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With the continuous increase of the grid-connected proportion of intermittent

renewable energy, in order to ensure the reliability of smart grid operation, it is

urgent to improve the operational flexibility of thermal power plants. Electric heat

storage technology has broad prospects in terms of in-depth peak shaving of power

grids, improving new energy utilization rates and improving the environment. It is an

important means to promote electric energy substitution. In this study, the

economics of technical application scenarios are compared and analyzed, the

principle of solid heat storage technology is discussed, and its application in

heating fields such as industrial steam, district heating, and deep peak regulation

of congeneration units is expounded. The results indicate that in the scenario where

the peak shaving subsidy and the heat storage duration are the same, as the unit

output increases, the investment recoveryperiod increases.Moreover, the results also

indicate that in the 0.3 yuan/kW power market peaking subsidy scenario, only when

the unit output is 0 and the heat storage time is greater than 8 h, the investment can

be recovered in 5 years, while in the 0.7 yuan/kW power market peaking subsidy

scenario, except for the scenario where the unit output is 40% and the heat storage

time is 7 h, the investment cannot be recovered; in other scenarios, the investment

can be recovered within 5 years.
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1 Introduction

In 2000, a smart power system concept was established with the primary goal of integrating

two-way communication into the infrastructure of a standard grid system (Riaz et al., 2020; Fu et

al., 2020;National EnergyAdministration, 2021). In order to achieve the goal of carbonneutrality,

clean, efficient, and flexible operation has become an important goal of the transformation and

development of the thermal power industry, and more and more attention has been paid to the
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flexibility transformation technology of thermal power plants (Fu et al.,

2015; Riaz et al., 2020). Among them, the cost of the flexible retrofit,

operating costs, and peak shaving benefits under the market rules of

electric auxiliary services are the keys to choosing the most suitable

retrofit technology (State Grid Corporation, 2013).

The summarized literature overview is tabulated inTable 1Ahmad

et al., 2020, Long et al., 2022, National energy administration, 2019,

Pasta et al., 2012. This is explained in greater detail as follows. In the

recently released “Northeast Electric Power Auxiliary Service Market

Operating Rules (Interim)” (Yang et al., 2011; Pasta et al., 2012;

National energy administration, 2019; Ahmad et al., 2020; Long et al.,

2022), the market rules have been further improved and upgraded

(Hughes, 2010; Singh et al., 2015). The new rules design a day-head

biddingmechanism for the peak rotating reservemarket to achieve full

coverage of the auxiliary service market “trough lows and peak peaks”

(Fu et al., 2017). Only the two-way peak shaving units that can “go up

and down” can obtain all the benefits of auxiliary services (Chinese

Government, 2020) and put forward a completeflexibility standard for

thermal power units, which can motivate and guide thermal power

plants to adopt appropriate flexibility transformation technologies and

comprehensively improve the peak shaving capacity of units (Rong

et al., 2008; Deng et al., 2016). Among many energy storage

technologies, thermal energy storage is one of the most promising

large-scale energy storage technologies (Singh et al., 2016). Compared

with other energy storage technology routes such as electrochemical

energy storage and electrical energy storage, thermal energy storage

has obvious advantages in terms of installed capacity, energy storage

density, technology cost, service life, etc., (Huang et al., 2021).

Compared with these two mechanical energy storage technologies,

thermal energy storage technology hasmany advantages, such as small

footprint, low cost, high energy storage density, small impact on the

environment, and is not restricted by geographical and environmental

conditions; it has obvious scale effects (Desrues et al., 2010). According

to the needs of users, it can realize the combined supply of cold, heat,

electricity, and steam of various energy grades; it can realize peak

shaving and valley filling, two-way adjustment, and absorb the

installed output of intermittent new energy (wind power, photo

voltaic, etc.,) for the regional power grid (Rodríguez et al., 2009).

The best solution is to balance the peak-to-valley difference; a large

number of cycles, long life, and the bidirectional regulation function of

the energy storage power stationwill not lead to a decrease in efficiency

with long-term heat storage cycles (Suárez et al., 2015); no chemical

reaction in the storage and storage processes and technical parameters

and processes can be controlled, with high system security (Wang

et al., 2015). Thermal energy storage technology can be applied to the

power supply side, the grid side, and the user side (Hall et al., 1979).On

the user side, thermal energy storage technology can be applied to user

cooling, heating, electricity-integrated energy services, seawater

desalination, and other occasions; in the direct utilization of

thermal energy, thermal energy storage technology has higher

energy utilization efficiency than electricity storage technology

(Yang et al., 2018a; Yang et al., 2018b; Zhang et al., 2020); thermal

technology also includes the storage and utilization of thermal energy

below ambient temperature, that is, cold storage technology has been

maturely applied in cold chain-relatedfields, and themarket size is also

expanding (Tao andHe, 2015). For the power supply and grid side, the

current power system presents a “double-high” characteristic of a high

proportion of renewable energy and a high proportion of power

electronic equipment, the system’s moment of inertia continues to

decline, and the frequency and voltage regulation capabilities are

insufficient, posing severe challenges to grid security; solar thermal

energy storage power generation can effectively realize frequency

TABLE 1 Comparative analysis of literature.

References Heat storage medium Maximum heat storage
temperature/°C

Whether to consider
peak shaving subsidies

Singh et al. (2015) NaCl 800 No

Xu et al. (2013) NaCl 600 No

Hughes. (2010) MgCl2 714 No

Fu et al. (2017) MgCl2 700 No

Tyagi and Buddhi. (2007) LiF/CaF2 767 No

Soprani et al. (2019) Al/Si 577 No

Sowmy and Prado. (2008) KNO3, LiNO3, Ca (NO3) 2 500 No

Reboussin et al. (2005) KNO3, LiNO3, Ca (NO3) 2 600 No

Xu et al. (2015) MgO 800 No

Qarnia. (2009) MgO 700 No

Regin et al. (2006) — — Yes

Fukahori et al. (2016) — — Yes

Kandasamy et al. (2008) — — Yes

Zhang and Liu. (2019) — — No

Tian et al. (2021) NaCl–CaCl2 512.8 No

Our study New composite materials 900 Yes
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regulation through the rotational inertia of the steam turbine generator

set; in the flexibility transformation of thermal power plants (Yaqub et

al., 2016), the thermal energy storage power generation technology

converts the excess steam heat that occurs when the unit operates with

variable loads into a heat storage medium (Quan et al., 2013; Zhang et

al., 2021b). The thermal energy is stored and released when needed,

which can not only increase the peak shaving depth of the unit but can

also increase the peak load capacity, with lower investment and

operating costs, which has obvious advantages (Andersen, 2009).

The Shapley value (SV) has been calculated to estimate the benefits

of cooperative power suppliers (Tao et al., 2012). The presented case

studies have verified that the proposed algorithm and the established

bidding strategy exhibit higher effectiveness (Baños et al., 2011).

1.1 Motivation

From the aforementioned discussion, it is concluded that

thermal energy storage already exists in a wide spectrum of

applications. Sensible heat storage is used in pebble beds, packed

beds, or molten salts for thermal solar power plants (Zhao and

Wu, 2011; Li et al., 2017; Yin et al., 2020), in water heater storage

(Denholm and Kulcinski, 2004; Denholm and Holloway, 2005;

Sun et al., 2008; Zheng and Chen, 2008), and in blast or glass

furnace regenerators (Carrasco et al., 2006), and it is the most

used technology for heating and cooling of buildings Latent heat

storage is used in buildings for passive storage systems such as

phase change material walls, wall boards, and shutters (Bejan

et al., 1996; Laing et al., 2006; Kuravi et al., 2013). As far as we

know, solid heat storage devices with a thermal storage

temperature of 900°C have not been considered for peak

shaving in thermal power plants, and this study considers

different peak shaving subsidy scenarios and peak shaving

benefits of thermal power plants with high-temperature solid

heat storage devices.

1.2 Contributions

The contributions of this study are summed up as follows.

1) A new type of high-temperature heat storage material is

proposed, and its heat storage performance is compared

with that of current main heat storage materials.

2) In the proposedmodel, according to the characteristics of the new

heat storage material, THERMOFLEX simulation software was

used to establish the deep peak-regulating model of the thermal

power plant with a high-temperature heat storage device. The

feasibility of applying the new heat storage material to deep peak

regulation in thermal power plants is proved.

3) An economic analysis model is established considering the

scenario of the peak-regulating subsidy, considering different

load rates of units, heat storage duration, subsidies, and the

corresponding capital recovery period. It provides a reference for

the application of heat storage technology in practical projects.

1.2 Study organization

This study is organized as follows: Section 1 introduces the

smart power system, its elements, and related research

contribution, while Section 2 covers the architecture and

flexible peak shaving technology for typical thermal power

plants. The mathematical model and economic analysis of the

high-temperature solid heat storage system are discussed in

Section 3. The rest of the study is organized as follows.

Simulation results are discussed in Section 4. Section 5 provides

a brief summary of the whole article with concluding remarks.

2 Flexible peak-shaving technology
for typical thermal power plants

At present, the flexibility of thermal power plants is mainly

limited by the operation flexibility of “determining electricity by

heat.” Therefore, improving the peak-shaving capacity of the

heating unit is the main content of flexibility transformation. The

flexibility transformation of the heating unit is mainly divided

into three categories (Bai et al., 2019). One is to increase the

heating capacity of the unit, reduce the boiler output, and reduce

the forced output of the unit under the condition of meeting the

heating load (Verda and Colella, 2011). Second is the electric

heating peak regulation technology, which converts the electric

energy generated by the unit into heat energy for external

heating, such as the electrode boiler technology and electric

boiler solid heat energy storage technology; third is the

thermal energy storage peak shaving technology, which

converts excess steam thermal energy in steam turbines into

thermal energy of energy storage medium for storage, such as the

hot water tank energy storage technology, phase change thermal

energy storage technology, concrete thermal energy storage

technology, and molten salt thermal energy storage technology

(Tyagi and Buddhi, 2007; Morisson et al., 2008; Cao et al., 2019;

Wang et al., 2019; Xing et al., 2019; Ling et al., 2020).

2.1 Increasing the unit heat supply peak
regulation technology

The peak-shaving technology to increase the heating capacity

of the unit is mainly to reduce the work share of the steam inside

the steam turbine and convert it into heat energy for external

heating, which can reduce the forced output of the steam turbine

unit and show a strong peak-shaving capacity (Kocak and

Paksoy, 2020). The steam turbine bypass heat supply extracts

the high-temperature and high-pressure steam with a strong
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performance for heating and shows great potential for peak

shaving, but there is a lot of thermal economic loss and

higher operating cost. Used for heating, the loss of cold

source is eliminated, and the operating cost is low; however,

they generally need to replace the special low-pressure cylinder

rotor, and the cost of transformation is high (Sowmy and Prado,

2008).

2.2 Electric heating peak regulation
technology

Electric heating peak regulating technology mainly

includes the electrode boiler and electric boiler solid

thermal energy storage technology, which does not

involve the transformation of the main equipment of the

thermal power plant and has little influence on the normal

operation of the thermal power plant (Lizarraga⁃Garcia and

Mitsos, 2014). The solid electrode boiler and electric boiler

thermal energy storage lead to electric consumption directly,

external power supply, reduce the thermal power plant to

increase the load capacity, low load with a load, and the large

depth operation flexibility, which are good advantages, but

the disadvantages are the high investment cost, operation

cost is high, and suit the market early gains’ high load of the

depth of the market demand, with the addition of more and

more power plant auxiliary service markets (Miao et al.,

2019). The demand for deep peak shaving is becoming less

and less (Yin et al., 2020). In the market competition of cost

sharing, it will be difficult for the heat supply peak-shaving

technology with electric energy as the heat source to gain a

competitive advantage (Laing et al., 2006).

2.3 Thermal energy storage peak
regulation technology

The thermal energy storage peak-shaving technology is a

peak-shaving technology that converts the excess steam heat that

occurs when the unit is running at variable loads into thermal

energy of the thermal energy storage medium and releases the

heat energy when needed, thereby increasing the flexibility of the

unit (Reboussin et al., 2005; Wu et al., 2015; Hao et al., 2019). For

example, when there is an excess of heating steam in the heating

season, the excess heat energy is stored in the thermal energy

storage equipment (Jian et al., 2015). When the power load is at a

low valley, the boiler load and steam turbine output are reduced

to meet the low-load peak regulation requirements of the unit

(Zhang et al., 2021a). Part of it is supplemented by thermal

energy storage equipment; when the power load is at its peak, the

boiler load is increased, the external heat supply of the steam

turbine is reduced, the peak load capacity of the unit is enhanced,

and the insufficient heat supply is supplemented by thermal

energy storage equipment (Igreen, 2019).

To sum up, there is no high-temperature thermal energy

storage technology that uses the deep peak-shaving period of

thermal power plants to combine the high-temperature steam of

the system with valley electricity for cascade storage and

utilization.

3 Modeling and economic analysis of
the high-temperature solid heat
storage system

3.1 System model composition

A subcritical intermediate reheating self-heating cycle

drum furnace is used, and the furnace type is HG1025/17.4-

YM28. The steam turbine has a capacity of 300MW, is of

subcritical intermediate reheat type, possesses a high- and

medium-pressure cylinder, and is of double-cylinder

double-exhaust steam single-shaft condensing type

(Igreen, 2019; Zhang et al., 2021a; Thermoflow, 2021).

The unit model is N300-16.7/538/538. The external

supply of industrial steam by the unit is mainly divided

into two specifications, namely, 1) 4.2 MPa, 420°C, 60–70 t/

h; and 2) 1.8MPa, 320°C, 240 t/h.

3.2 Thermal storage system materials and
performance

In this study, carbon-based high-temperature heat storage

materials are used, which have the following characteristics

(Soprani et al., 2019; Zhang et al., 2020; Fu, 2022; Zhang

et al., 2022): 1) good heat storage and thermal conductivity

(as shown in Table 2); 2) excellent high-temperature

resistance characteristics, can be used under oxygen-free

conditions, and the temperature can be up to 3,000°C; also, it

has thermal shock resistance at high temperature and good

mechanical strength; and 4) good self-lubricating performance

(Duan et al., 2018; Liu et al., 2018).

3.3 System simulation and economic
analysis model

3.3.1 Simulation model
THERMOFLEX software is a process simulation software

application, especially developed for thermodynamics (Carrasco

et al., 2006; Soprani et al., 2019; Zhang et al., 2020; Zhang et al.,

2022). In terms of simulating steam balance, THERMOFLEX can

complete the basic material and energy balance, and set up
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various logic controls integrated into the steam balance model

usually.

3.3 2 System economic analysis model

Y � M − C. (1)
Here, Y is the net income, yuan/y;M is the income, yuan/y; and C

is the cost, yuan/y.

M � M1 +M2 +M3. (2)
Here, M1 is the peak-shaving subsidy, yuan/y;M2 is the heat sales

revenue, yuan/y; andM3 is the peak electricity revenue increase,

yuan/y.

C � C1 + C2 + C3. (3)

Here, C1 is the electricity cost, yuan/y;C2 is the financing charges,

yuan/y; andC3 is the operation and maintenance cost, yuan/y.

TABLE 2 Performance comparison of typical heat storage materials.

Heat storage medium Specific heat kJ/(kg·K) Heat
storage density kJ/kg

Thermal conductivity W/(m·K) Heat
storage temperature °C

Water-atmospheric pressure 4.2 105 0.6 70–95

Water-pressurized 4.2 252 0.6 70–130

Heat transfer oil 2.0 300 0.11 200–350

Concrete 0.85 425 1.5 100–600

Solid magnesia brick 1.2 480 2 200–600

Molten salt 1.6 528 0.52 220–550

New heat storage material 1.3 910 70–100 200–900

FIGURE 1
Proposed flow chart.
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4 Results and discussion

In the proposed framework, the overall framework is

presented in Figure 1.

According to the new high-temperature solid heat storage

system designed in this study, it can be seen from the following

Figure 2 that the minimum load of the unit is effectively

reduced under the condition of the constant heating load. It

can increase the low-load peak load capacity of the unit but

cannot increase the peak load capacity of the unit during peak

load, and even the high back pressure circulating water heating

transformation will reduce the unit’s peak load capacity.

According to the latest auxiliary service market rules, it

belongs to the flexible transformation technology of “can go

down but not go up” that cannot bring comprehensive peak-

shaving benefits. High-temperature thermal energy storage

enables thermal power plants to have “two-way” peak-

shaving capabilities, which can increase the low-load

operation capacity of thermal power plants and increase the

top-load capacity during peak periods and can obtain complete

peak-shaving benefits. Light (valley electricity) as a heat source

and thermal energy storage have a good thermal economy and

low operating costs. Therefore, the thermal energy storage

peak-shaving technology has the best technical and

economic competitive advantage.

The relative economic analysis is carried out using the static

investment income. It calculated the return on investment years

under the different outputs and heat storage time of the unit

under the peak-shaving subsidy scenarios of 0.3 yuan/kW and

0.7 yuan/kW. It can be seen from Figure 3 that when the

scenario of the peak-shaving subsidy in the power market is

of 0.3 yuan/kW, all scenarios have static benefit years over

5 years, except that the output of the unit is 0 and the heat

storage time is greater than 9 h. In addition, as shown in

Figure 4, when the scenario of the peak-shaving subsidy in

the power market is of 0.7 yuan/kW, all scenarios have static

benefit years of less than 5 years, except that the output of the

unit is 40% and the heat storage time is 7 h. Comparing Tables

3, 4, it can be seen that under the scenario of the peak-shaving

subsidy in the power market of 0.3 yuan/kW, the investment

can be recovered in 5 years only when the output of the unit is

0 and the heat storage time is greater than 8 h. In the scenario of

the peak-shaving subsidy in the/kW power market, except for

the scenario where the unit output is 40% and the heat storage

FIGURE 2
Output curves of units before and after adding high-
temperature thermal energy storage devices.

FIGURE 3
Comparison of investment returns under different outputs
and heat storage duration of units (the peak-shaving subsidy is
calculated at 0.3 yuan/kW).

FIGURE 4
Comparison of investment returns under different outputs
and heat storage duration of units (the peak-shaving subsidy is
calculated at 0.7 yuan/kW).
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time is 7 h, the investment cannot be recovered, and the

investment can be recovered within 5 years in the other

scenarios. Subsidies have a great impact on the payback

period. In addition, in the scenario where the peak-shaving

subsidy and the heat storage duration are the same, as the unit

output increases, the investment recovery period increases.

5 Conclusion

In this work, we have presented a mathematical model for

simulation and economic analysis of a new high-temperature

heat storage system for thermal power plants oriented to the

smart grid.

1) In the flexible transformation technology of thermal power

plants, the methods of increasing the heating capacity of the unit

can effectively reduce the forced output of the unit and improve

the power plant low-load operation flexibility, but it will reduce

the peak load capacity of the unit during the peak load and face

the loss of peak-shaving revenue under the new ancillary service

rules. The thermal power plant adopts thermal energy storage

peak regulation technology, which can not only increase the low-

load operation capacity of the unit but can also increase the peak

load capacity when the load is at its peak.

2) Simulation and comparison of actual data based on a

thermal power plant is determined by THERMOFLEX thermal

simulation software. The preliminary results show that in the

model where the peak-shaving subsidy and the heat storage

duration are the same, as the unit output increases, the

investment recovery period increases.

3) The power market peak-shaving subsidy has a great

impact on the investment recovery period. In the 0.3 yuan/

kW power market peaking subsidy scenario, only when the

unit output is 0 and the heat storage time is greater than 8 h,

the investment can be recovered in 5 years, while in the 0.7 yuan/

kW power market peaking subsidy scenario, except for the

scenario where the unit output is 40% and the heat storage

time is 7 h, the investment cannot be recovered; in other

scenarios, the investment can be recovered within 5 years.

4) From the aforementioned discussion, we can conclude

that there are still certain research gaps that need to be filled in

the future. The proposed scheme is based on the simulation

method. In the future, this work can be extended to integrated

energy, such as cold, hot, and compressed air. More

comprehensive power consumption is considered, and the

proposed scheme was implemented to contribute to grid

stability and better utilization of the grid energy. Similarly,

in the proposed mathematical model, we did not consider the

cold and compressed air; therefore, the addition of them is

another research direction. Moreover, our proposed peak-

shaving subsidy is based on data given for 0.3 Y/kWh and

0.7 Y/kWh; however, it can be extended for real-time

scenarios.
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TABLE 3 Investment recovery period under different outputs and heat
storage time of the unit (the peak-shaving subsidy is calculated at
0.3 yuan).

Unit load rate Unit load rate
before consumption

Heat storage
time/h

9 8 7

40% 73.87% >10 >10 >10
20% 4~5 7~8 >10
0% 3~4 5~6 7~8

TABLE 4 Investment recovery period under different outputs and heat
storage time of the unit (the peak-shaving subsidy is calculated at
0.7 yuan).

Unit load rate Unit load rate
before consumption

Heat storage
time/h

9 8 7

40% 73.87% 3~4 3~4 >10
20% 1~2 2~3 3~4

0% 1~2 1~2 2~3
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