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The long-term operation of a railroad usually leads to defects in its rails, axles,

fasteners, etc. These problems directly affect the safety of the rail system.

Therefore, it is important to ensure the health of key railroad structures. In this

paper, a deep learning-based rail damage identification method is established

by analyzing the rail vibration signals collected with piezoelectric ceramic pads.

The multiple features of vibration signals are combined and then reconstructed

into grayscale maps as the inputs of the model. The key information of the

grayscale maps is extracted using neural networks. The idea of pre-convolution

is used to solve the problem that the model pays more attention to certain

features due to the different input sizes and the implied weights of the features.

Finally, the performance of the three convolutional neural networks (CNN) in rail

damage detection is evaluated and compared. The results show that the CNN

with pre-convolution and Residual structure has better recognition for the

presence of rail damage than other methods.
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1 Introduction

Rail is an environmentally friendly mode of transportation. Compared to roads, rail

transportation uses less fuel and emits fewer greenhouse gases. Although railroads are

generally considered the safest mode of transportation in the world, disasters such as train

derailments are still difficult to completely avoid. With the increase of rail traffic density,

the load of steel rails, axles, fasteners and other components increases. Long-term use

under such high pressure can cause defects, stripping, contact fatigue cracks, and other

damage to the components. These defects cause most of the train derailment accidents,

greatly affecting the safety of freight and people’s travel.

As early as 1915, attempts were made to use magnetic analysis of rail damage in the

laboratory. Up to now, rails have mainly relied on eddy current, ultrasound, vibration and

other techniques for damage detection. Eddy current detection technology has a better

recognition effect on the defects of the rail surface. The heating of the conductor by eddy

current can cause a distribution of temperature fields, which suggests that pulsed eddy

current thermography can be used to image contact fatigue cracks and thus analyze and

detect defects (Wilson et al., 2011). However, eddy current effects are affected by many
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factors, and eddy current-based detection methods are not

applicable to detecting internal defects in conductors.

Ultrasonic techniques are commonly used to detect internal

defects in equipment. The internal damage of rails can be

directly observed by ultrasonic transducers (Han et al., 2015).

The introduction of support vector machines to establish a

classification and analysis model for the results of ultrasonic

inspection of rails allows the identification of rail damage to be

more accurate, objective, and automated (Li et al., 2020). Some

studies have shown that the combination of eddy current

technology and ultrasound technology has a better recognition

effect for rail damage (Thomas et al., 2007). However, ultrasonic

inspection often requires a coupling agent to fill the gap between

the probe and the object under test, and the tilt angle of the probe

has a large variability of results for different parts, which makes

ultrasonic inspection have many limitations in practical

applications. In fact, defects in the metal will cause the

frequency of the collected signal to change when it undergoes

forced vibration. Thus, among the fault detection methods,

vibration-based detection has the advantages of being more

energy efficient, safe, and accurate. The detection of vibration

signals can be divided into time-domain, frequency-domain, and

joint time-frequency domain methods depending on the

parameters. Among these theoretical-based research methods,

the commonly used time-frequency analysis methods such as

Fourier transform and wavelet transform are more reliable in

detecting the presence of defects in rails (Liang et al., 2013). The

wavelet transform is used to identify rail damage, visualize the

specific damage (Cheng et al., 2010), and determine the specific

location and degree of damage by analyzing the strain modal rate

of change (Zhao et al., 2012), which more intuitively

demonstrates the reliability of the theoretical study based on

the vibration signal analysis method. The combination of time-

frequency based theoretical analysis methods with probabilistic

and geometric methods for joint diagnosis has excellent

performance in locating and extracting rail defects (Long and

Loveday, 2013; Xu et al., 2014). However, the human detection

method has the disadvantage of being influenced by both

technical and human subjective factors, and the large area

covered by the railroad and the high utilization rate require

that the process of damage detection be more accurate and

automated.

In recent years, deep learning methods have developed

rapidly with the improvement of computer hardware.

Compared with the traditional damage detection methods,

deep learning is a machine learning algorithm that uses neural

networks as the main means. It has better results for feature

extraction and recognition. A large amount of image data can

often be generated by eddy current and ultrasonic inspection

techniques, which fits well with neural networks (Tian et al.,

2021). The features of rail surface images are extracted by neural

networks (Han et al., 2021) or by combining neural networks

with saliency cueing methods (Lu et al., 2020), both of which

perform well for automated identification of rail damage. In

addition, image data can be processed into time series and fed

into recurrent neural networks to solve the problem of difficulties

in manually extracting complex features (Xu et al., 2020).

Similarly, deep learning methods based on the analysis of

vibration signals can be applied to detect and locate rail

defects (Suwansin and Phasukkit, 2021; Yuan et al., 2021).

The study showed that combining theoretical analysis

methods of vibration signals with Long Short-Term Memory

(LSTM) can achieve better recognition results than traditional

methods (Zhang et al., 2018). However, the computational cost

due to complex deep learning algorithms is not suitable for large-

scale automation needs. CNN, with fewer model parameters and

fast computing speed, have good performance in various injury

detection tasks (Flah et al., 2020; Lei et al., 2020). Thus, the use of

relatively simple convolutional architecture combined with better

feature selection and input methods is more suitable for the

modern needs of rail injury detection.

In this paper, in order to analyze the vibration signals of rails

more comprehensively and extract key features from the original

signals, we first calculated four kinds of feature information using

traditional methods of signal processing, and then combined

these four features and original signals, reconstructed them into

grayscale maps, and input the maps into three neural networks

with different structures, so as to predict whether there is

potential rail damage in the vibration signals. Finally, the

performance of three CNN architectures in rail damage

detection is compared and analyzed. The results show that the

CNN with both pre-convolution and residual structures can

achieve higher classification accuracy under the premise of

lightweight. Therefore, it is more suitable for modern rail

damage detection needs.

2 Materials and methods

The architecture diagram for rail damage identification is

shown in Figure 1.

2.1 Data pre-processing process

The vibration signal data used for rail damage detection in

this paper was obtained from the Tianjin (China) field

experimental data. The rails are processed into various

damage levels, which were excited with excitation signals of

4 k, 6 k, and 10 kHz frequencies, and then the original

vibration waveforms of the rails under various health

conditions are collected using piezoelectric ceramic tiles. The

sampling frequency was 100 kHz, and a length of 4,000 data

points was selected as the step size to cut the signal data for

subsequent calculation of four different signal characteristics. A

total of 12,987 samples were generated, and the samples were
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disrupted and split into the ratio of 6:2:2 to ensure the

randomness of the samples. The final number of samples in

the training set was 7,793, and the number of samples in both the

validation and test sets was 2,597.

2.2 Selected features

The time-domain analysis method of vibration signals shows

the variation of the signal with time, which is simple and easy to

operate. Frequency-domain analysis is also a commonmethod in

signal analysis. For a complex signal acquired, if analyzed from

the perspective of the signal waveform, it can be considered as a

superposition of several sine waves of different frequencies. The

frequency-domain analysis method describes the amplitude

distribution of sine waves of each frequency at a static point

in time. In this paper, the Fast Fourier Transform (FFT), Mel-

Frequency Cepstral Coefficients (MFCC), Power Spectral

Density (PSD), and Cepstrum are selected as the features for

the subsequent processing to analyze whether there is damage in

the rail. These features are extracted from the original signals

based on both time and frequency domain analysis methods.

2.2.1 Fast fourier transformation
The Discrete Fourier Transform (DFT) is widely used in the

analytical processing of signals as a mainstream algorithm for

frequency domain analysis (Sorensen et al., 1987). The Fourier

transform can convert a time-domain signal into a frequency-

domain signal. As shown in Eq. 1, by the idea of discrete Fourier

transform, we can decompose any segment of the signal into the

form of a sum of several basis functions from the perspective of

multiple frequency components. The physical meaning of this

decomposition is expressed as a projection of the original

function onto each set of base functions.

X(k) � F[x(n)] � ∑N−1

n�0
x(n)e− j2πkn

N (1)

The FFT is a fast algorithm for the DFT that is based on a

recursive partitioning algorithm that requires only half of the

operations for each calculation to produce the results for the

entire sequence. The algorithmic process of FFT can be simplified

as the butterfly operation shown in Figure 2 is performed

continuously on the parity sequence to complete the

conversion of the signal from the time-domain to the

frequency-domain. Each butterfly operation requires only one

plural multiplication and two plural additions.

The total number of operations of DFT and FFT is shown in

Eqs 2, 3. It is obvious from the equation that the number of

computations of FFT is much less than that of DFT, so using FFT

can reduce the computation time and thus improve the speed of

feature extraction.

FIGURE 1
Damage detection model architecture diagram.

FIGURE 2
Butterfly operation in Fast Fourier Transform.
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ADFT � N2 + N(N − 1) (2)
AFFT � (N/2)log2 N + N log2 N (3)

Due to the symmetry of the FFT results, we usually use half of

the resulting data, which results in a 1 × 2,000 feature vector for

each sample in this paper after the FFT transform.

2.2.2 Mel-frequency cepstral coefficients
Davies and Mermelstcin proposed the Mel frequency based

on the auditory properties of the human ear. Mel frequency is in

nonlinear correspondence with frequency. As shown in Eq. 4,

Mel-frequency cepstrum coefficients are the frequency spectrum

features calculated by this nonlinear relationship. Mel cepstrum

is mainly applied to feature extraction and dimensionality

reduction of waveform data.

f Mel � 1125 × ln(1 + f
700

) (4)

As shown in Figure 3, MFCC generally goes through the

following steps: Pre-emphasis is used to amplify the high

frequencies to balance the spectrum, thus avoiding numerical

problems in the Fourier transform in the subsequent process and

improving the noise ratio of the signal. The frequency of the

signal changes with time. Assuming that the signal is fixed for a

short time, the framing operation makes the Fourier transform

on short frames and then concatenates adjacent frames to reduce

the effect of non-stationary time variation. Windowing is the

operation of adding a Hamming window, for example, to each

frame after splitting it (Song and Peng, 2008). One of the main

purposes of adding windows is to counteract the spectral leakage

caused by the FFT calculation. The final Short Time Fourier

Transform (STFT) is performed on each frame. The Mel filter

bank consists of several triangular filters, and the frequency-

domain signal obtained after the STFT is fed into the Mel filter

bank to calculate the energy value. Since our perception of sound

is not linear, a logarithmic operation is performed on the energy

during the calculation. Finally, since the filter bank coefficients

tend to be highly correlated due to calculations that can be

transformed into each other, in order to solve the problems this

correlation brings to machine learning training, it is generally

eliminated by using the Discrete Cosine Transform (DCT). In

this paper, the obtained 1 × 320 vector is used as the MFCC

feature of the original vibration signal by the above process.

2.2.3 Power spectral density
The power spectrum is also known as the power spectral

density. The power spectrum is used to describe the distribution

of signal power over the frequency spectrum, as the signal power

varies with frequency in the unit frequency band. The power

spectrum contains some of the same dimensional information as

the frequency spectrum, while discarding the phase information,

generally using frequency as the horizontal coordinate and power

as the vertical coordinate. The area of the image is numerically

equal to the energy of the signal, so the power spectrum is

analyzed from the energy perspective of the signal. The

calculation of power spectrum is mainly divided into two

methods. The first is the autocorrelation coefficient method,

and the second is the direct method, also known as the

average periodogram method. In this paper, Welch’s method

FIGURE 3
MFCC calculation flow.

FIGURE 4
PSD calculation process.
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is chosen. Welch’s method is a modified average periodogram

method, which allows the signal to overlap segments, which

allows the before-and-after correlation of the data to be

preserved. The signal is then windowed and then the average

periodogram is calculated, and the process is shown in Figure 4.

The Welch method solves the problem that the length of the data

produces increased fluctuation of the spectral curve and poor

resolution when using the average periodogram method to

process the data. In this paper, the 1 × 129 eigenvectors

calculated by the Welch method are used as the PSD features

of the original vibration signal.

2.2.4 Cepstrum
The essence of the cepstrum analysis is to take the logarithm

of the power spectrum and then perform the spectrum analysis.

The advantage of this is that the signal is introduced into the

inverse spectrum domain, and the periodic structure and

components of the spectrum can be analyzed and extracted in

the new time domain. The cepstrum is better for the analysis of

the periodic structure of the complex spectrum, and the

requirements for the location and transmission of the sensor

measurement points are small. For different location sensors, the

power spectrum is not the same due to the difference in

transmission paths, and the cepstrum can distinguish the

effects transmitted in the vibration domain. Thus, in the

process of cepstrum analysis, it is not necessary to consider

the effect brought on by the signal measurement. The signal

cepstrum is calculated as follows:

1) Fourier transform any time series signal X (t) to obtain X (f).

X(f ) � FFT[X(t)] (5)

2) The power spectrum is obtained by squaring X (f).

Sxx(f ) � X2(f ) (6)

3) Inverse Fourier transform of the power spectrum of the

vibration signal by taking the logarithm.

Cxx(t) � FFT−1[10lgxx(f )] (7)

In this paper, the calculated 1 × 4,000 vector is used as the

cepstrum feature of the original vibration signal.

2.3 Proposed models

2.3.1 CNN architecture
CNN is a kind of neural network that contains convolutional

computation and has a certain depth structure (Ma et al., 2021).

With the proposal of deep learning theory and the continuous

progress of computer hardware equipment, it is widely used in

various injury detection tasks, which can predict the injury

condition quickly and accurately. The input of the CNN

model in this paper consists of the original vibration signal

data and four features extracted by FFT, MFCC, power

spectrum, and cepstrum, where the calculated length of the

original vibration signal is 4,000, and the calculated length of

the features from FFT, MFCC, power spectrum, and cepstrum

are 2,000, 320, 129, and 4,000, respectively. Since discrepant data

can cause numerical problems in the training process of neural

networks, in order to speed up the process of gradient descent

and give meaning to the two-dimensional convolution of the

data, this paper first normalizes the original data and the four

features are computed as shown in Eqs 8, 9.

x′ � x − xmean

xstd
(8)

x � (x′xstd + xmean ) × 256 (9)

Here the result is expanded 256 times in order to give the data

similar information as a grayscale map. Then the five features are

stitched horizontally and then reconstructed into a 100 ×

100 two-dimensional grayscale information map. After a 4-

layer convolutional structure as shown in Figure 5, the

dichotomous data is obtained through the fully connected

layer as the output result for determining whether there is

damage in the rails.

2.3.2 CNN with pre-convolution
For the above-mentioned CNN, we note that the size of the

features computed by the traditional theoretical method varies,

and the direct stitching of the features will make the features with

larger sizes have larger weights in the training process of the

neural network, thus diluting the effect of the features with

smaller sizes. To address the above problem, we adopt a pre-

convolution processing method to improve the CNN by referring

to the idea of FCN.FCN makes it possible to input features of

different sizes into the same network by replacing the fully

connected layer in CNN with a convolutional layer (Long

et al., 2015). The difference between the two is that

convolution is a local connection while full connection is a

global connection. In fact, for full connection, the last feature

map is equivalent to a full connection of convolutional kernel size

if it is not expanded and the output dimension is directly used

instead. The concepts of maximum local and global are actually

equivalent, and thus a convolutional layer can be used instead of

a fully connected layer. As shown in Figure 6, in a traditional

CNN architecture, if a 14 × 14 image is convolved, the first

2 layers are the convolution and pooling layers, and the 3rd and

4th layers stretch the result of convolution into a one-

dimensional vector of length 2, which is thus used as the

prediction result for classification. FCN replaces these two

layers with a convolution layer, which allows the convolution

kernel to slide over the image and convolve in steps, regardless of

the size of the input image. If the size of the convolution kernel is
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set to the same size as the upper image, as shown in the figure, the

first layer is convolved with a convolution kernel with 4 channels

and a width of 5 and a height of 5, and the second layer is

convolved with a convolution kernel with 2 channels and a width

of 1 and a height of 1, the final probability of binary classification

is obtained. This result is consistent with the use of a fully

connected CNN. Thus, any fully-connected layer can be

converted into a convolutional layer. The advantage of using a

convolutional layer instead of a fully connected layer is that it

allows the convolutional network to slide over larger

input images, thus breaking the limitation on the image

input size.

Similarly, in this paper, the calculated features with

different sizes are fed into different pre-convolutional layers

in order to reduce the length of the longer-sized features to fit

the shorter-sized features. For one-dimensional data

FIGURE 5
CNN architecture.

FIGURE 6
Comparison of CNN and FCN.
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generated using the first-tail splicing method, the neural

network is difficult to distinguish different features involved

in the splicing. Therefore, the neural network generally focuses

more on the features with longer sizes, which means that the

longer the feature size is, the higher the weight will be used in

the training process of the model. Pre-convolution is used to

reduce the length of the features with longer sizes, which can

solve the problem of too large a gap in the neural network’s

implied weight assignment to the features with different sizes.

As shown in Figure 7, three convolution pooling nonlinear

activation operations are performed on the original data by a

convolution kernel of size 5. One convolution pooling and

nonlinear activation are performed on the FFT calculation

results. Three convolution pooling and nonlinear activation

FIGURE 7
Process of pre-convolution.

FIGURE 8
CNN with pre-convolution.
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operations are performed on the power cepstrum calculation

results. Only one convolution operation of size 5 is performed on

the power spectral density and MFCC. The convolution results

are subsequently stitched horizontally and reconstructed into a

10-channel 48 × 48 grayscale information map as the input to the

subsequent CNN.

The specific process of CNN with pre-convolution is shown

in Figure 8. After normalizing the input raw data and the

computed four features and expanding the result by

256 times, the result is reconstructed into a two-dimensional

grayscale map by splicing the first and the last as the input of the

CNN, so that the CNN captures the feature information of the

grayscale map in the same way as processing the image. The data

is reconstructed into a 10-channel 2D matrix after the pre-

convolution process, and the CNN is made to capture the

complex grayscale map information through the convolution

kernel by increasing and decreasing the number of channels in

the process. After pre-convolution, the first layer uses

20 convolution kernels of size 4, and the pooling layer uses a

maximum pooling of 2 × 2, and then the result dimension is 20 ×

22 × 22 after nonlinear activation. The second layer uses

30 convolution kernels of size 4, and the output dimension is

30 × 9 × 9 after the same pooling and activation. The third layer

uses 10 convolution kernels of size 4, and the output dimension is

10 × 3 × 3 after pooling and activation. The final convolution

result is then passed through two fully connected layers to obtain

the binary prediction result.

2.3.3 CNN with both pre-convolution and
residual structures

For a general network architecture, increasing the number of

convolutional layers can make the neural network extract richer

features and thus improve the accuracy of the model; but in fact,

the more convolutional layers, the more nonlinear layers will be

stacked, which makes the model’s nonlinear fitting ability too

strong and leads to a decrease in the accuracy of the model (He

et al., 2016). We hope to still use a relatively simple architecture

like CNN to obtain higher accuracy while keeping the model

lightweight and to make the training converge faster in order to

extract richer features to help improve its performance in damage

recognition. Residual neural network (Resnet) is a kind of

convolutional neural network that introduces a residual

structure, which allows us to stack the number of

convolutional layers to form a network with relatively more

convolutional blocks, which enables us to obtain richer

information. At present, Resnet performs very well in various

tasks in the field of computer vision. Figure 9 shows the

architecture of a CNN using pre-convolution processing while

introducing the residual structure.

The architecture of the CNN with residuals structures is

shown in Figure 10. In this paper, based on the lightweight CNN

architecture, the number of convolutional layers is increased by

means of residual connections, and finally a CNN with both pre-

convolution and residual is built.

3 Results and discussion

The training results of the three networks on our dataset are

shown in Figure 11. Figure 11A represents the performance of the

normal CNN performing 50 epochs on both the training and

validation sets. Through testing on the test set, the normal CNN

is finally verified to have 97.9% classification accuracy.

Figure 11B shows the results of the CNN with pre-

convolution performing 40 epochs on both the training and

validation sets, which shows that the convergence of the model

FIGURE 9
CNN with both pre-convolution and residual.
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training is accelerated and the accuracy on both the training and

validation sets is improved with the pre-convolution processing.

The test results on the test set show that the network architecture

with pre-convolution improves the accuracy from 97.9% to

99.5% with fewer training rounds. Figure 11C shows the

performance of the CNN with both pre-convolution and

residual on the training and validation sets. It can be seen

that the convergence speed of the model training with the

residual structure is further improved compared to the above

two types of CNNs, and the results of the test set show that the

accuracy of the model has been stabilized at 99.7% after only

15 rounds of training, which is more advantageous than the other

two models in the rail damage detection task.

In addition to comparing the loss and accuracy of the

networks, we can also visualize the classification performance

of the three neural network models on positive and negative

samples by introducing the confusion matrix (Ma et al., 2021).

The confusion matrix, also known as the error matrix, can be

used to judge whether a classifier is good or not. As shown in

Figure 12A, from the confusion matrix, we can visualize that

among the tested samples, the CNN without the pre-convolution

predicts a total of 20 true lossless samples as lossy and a total of

34 true lossy samples as lossless. By comparing the confusion

matrix in Figure 12B, it can be seen that the use of the pre-

convolution structure and the multi-feature association approach

substantially reduces the number of misclassifications in both

categories on the same test set. As Figure 12C shows the

confusion matrix calculated on the test set for the CNN using

the residual structure and pre-convolution processing, we can see

that the probability of drawing incorrect conclusions is further

reduced for the network using the residual structure.

In addition to analyzing the positive and negative sample

classification performance from the confusion matrix, we also

calculated and analyzed other classification performance metrics

FIGURE 10
CNN with residual.

FIGURE 11
Comparison of the training results of the three networks. (A) CNN (B) CNN with pre-convolution (C) CNN with both pre-convolution and
residual.
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of the model. Using the confusion matrix and the experimental

data, True Positive (TP), False Positive (FP), False Negative (FN),

and True Negative (TN) can be calculated. Where TP means a

lossy data is correctly predicted as lossy by the model, FP means a

lossless data is predicted as lossy, FN means a lossy data is

predicted as lossless by the model, TN means a lossless data is

predicted as lossless. TP and TN represent the fraction predicted

correctly by the network, while FN and FP represent the fraction

predicted incorrectly by the network. The Precision Rate

indicates the proportion of samples with positive predictions

to the total number of samples with correct predictions. The

Recall Rate indicates the proportion of samples with positive

predictions to all positive samples. The F1 Score is the summed

average of the precision and recall rates and is a measure of the

accuracy of a binary classification model that takes into account

both precision and recall rates. Matthews Correlation Coefficient

(MCC) is a balanced measure of the classification performance of

binary classification, which considers the true results as two

0–1 distributions; MCC = 1 when FP = FN = 0 and

MCC = −1 when the prediction is completely wrong. = −1.

The formula for the above classification performance metric is

shown in Eqs 10–13.

Precision � TP
TP + FP

(10)

Recall � TP
TP + FN

(11)

F1 � 2TP
2TP + FP + FN

(12)

MCC � TP × TN − FP × FN�������������������������������������(TP + FP)(TP + FN)(TN + FP)(TN + FN)√ (13)

Table 1 shows the classification performance evaluation

metrics for the three models used in our evaluation, where the

precision rate represents the percentage of samples predicted to

be injured or damaged that actually have damage, and it is used to

measure the ability of the model to avoid errors. The data in the

table shows that the use of pre-convolution and the introduction

of the residual structure successfully improved the precision rate

of our model. Only 0.003% of the samples predicted to be injured

were misclassified as damaged by the model, demonstrating a

high confidence level if the samples were predicted to be

damaged by the model. The recall rate in our injury detection

task indicates the proportion of samples predicted as damaged to

the true damaged in the test set, which is used to measure the

model’s ability to find damaged samples. The data in the table

shows that CNN with both pre-convolution and residual also has

a high recall rate, as shown by the fact that our model found

99.7% of the injury samples on the test set and only 0.003% of the

injury samples were not found, which indicates that our model

has a good ability to find injury samples. F1 score and MCC are

two combined metrics that combine precision and recall.

Precision and recall are contradictory variables. If we increase

the precision rate and only determine injury for samples that we

FIGURE 12
Comparison of the confusion matrices obtained from the three network models computed on the test set. (A) CNN (B) CNN with pre-
convolution (C) CNN with both pre-convolution and residual.

TABLE 1 Comparison of model metrics.

Models Precision rate* Recall rate* F1 score* MCC

CNN 0.979 0.979 0.979 0.958

CNN with pre-convolution 0.995 0.995 0.995 0.990

CNN with both pre-convolution and residual 0.997 0.997 0.997 0.995

*Precision Rate, Recall Rate, and F1 score were calculated by macro-averaging method.
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are confident are injured, then the recall rate will be lower, and if

we determine injury as much as possible to increase the recall

rate, then the precision rate will be lower. We want the prediction

of damage to be as accurate as possible, thus avoiding the waste of

resources by testing the damage a second time. At the same time,

we want the recall rate to be very high because the danger of

missing detection is very high and may cause serious losses. The

F1 score and MCC show that our model still has good

performance when considering both accuracy and recall. The

use of pre-convolution and the introduction of residual structure

both improve the F1 score and MCC, and the F1 score and MCC

of CNN with both pre-convolution and residual reach 0.997 and

0.995, respectively.

4 Conclusion

Damage detection of the rails is of great significance for

railroad safety. In this paper, a vibration signal-based detection

method is proposed. Traditional theoretical researchmethods are

used to calculate the features of vibration signals as the inputs of

deep learning models. The presence of potential rail damage in

the vibration signal is predicted using CNN. The three different

convolutional network architectures are finally compared, and

their performance in rail damage detection is tested on our

experimentally measured dataset. The results show that the

CNN with both pre-convolution and Residual structures

achieves the accuracy of 99.9%, which is better than the other

two network architectures. At the same time, the vibration signal-

based CNN model is safer, more energy-efficient and more

conventional, which is more in line with modern large-scale

rail damage detection needs.
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