily clustered from the aspects of electrical coupling

degree, geographical spatial correlation and supply-demand

balance. The specific cluster division indexes are as follows:

The electrical coupling degree index reflects the mutual

influence of electrical quantities between nodes where

prosumers and shared energy storage are located in. The

comprehensive electrical distance between various nodes is

adopted as the electrical coupling degree index in this paper.

Due to the strong coupling relationship between active and

reactive power in distribution network, it is essential to

comprehensively consider the impact of active and reactive

power on node voltage when partitioning. As well as the

relationship between the two nodes is not only related to

itself, but also related to other nodes. Therefore, the

comprehensive electrical distance is the weighted sum of the

comprehensive electrical active distance, which can be calculated

by the he Euclidean distance method based on node voltage

active power sensitivity, and the comprehensive electrical

reactive distance, which can be obtained with the analogous

calculating method.

The spatial geographical location index is applied to describe

the geospatial correlation degree between distributed park

prosumers and shared energy storage resources.

Geographically close distributed energy sources have high

similarity in power waveform, which is convenient for unified

prediction of user-side distributed energy. Meanwhile, the

proximity of prosumers and shared energy storage in spatial

location is suitable for unified collection of energy storage

information, which is conducive to real-time transmission of

user demand data and timely response of shared energy storage

services. The Euclidean distance of geographical space is used as

the spatial location index in this paper. Taking the weighted sum

of the electrical distance and the spatial geographical distance as

the comprehensive distance, which can be defined as the edge

weight of the network nodes of modularity index, so as to obtain

the improved modularity index (Zhao et al., 2017), which can

comprehensively describe the structural strength of the cluster

from both the electrical topological structure and the spatial

geographical structure.

Except for taking the close connection degree of the

topological structure between prosumers in the park into

consideration, the storage and prosumers partition should

also ensure that the shared energy storage resources within

the cluster can satisfy the active and reactive power demand as

much as possible. According to the minimum active power limit

negotiated by the shared energy storage aggregator and the

prosumers in advance, the active power charge and discharge

unbalance of energy storage in any cluster z can be obtained.

Assuming that the intra-day time length is T, the active demand

matching index of cluster z can be acquired based on the charge

and discharge imbalance of energy storage. Besides, the reactive

power of each node in the cluster should be balanced locally as

far as possible to reduce the reactive power transmission across

clusters. Based on the maximum historical voltage deviation of

each node and the reactive power sensitivity matrix, the

minimum reactive power demand (Zhao et al., 2017)

required in the cluster can be figured out and then the

reactive demand matching index of cluster z is obtained,

which reflects the reactive power balance ability of the

cluster. When the inverter capacity of energy storage in the

cluster is greater than the sum of reactive power requirements,

the demand reactive power of this cluster is completely satisfied.

Consequently, the local comprehensive index of cluster is the

weighted sum of the modularity index, the active demand

matching index and the reactive demand matching index,

and the global comprehensive index is the average of the

local comprehensive index.

2.2 Cluster partitioning algorithm based
on community detection

The community detection algorithm is used in the optimal

cluster division to achieve the maximum global comprehensive

index (Javed et al., 2018). The local comprehensive index of each

cluster is used as the local optimization objective, and the global

comprehensive index of all clusters is regarded as the global

optimization objective for adjusting the cluster division. Then,

the community detection algorithm is applied to divide the

shared energy storage and prosumers into clusters. The

specific process is as follows:

1) Initialize each node as a separate cluster; 2) For any node

m, moving it to the cluster where node n is located, and the

increment of local optimization objective after joining is

calculated and recorded. The node with the maximum

increment of local optimization target after joining is divided

into the cluster where node n is located; 3) Repeat step 2) until the
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global optimization objective reaches the maximum, and then the

optimal clusters can be solved.

3 Hierarchical processing of shared
energy storage aggregation

3.1 Multi-characteristic indexes of shared
energy storage

In order to select the appropriate shared energy storage

unit to achieve diversified application of energy storage in

multiple scenarios with the minimum operating cost (Dai

et al., 2021; Liu et al., 2021; Li et al., 2022), such as peak

regulation and frequency modulation, renewable energy

consumption, demand side response, reactive power

compensation, and emergency reserve, the loss

characteristics and transient response characteristics of

energy storage can be hailed as the selection indicators

and the energy storage resources with the same

characteristics are aggregated and regulated optimally in

this paper.

The shared energy storage resources are mainly

composed of the energy-type energy storage, such as

lithium iron phosphate battery, all-vanadium flow battery,

sodium sulfur battery and lead-acid battery, and the power-

type energy storage including electrochemical

supercapacitor and superconducting magnetic energy

storage. The capacity and power loss characteristics of

energy storage are determined by a series of energy

storage loss characteristic parameters. The life loss of

energy-type energy storage is related to the depth of

discharge, the state of charge, and the charging/

discharging power (Wang et al., 2020; Liang et al., 2022).

The life of power-type energy storage is greatly limited by the

number of charge and discharge cycles. These influencing

factors can be expressed by the related loss characteristic

parameters which are taken as the loss characteristic indexes

of energy storage in this paper.

Different energy storage differs in active regulation capacity

and regulation efficiency, which will affect the economy of shared

energy storage and the stability of power system. Therefore, in the

aggregation process of abundant shared energy storage, the

regulation response time should be taken as one of its

characteristic quantities. There is a specified relationship

between the transient response time and the response time

constant of energy storage, that is, the response time constant

reflects the transient response speed. Thus, the response time

constant is chosen to be the transient characteristic index of

energy storage in this paper.

FIGURE 1
Dynamic hierarchical partition schematic diagram.

Frontiers in Energy Research frontiersin.org03

Peng et al. 10.3389/fenrg.2022.1009972

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.1009972


3.2 Dynamic partition method based on
adaptive clustering

As one of the most commonly used clustering algorithms,

k-means algorithm is uncomplicated and has fast convergence

rate (Cotilla-Sanchez et al., 2013). The main feature of k-means

algorithm is to randomly determine k initial clustering centers,

divide the network into k regions on the basic of distance

comparison, and minimize the sum of squared errors (SSE) of

all points and their related clustering centers in the iterative

process. However, the random kmay lead the results converge to

local optimum. For achieving the better partitioning results, the

elbow method is used in this paper to optimize the selection of

clustering center k and realize adaptive clustering additionally.

The shared energy storage in the cluster is divided by the

improved k-means clustering. With the evaluation index SSE

consisted of the loss characteristics and transient response

characteristics of energy storage, the optimal number of

clusters depends on the reduced contribution rate of SSE so as

to achieve the adaptive clustering. The shared energy storage sets

with different loss characteristics and transient response

characteristics can be obtained additionally.

The schematic diagram of the dynamic hierarchical partition

method described in this paper is presented in Figure 1. Firstly,

for maximizing the global comprehensive performance index

composed of the electrical coupling index, spatial location index,

and storage demand matching index, the distribution network

with the distributed energy storage and renewable energy is

segmented into several clusters. Then, the shared energy

storage in the cluster is processed hierarchically. Taking

region 5 as an example, according to the loss characteristics

and transient response characteristics, the hierarchical

processing of shared energy storage resources in region 5 is

completed by adaptive k-means clustering.

4 Discussion and conclusions

A dynamic partition mechanism of shared energy storage

and distributed prosumers based on community detection

algorithm and adaptive clustering is proposed in this paper.

First of all, a global comprehensive performance index

considering the electrical coupling degree, spatial location,

and the demand matching degree of storage is established.

With the goal of maximizing the global comprehensive

performance index, the community detection algorithm is

used to divide the shared energy storage and prosumers into

clusters. Then, for each cluster, according to the loss

characteristics and transient response characteristics of

energy storage, the reduction contribution rate of the

k-means clustering evaluation index is introduced to

realize the adaptive judgment of the optimal cluster

number, so as to complete the hierarchical processing of

shared energy storage resources in the cluster. The proposed

scheme is a feasible and realistic cluster partition method,

which can aggregate the shared energy storage with the same

characteristics, simplify the difficulty of operation

scheduling, and realize a variety of applications of energy

storage with a low operating cost.
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