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In the construction of smart microgrids for petrochemical enterprises, the

generating unit is an important part, and the rolling bearings are one of the

key components of the generator. The condition of the rolling bearing directly

affects the safe operation of the entire generating unit and an accurate fault

diagnosis of the bearing not only can improve the stability of the smart

microgrid, but also can reduce the risk of loss of the factory. This study

proposes an improved fault diagnosis method based on variational modal

decomposition (VMD) and a convolutional neural network (CNN). The VMD

algorithm was used to remove random noise in the original signal and a CNN

was used to extract useful data from the vibration signal processed by VMD.

Since the modal number and penalty parameter of the VMD are difficult to

choose and they have a profound impact on the decomposition results,

differential evolution (DE) was used as the optimization method and

envelope entropy was used as the fitness function to optimize the VMD

parameters. Since it is difficult to ensure the best fit of the hyper-parameters

of CNN, this study proposes a method for using the DE algorithm to obtain

suitable hyper-parameters for the CNN, and then used the CNN to diagnose a

fault. The test results using the vibration data of Case Western Reserve

University show that the combination of VMD and CNN can improve the

convergence speed more than 10% and the accuracy to over 99.6%.
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1 Introduction

In recent years, with the continuous development of industry, more and more large

petrochemical enterprises are opting for the construction of a smart microgrid. A smart

microgrid owned by the company has a great advantage in guaranteeing production. As

the foundation of a smart microgrid, the operation status of the alternator has an

important impact on its safe and stable operation (Song et al., 2021). The rolling bearings

are the main components of the alternator and have a higher risk of damage because of

their continuous, long term, high-speed operation (Lei, 2015). Therefore, an effective fault
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diagnosis method is needed not only tomaintain the bearings in a

healthy condition, but also to probe the fault patterns (Hu et al.,

2020). Research on fault monitoring and diagnosis of alternator

problems has attracted widespread attention from the industry

(Liu et al., 2022).

At present, the fault diagnosis methods for bearings are

mainly divided into three steps, data processing, feature

extraction, and fault identification. Vibration signals usually

contain a large number of redundant features, which makes it

difficult to extract and identify the fault features. In view of this

situation, Liu et al. (2006) proposed empirical mode

decomposition (EMD) and applied it to nonlinear and non-

stationary signals; but the errors gradually accumulated during

decomposition, resulting in modal aliasing and endpoint effects

(Wu and Huang, 2009). Dragomiretskiy and Zosso (2014)

proposed variational mode decomposition (VMD), which can

decompose the signal into FM and AM signals, and solve the

problem of modal aliasing and end point effects. However, its

decomposition parameters need to be set according to the

characteristics of the signal, and improper parameter selection

will lead to over-decomposition or under-decomposition. Liu

(2022) tested a genetic mutation particle-swarm optimization

algorithm to optimize the parameters of VMD, and proposed

sample entropy as the feature to apply to bearing fault diagnosis.

VMD has the advantage of eliminating the noise of the non-

stationary vibration signal of bearings by decomposing signals,

but how to obtain the optimal parameters for VMD efficiently

still needs more research. Since differential evolution (DE) has

the advantage of few parameters and strong optimization ability,

this study used DE to optimize the parameters of VMD.

Feature extraction and fault identification in fault diagnosis

methods are mainly divided into two categories: Traditional fault

classification methods and deep learning methods (Peng, 2022).

Traditional fault classification methods include artificial neural

network, k-means, and SVM (Zhou et al., 2020). Zhang et al.

(2016) used a genetic algorithm and a fuzzy c-means clustering

algorithm to optimize a BP network, providing a reference for real-

time diagnosis. Wang and Du (2020) proposed an improved

k-means method by using a new sparse representation of

singular value decomposition. However, the performance of these

methods mainly depends on the quality of feature extraction, and

due to the complex environment in which the bearings operate, it is

difficult to extract effective features from vibration signals (Huang

et al., 2020). Nowadays people commonly use machine learning and

deep learning to solve fault diagnosis problems. Guo et al. (2020)

used machine learning (ML) technology and statistical features

extracted from time domain vibration signals and spectral peaks

to achieve automatic diagnosis of rolling bearings.

Recently, more and more researchers have been paying

attention to deep learning algorithms as they help in the

discovery of complex structures in big data. Li et al. (2018)

proposed a fault diagnosis method combining short-time Fourier

transform and a convolutional neural network (CNN). The time

frequency domain information are considered at the same time and

take the advantage of the self-adaptive extraction of fault features by

a CNN, realizing end-to-end fault diagnosis. Pan et al. (2018)

FIGURE 1
The algorithm flow of fault diagnosis.

FIGURE 2
The algorithm flow of the DE.
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proposed a new structure by combining one-dimensional CNN and

LSTM, in which the average accuracy rate in the testing dataset for

bearing faults reached more than 99%.

Although deep learning algorithms have a great advantage in

feature extraction, it is difficult to choose the most appropriate

hyper-parameters (Hui, 2021). Hence, this study proposes

improving the fault diagnosis method by taking advantage of

DE and CNNs by combining DE and a one-dimensional CNN

into one structure. By using this method, the limitations of

traditional hyper-parameter selection can be eliminated since

DE can be used and no traditional feature extraction is needed

because the CNN can extract features from raw data.

This study includes the following contents: Section 1 briefly

introduces the proposed method, which uses VMD, DE and a

one dimensional CNN. Section 2 introduces the datasets for

bearing fault diagnosis. Section 3 shows the effectiveness of the

proposed method and a comparison with other models. Section

4 draws conclusion.

2 Methods

2.1 The novel fault diagnosis method

The structure of the proposed method is shown in Figure 1.

The specific steps of the fault diagnosis method of this study

are described below:

Step 1. The original vibration signal datasets are divided into

two parts: training datasets and testing datasets.

Step 2. The VMD optimized by DE is used to decompose both

training datasets and testing datasets into IMFs.

To optimize the parameters, the concept of envelope entropy

which was proposed by Tang and Wang (2015) was adopted as

the evaluation standard of decomposition effect of the VMD

method, and the envelope entropy Ep of time signal x(t) with

length N is defined as:

pj � a(j)
∑N
i�1
a(i)

(1)

FIGURE 3
The structure of one-dimensional the CNN.

FIGURE 4
The algorithm flow of the VMD optimized by the DE.

FIGURE 5
Envelope entropy changes with the evolutionary algebra.
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Ep � −∑N
j�1
pjlgpj (2)

where a(j) is the envelope signal after the Hilbert demodulation

of x(j), and pj is the result of normalization of a(j).

Step 3. The training datasets and testing datasets are decomposed

by VMD, which has been optimized by DE, and then the best

components are selected by envelope entropy to constitute the

new training datasets and testing datasets.

Step 4. DE is used to optimize the parameters of the CNN, and

then the optimized one-dimensional CNN is trained using the

new training datasets.

Step 5. The testing datasets are used to verify the effectiveness

of the fault diagnosis model.

2.2 The VMD method

In the procedure of data processing, the VMD algorithm is used

to decompose the original signal into intrinsic mode functions. The

corresponding constrained model is described as follows:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
min{μk},{ωk}

⎧⎨⎩∑K
k�1








zt[(δ(t) + j

πt
)*uk(t)]e−jωkt








 22
⎫⎬⎭

s.t. ∑K
k�1

uk(t) � f(t)
(3)

where uk(t) is the modal component of the original signal, and wk

is the center frequency of the components.

In order to find the optimal solution of the above problem,

the secondary punishment factor α and the Lagrangian operator

λ(t) were used.

L({uk}, {wk}, λ) �

〈λ(t), x(t) −∑
k

uk(t)〉 +









x(t) −∑

k

uk(t)










2

2
+

α∑
k








zt(σ(t) + j

πt
)uk(t)e−jwkt
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(4)

The saddle point of the above augmented Lagrange

function is obtained by using the alternating direction

multiplier algorithm, which is the minimum of the

constrained variational model of equation (4). As a result,

the original signal is decomposed into k narrow-band IMF

components.

The specific implementation process is as follows:

1) Initialize {u1k}、{w1
k }、λ1 and n which are all 0;

2) n = n+1, execute the whole cycle;

3) Execute the first inner loop and update uk according to

un+1
k � arguk min L({un+1

i< k}, {un
i≥ k}, {wn

i }, λn);
4) k = k + 1, repeat step (3) until k = K, and end the first cycle of

the layer;

FIGURE 6
The original signal and its components.
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5) Execute the second inner loop and update wk according

to wn+1
k � argwk

minL({un+1i }, {wn+1
i< k}, {wn+1

i< k}, {wn
i≥ k}, λn)

6) k = k + 1, repeat step (5) until k = K, and end the second cycle

of the layer;

7) Update λ According to

λn+1 � λn + τ⎛⎝f −∑
k

un+1
k

⎞⎠

8) Repeat steps (2) to (7) until the iteration stop condition∑
k
(‖un+1k − unk‖22/‖unk‖22)< ε is met and then end the whole

cycle. Output the result and get the k narrow-band IMF

components.

As described, there are four parameters of the VMD that

have to be obtained before decomposition. The first one is the

number of modal components K, and the second one is the

quadratic penalty factor. These two parameters have a large

impact on the decomposition results, and the last two

parameters, namely noise tolerance and convergence error,

have less influence on the decomposition results. The default

value is usually used when the VMD is used, because the

selection of the modal component K and the quadratic penalty

factor seriously affect the VMD decomposition. If choose

improperly, there will be over-decomposition or under-

decomposition; the decomposition results will not meet the

requirements.

2.3 The DE method

The DE algorithm is one of the intelligent optimization

algorithms. It is a heuristic search algorithm based on population.

Each individual in the population represents a solution vector and has

many advantages in the settlement of large-scale optimization

problems, such as a simple algorithm structure, ease of

performance, high-level optimization, simple parameter setting,

and excellent robustness. The DE algorithm has several steps

which is shown in Figure 2.

Firstly, initialize population:

xg
i � [xg

i,1, x
g
i,2, .., x

g
i,D] i � 1, 2, .., NP (5)

TABLE 1 Health conditions of bearing.

Fault type Fault size Fault position Training datasets Testing datasets Label

Inner Race Fault 0.1778 — 80 20 0

Ball Fault 0.1778 — 80 20 1

Outer Race Fault 0.1778 Orthogonal @3:00 80 20 2

Outer Race Fault 0.1778 Centered @6:00 80 20 3

Outer Race Fault 0.1778 Opposite @12:00 80 20 4

Inner Race Fault 0.3556 — 80 20 5

Ball Fault 0.3556 — 80 20 6

Outer Race Fault 0.3556 Orthogonal @3:00 80 20 7

Outer Race Fault 0.3556 Centered @6:00 80 20 8

Inner Race Fault 0.5334 — 80 20 9

Ball Fault 0.5334 — 80 20 10

Outer Race Fault 0.5334 Centered @6:00 80 20 11

Normal — — 80 20 12

TABLE 3 Optimal parameters combination.

Fault type Fault size Fault position [α, K]

Inner Race Fault 0.1778 — [122, 4]

Ball Fault 0.1778 — [2950, 7]

Outer Race Fault 0.1778 Orthogonal@3:00 [646, 4]

Outer Race Fault 0.1778 Centered@6:00 [307, 7]

Outer Race Fault 0.1778 Opposite@12:00 [2976, 7]

Inner Race Fault 0.3556 — [767, 8]

Ball Fault 0.3556 — [312, 3]

Outer Race Fault 0.3556 Orthogonal@3:00 [375, 5]

Outer Race Fault 0.3556 Centered@6:00 [2306, 8]

Inner Race Fault 0.5334 — [2877, 8]

Ball Fault 0.5334 — [1597, 4]

Outer Race Fault 0.5334 Centered@6:00 [377, 4]

Normal — — [2026, 8]

TABLE 2 The parameters of the DE.

Gmax NP D F Cr

10 10 2 0.5 0.5
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where xg
i is the ith individual of the gth generation population, D

is the solution space, and NP is the population size.

Secondly, the mutation operation is given by:

Vi,g � Xr0,g + F(Xr1,g −Xr2,g), i ≠ r0 ≠ r1 ≠ r2 (6)

where Vi,g is one of the mutation individuals, Xr0,g, Xr1,g and Xr2,g

are one of the generation, and they are different from each other

and selected from the parent generation randomly. F is a scaling

factor, which is a random number between 0 and 2.

Thirdly, the crossover operation is described by:

Uj,i,g � {Vj,i,g,
Xj,i,g,

randj(0, 1)≤Cr or j � jrand
others

(7)

where Uj,i,g is the crossover vector and Cr is the crossover

operator. The greater the Cr, the greater the likelihood of

crossover. If rand(0,1)≤Cr or j = jrand, the crossover vector is

the same as the mutation vector, and if rand(0,1)>Cr or j≠jrand,
the crossover vector is the same as the original vector.

Fourthly, the select operation:

The DE algorithm uses an aggressive strategy to select

individuals entering the next generation population:

Xi,g+1 � {Ui,g, f(Ui,g)≤f(Xi,g)
Xi,g, others

(8)

FIGURE 7
The IMF2 of the original signal.

FIGURE 8
Loss changes with the evolutionary algebra.

FIGURE 9
The comparison of loss and accuracy between the CNN and
the DE-CNN.

TABLE 4 The parameters of the DE.

Gmax NP D F Cr

10 10 5 0.5 0.5
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where Xi,g+1 is the next generation, Ui,g is obtained by a crossover

operation, Xi,g is the current generation, and f represents the

fitness function.

When the final solution meets the conditions or the number

of iterations reaches the maximum, it ends. Otherwise, repeat the

above steps.

2.4 The one-dimensional convolutional
neural network (CNN) method

The CNN algorithm is one of the deep learning algorithms. It

has several advantages such as reducing model complexity,

avoiding complex feature extraction processes, and reducing

the number of weights. The purpose of using the DE

algorithm in this study is to set the hyper-parameters with the

best fit for the CNN algorithm and achieve the goals of improving

accuracy and convergence rate. In this study, a one-dimensional

convolutional neural network was used to solve the bearing fault

diagnosis as the vibration data is one dimension. The CNN was

divided into three layers, the convolution layer, the pooling layer,

and the full connection layer which is shown in Figure 3.

The convolution layer in this study was used to extract the

features from the raw data. Multiple convolution kernels were

used for the convolution operation with the input data, and the

activation function was used to enhance linear separability and

then obtain the characteristic matrix:

yi,j,k � f⎛⎝∑s
i�l
xi,k*wj,i + bi⎞⎠ (9)

where yi,j,k presents the output of the convolutional layer, f presents

the activation function, xi,k presents the input signal, * presents the

convolution operation, wj,i presents weight, and bi presents bias.

The pooling layer in this study was used to compress the

feature vectors. It can not only make the feature vectors smaller

and network computing complexity simpler, but can also extract

the main features. The pooling operation is divided into the

maximum pooling and the average pooling; this study uses the

average-pooling mode:

X � max
(i−1)l+1≤t≤il

Xl−1(t) (10)

where l is the length of the pooling area.

The full connection layer in this study is used for mapping

the learned feature representation to the sample tag space. In this

study, the dropout layer is used before the full connection layer to

ignore some neurons according to certain probability and then

avoid over fitting during model training.

Although the CNN has a great advantage in feature extraction,

it is hard to set the best hyper-parameters. The fitness hyper-

parameters not only can increase the convergence speed, but can

also improve the accuracy rate of the model.

3 Data

To verify the effectiveness of the proposed method, the

training datasets and the testing datasets were obtained from

the Case Western Reserve University; the test bench consisted of

four parts: a 2 hp motor, a torque sensor, a power tester and an

electronic controller.

The datasets used in this study were obtained from the fan

end. The model of the fan end bearing was skf6203, the type of

the dataset was the fan end accelerometer data, the sampling

frequency was 12 kHz, and the rotating speed of the shaft was

1797 r/min. In this study, there are 13 types used to test the

proposed algorithm, including 12 fault types and one normal

type. The 12 fault types include different fault sizes: 0.1778,

0.3556, 0.5334 mm, and different fault positions: orthogonal

@3:00, centered @6:00 and opposite @12:00. Each dataset

stands for a state of bearing health status and includes

100 samples, from which 80 samples were chosen randomly

as the training datasets; the remaining 20 samples were

applied to the test datasets, and the scale of each simple

was 1,024 which is shown in Table 1.

4 Results

4.1 The VMD optimized by the DE
algorithm

In order to select the one that contains the most features, the

VMD method was used to decompose the vibration signals of

bearings. To achieve the best decomposition effect, the modal

number and the penalty parameter of the VMD needed to be

optimized. In this study, the DE algorithm was used as the

optimization algorithm of the VMD. The DE parameters were

set as shown in Table 2. Gmax is the maximum evolution algebra,

NP is the population size, D represents solution space size, which

included the modal number and penalty parameter of the VMD,

F is the mutation operator and Cr is the crossover operator. The

algorithm flow is as Figure 4:

The envelope entropy was used as the fitness function of the

DE algorithm. The smaller the envelope entropy value, the better

the decomposition result. Figure 5 shows once the envelope

entropy changes with the evolutionary algebra.

For vibration signals from the 13 states, the best parameter

combinations [α, K] are shown in Table 3, which were searched

by the DE algorithm.

Because of limited space, this study introduces only the signal

decomposition of the inner race fault. The fault size is 0.1778 mm

and the best parameter combination optimized by the DE was

[122, 4]. Figures 6, 7 shows the original signals and the IMFs

decomposed by VND of the inner race fault.

The more noise the IMF component contains, the less

obvious the periodic impact characteristics related to the
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faults, and the weaker the sparsity of the IMF component signal;

and, as a result, the envelope entropy is large. On the contrary,

the more fault characteristic information the IMF component

contains, and the more regular shock pulses in the waveform, the

stronger the sparse characteristics and as a result, the smaller the

envelope entropy.

After calculating the envelope entropy value of each

component, the IMF2 had the smallest value, and it was

selected as the input signal of the CNN to train the model.

4.2 The CNN optimized by the DE
algorithm

In order to select the most fitness hyper-parameters of the

CNN, the DE algorithm was used as the optimized function, and

the parameters of DE are shown in Table 4.

The D is 5, namely convolution kernel number,

convolution kernel size, pooling size, dropout rate and

batch size; the other parameters were the same as for the

DE of the VMD. The individual solutions were generated

randomly. The convolution kernel number was a random

integer from 10 to 100, the convolution kernel size was a

random integer from 10 to 100, the pooling size was a random

integer from 10 to 100, the dropout rate ws random float from

0.1 to 0.5, the batch size was random integer from 10 to 100,

and the fitness function in the DE was the initial loss of the

CNN when the epoch is one. Figure 8 shows the loss changes

with the evolutionary algebra.

After the DE, the hyper-parameters of the CNNwere selected

and shown in Table 5.

The IMFs decomposed by the VMD from vibration signals

with 1,024 points were applied as the inputs of the CNN. The

other parameters of the CNN were selected by experience. The

stride of the pooling layer was 3, the epoch of the CNN was 40,

the output channel was 13, the activation was relu, the classifier

was softmax, and the optimizer was adam. In order to increase

the convergent speed, this study used self-adaption learning to

update the weight matrix in the back propagation network. The

initial learning rate was 0.01, and it was reduce by half for every

ten increases in epoch.

This proposed method was developed in Python and

programmed with an open source tool (tensorflow).

To verify the efficiency of the proposed model, this study

made the comparison between the CNN and the DE-CNN,

and the results show that the DE-CNN method had fewer

iterative times and a faster convergent speed in the training

datasets. At the same time, compared to the CNN model, the

DE-CNN model had a higher accuracy rate in the training

dataset which is shown in Figure 9.

The results of the comparison are shown as Table 6, together

with comparisons of the other methods using the same testing.

5 Conclusion

A healthy running state is very important for the bearings

in a generator unit in a smart microgrid. Thus, it is necessary

to diagnose any faults immediately. In traditional methods for

bearing fault diagnosis, the first step is feature extraction, and

the result of extracting features largely determines the quality

of the algorithm; but the noise of the original signal makes it

harder to extract features. The deep learning algorithms have

advantages in feature extraction, but overcoming the problem

of noise increases the difficulty of feature extraction and

choosing the most appropriate hyper-parameters of deep

learning algorithms is still difficult. This study proposes a

method combining DE and VMD to reduce the noise of the

original signals, which not only uses a CNN to extract features

from original data directly for fault diagnosis, but also can get

the most fitness hyper-parameters of the CNN. The results

showed that the average accuracy rate in the testing dataset

was over 99.6%, and the convergence speed increased by more

than 10%. However, the proposed methods have limitations.

The process of determining fitness parameters of the VMD

and the CNN using the DE requires a lot of calculation, and

one must not be overly optimistic of the outcome. Future

research will focus on the improvement of the DE algorithm

and promote application of the proposed methods in other

fields.
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