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False data injection attack
detection in dynamic power
grid: A recurrent neural
network-based method

Feiye Zhang and Qingyu Yang*

School of Automation Science and Engineering, Xi’an Jiaotong University, Xi’an, China

The smart grid greatly facilitates the transmission of power and information by

integrating precise measurement technology and efficient decision support

systems. However, deep integration of cyber and physical information entails

multiple challenges to grid operation. False data injection attacks can directly

interferewith the results of state estimation, which can cause the grid regulator

to make wrong decisions and thus poses a huge threat to the stability and

security of grid operation. To address this issue, we propose a detection

approach against false data injection attacks for dynamic state estimation.

The Kalman filter is used to dynamically estimate the state values from IEEE

standard bus systems. A long short-term memory (LSTM) network is utilized

to extract the sequential observations from states at multiple time steps. In

addition, we transform the attack detection problem into supervised learning

problem and propose a deep neural network-based detection approach to

identify attacks. We evaluate the effectiveness of the proposed detection

approach in multiple IEEE standard bus systems. The simulation results

demonstrate that the proposed detection approach outperforms benchmarks

in improving the detection accuracy of malicious attacks.
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1 Introduction

Recently, precise measurement technology and decision support systems have been
increasingly widely used in the smart grid, including grid monitoring, information
sharing, and attack detection, which have significantly improved the safety and efficiency
of grid operation (Lee and Lee, 2015).The integration of IoT systems greatly facilitates the
transmission efficiency of smart grids through bilateral flow of power and information.
A large number of advanced measurement devices have significantly improved the
automation and management level of the smart grid. However, the smart grid is
more fragile to attacks than a typical grid because of its open network environment
(Connolly et al., 2019; Yang et al., 2017).

As a new type ofmalicious attack against gridmonitoring systems, false data injection
attacks are extremely threatening because it is difficult for the defender to identify
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the attack behaviors (Deng et al., 2015;Cintuglu et al., 2016).The
adversary injects a malicious attack based on current state
estimation and adjusts the attack vector, which can bypass
existing detection methods, resulting a deviation in the results of
state estimation results and posing a huge threat to grid operation
(Rahman and Mohsenian-Rad, 2013). Unlike traditional power
grid attacks, the objects and methods of false data injection
attacks have diverse characteristics, thus, it is difficult to
detect them with traditional detection methods (e.g., residue-
based bad data detection and measurement mutation detection)
(Giani et al., 2011; Sandberg et al., 2010).

In recent years, false data injection attacks have received
growing attention, and extensive detection approaches have been
investigated. Most recent research efforts focus on estimating
the state in a static scenario (Guan and Ge, 2017;Rahman
and Mohsenian-Rad, 2012). For instance, Guan and Ge (2017)
constructed a resilient attack detection approach to detect
the presence of false data injection. James et al. (2018)
proposed an online deep neural network-based detection
approach to oppose false data injection attacks in AC systems.
Li et al. (2014) introduced the use of the generalized likelihood
ratio to address the attack detection problem with unknown
parameters. Rahman and Mohsenian-Rad (2012) proposed a
novel measurement to rank smart grid topologies to detect
malicious attacks.

Detection approaches based on dynamic state estimation
have attracted growing attention in the recent years (Karimipour
andDinavahi, 2017;Kurt et al., 2018b). For instance, Karimipour
and Dinavahi (2017) proposed a robust attack detection
method based on Euclidean distance metric and Markov
decision progress. Taha et al. (2016) presented a dynamic
attack detection strategy to mitigate the impact of unknown
cyber-attacks. Chakhchoukh et al. (2019) proposed a statistical
outlier detection algorithm based on successive batch
regression representations of the Kalman filter. Ünal et al. (2021)
developed a novel detection approach that employs machine
learning, deep learning, and parallel computing techniques.
Dayaratne et al. (2022) reported a data-driven unsupervised
anomaly detection approach that is based on the k-means
clustering method and the Spectral Residual method to detect
false data injection attacks in smart grid demand response.

By contrast with existing studies, in this study, we first
analyze the basic principles of false data injection attacks from
the attackers’ perspective and then present a detection approach
for false data injection attacks with dynamic state estimation
using a recurrent neural network and a Kalman filter. The main
contributions of this study are outlined below:

• Wefirst review the dynamic state estimation of a grid system
and briefly analyze the basic principles of false data injection
attacks on a smart grid from the attacker’s perspective.
• We then transform the detection problem of injection
attacks into a binary classification problem, and we propose

a LSTM-basedmalicious attack detection approach of smart
grid.
• Finally, we demonstrate the effectiveness of the proposed
attack detection method in multiple IEEE standard bus
systems. The experimental results show that the proposed
detectionmethod greatly outperforms benchmarks in terms
of accuracy.

2 Background

In this section, we present the basic operating principles
of the dynamic state estimation of power system. Then, we
introduce a conventional bad data detection mechanism. Finally,
we briefly show a false data injection attack model from the
attacker’s perspective.

2.1 Dynamic state estimation

State estimation refers to the obtaining of network topology
and real-time measurement data through a supervisory control
and data acquisition (SCADA) system. The SCADA system
estimates the state of grid operations to perform a power system
analysis, safety monitoring, etc. Dynamic state estimation then
obtains the estimated state value based on measurement data
instead of directly calculating the state value at the current
moment, such as in static state estimation. As an example
of typical dynamic state estimation approach, a Kalman filter
uses discrete measurement sequences {z1,z2,…,zn} to estimate
discrete state sequences {x1,x2,…,xn}. For a discrete state
sequence, there are two ways to estimate the state value xt+1 at
time t+ 1 from the state value at time t: 1) estimate the state value
xt+1 with measurement data zt+1 obtained at t+ 1; 2) predict the
state value xt+1 through the system state xt at t.

Notice that part of the state quantity xt+1 is calculated from
the indirect estimation of the measurement data zt+1, and the
other part of the state quantity xt+1 is calculated from the system
state xt through state transition prediction. In a power system
that contains m measurement data and n+ 1 nodes, the state
prediction equation and measurement equation for a discrete
system are expressed as:

xt+1 = Ftxt +W t, (1)

zt =H txt +V t, (2)

where xt denotes the system state value with n× 1 dimensions at
time t, Ft−1 is the transition function with n× n dimensions,W t
is ann× 1 dimensional noisewithmean zero. zt is ameasurement
vector with m× 1 dimensions, H t is the measurement matrix of
a system with m× n dimensions. V t is m× 1 dimensional noise
with a mean of zero.
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We aim seek the estimation of state x̂t with the known
measurement sequence {z0,z1,…,zt} with minimal error e = xt −
x̂t:

E[eeT] =min. (3)

The basic principle of Kalman filtering techniques includes
two components: state prediction and state update (Fan and
Li, 2009).

State prediction:

x̂−t = Ftx̂t−1 +W t,

P−t = FtPt−1F
T
t +V t.

(4)

State update:

K t = P−t H
T(HP−t H

T +V)−,

x̂t = x−t +K t (zt −Ht−t ) ,

Pt = (I −K tH)P−t ,

(5)

where x̂−t indicates the estimated state value of time step t
conditioned on the optimal estimated state x̂−t−1 at time step t− 1.
x̂t is the optimal estimated state value at time step t. K t is the
Kalman matrix, and Pt is the covariance matrix of error. Notice
that from the above procedure, the optimal estimated state x̂t at
time step t can be formulated as the predicated value x̂−t−1 of time
t to add to the deviation with the Kalman matrix weight.

Kalman filter technology uses a recursive method to
dynamically estimate the state of system. It only needs current
measurement data zt+1 and the estimation data xt from the
previous period to estimate the optimal state x̂t+1. It does not
require much storage space, which is suitable for combining
artificial intelligence approaches.

2.2 Bad data detection mechanism

At time step k, the error vector in the dynamic state
estimation process of power grid, denoted as et , can be
formulated as:

et = zt −Hx̂t, (6)

where et is the error vector at time step t, and zt denotes
the measurement vector. Notice that et follows a Gaussian
distribution.

The normalized error vector λt is derived as:

λt,i = et,i/Vt,i, (7)

where et,i is the i− th component of error vector, and Vt,I is the
i− th component of measurements error covariance matrix. As
shown in Table 1, a traditional bad data detection mechanism
judges the system state according to the value λt,i:Note that we

TABLE 1 Bad data detection mechanism.

System State Range of λt,i

Normal state λt,i < τ
Abnormal state λt,i > τ
Critical state λt,i = τ

believe that the system does not encounter false data injection
attacks if (8) is satisfied:

|λt,i| ≤ τ,∀i (i ∈m) , (8)

where τ is the detection threshold.

2.3 Attack strategy

The basic principle of a bad data detection mechanism is
to identify whether the normalized error vector λt in (Eq. 8)
surpasses τ. However, the adversary’s objective is to manipulate
the attack vector to bypass the detection approach. We thus
briefly present the attack model from the attacker’s perspective
(Ding and Liu, 2017; Hu et al., 2015).

State measurement data z′t,i after being attacked is expressed
as:

z′t,i = zt,i + at,i, (9)

where zt,i is themeasurement data, and at,I is themalicious attack
vector injected by the attacker.

According to the bad data detection mechanism |λt,i| ≤ τ
presented in Section 2.2, the following equation can be
derived:

| (z′t,i −Hix̂t,i)/Vt,i| ≤ τ.

By bringing (9) into (2.3), we have,

|zt,i + at,i −Hix̂t,i| ≤ Vt,iτ. (10)

Finally, we can derive the safety range of the attack vector:

Hix̂
− −Vt,iτ− zt,i ≤ at,i ≤ Vt,iτ+Hix̂

−
t,i − zt,i. (11)

Obviously, we can see that the data integrity attack can bypass
traditional detection if the attack at,i is in the interval indicated
in (11).

3 Proposed solution

In this section, we propose a neural network-based approach
to detect data integrity attacks against the dynamic state
estimation of a smart grid. From Section 2.2 we know that
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traditional bad data detection mechanisms determine whether
a system is abnormal by comparing the normalized error
vector λk against a specific threshold. However, the detection
accuracy is greatly affected by the value of the threshold. When
the threshold is high, the detection accuracy decreases, and
when the threshold is low, the amount of false detections
increase. Thus, in this section we propose an LSTM network
that can draw information from observations in previous
m episodes to determine whether the system is currently
under a data injection attack to implicitly and automatically
analyze changes in the threshold when detecting malicious
attacks.

3.1 Observations of the system

Before introducing the proposed approach, we present
observations of the system regarded as the metrics for
determining whether the power grid system is under attack.

According to Section 2.2, it is difficult to directly check the
presence of data injection attacks by the state vector of the system.
In thisway,we define the computable observation ot of the system
state at time t:

ot =
‖zt −Hx̂t‖
‖ω‖
, (12)

where ‖zt −Hx̂t‖ denotes the size of the error vector at
time t, and ‖ω‖ is the size of the noise. From Section 2.2, we
can see that in the situation where the system is in normal
operation, the size of the error is small, and the value of ot is also
small. On the other hand, when the system is in an abnormal
state, the size of the error and related observation ot is large.
Therefore, it is reasonable to utilize these observations to reflect
the presence of data integrity attack. Furthermore, the presence
of system noise greatly interferes with the judgment of whether
the system is under attack, so we introduce the parameter ‖ω‖
to reduce the impact of system noise on detecting a malicious
attack.

FIGURE 1
LSTM network structure.

3.2 LSTM-based feature extraction

From Section 2.1, we know that the measurement data for
the dynamic state estimation are correlated in time, so it is
reasonable to utilize the previous measurement data to judge
the presence of data injection attacks. Moreover, because the
measurement data of the power grid always contains system
noise, only using measurement data at a single time step without
considering the sequential information in the system is not a
good choice for determining the presence of a false data injection
attack. Note that a recurrent neural network (RNN) has shown
excellent performance in processing sequential data, and it can
extract sequential measurement features to improve the accuracy
of false data injection attacks (Sutskever et al., 2014). An LSTM
network is a type of RNN that is designed to model temporal
sequences, and its prediction of long-term dependencies is more
accurate than typical RNN (Gers et al., 2000). Thus, we utilize
the LSTM network to extract measurement data over multiple
time periods to check the presence of data injection attacks in
the power grid system.

Figure 1 presents the basic structure of the LSTM network
utilized in this study. From Figure 1, we can see that there arem
LSTM cells that are used to store the observations of the power
grid system in previous time steps. Specifically, the input of the
first LSTM cell is the observation ot−m of the system at time t−m.
Then, the first LSTMcell utilizes ot−m to calculate the hidden state
ht−m, which contains information on the previous observation.
After that, the second LSTM cell calculates its hidden state ht−m+1
by ht−m and its current observation of the system ot−m+1. This
calculation is then repeated in all LSTM cells, and we utilize the
final output of the last LSTM cell as the aggregated observation,
denoted as o(t), which contains not only current information on
the system observation but the representation of the observation
over the pastm time steps.

3.3 Attack detection algorithm

In the following, the proposed attack-detection method is
described. It includes threemain procedures: data preprocessing,
neural network training, and detection accuracy testing. The
overall structure of the attack detection algorithm is illustrated
in Figure 2, in which, the system first preprocesses the data
from IEEE standard bus system and divides the data into
two parts: a training set and a testing set, where the training
set is used to update the parameters of the neural networks,
and the testing set is used to evaluate the accuracy of thee
attack detection approach. Then, we train the proposed deep
neural network using the training data. Finally, the trained
network is used to detect whether the system is under
attack. The details of these three parts are presented as
follows.
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FIGURE 2
Structure of an attack detection algorithm.

FIGURE 3
IEEE—30 standard bus system.

3.3.1 Data preprocessing
We define the state of the system with x = {x1,x2,…,xn},

where each state xi contains information on phase angles
and voltage magnitudes. The number of episodes in the data-
preprocessing process is E, and each episode lasts for T time
steps. For each time step t, we obtain the state of the system x
from the IEEE standard bus system, as illustrated in Figure 3.
Themeasurement of the system is expressed as z = {z1,z2,…,zm},

and it is calculated byEq. (2). After this, Kalmanfilter technology
is employed to estimate the system state x̂ with Eqs. (4,
5). To check the presence of data injection attacks in the
power grid system, we calculate the observations of the system
with Eq. (12).

The attacker adjusts the attack vector to bypass the traditional
bad data detection approach. To generate training data, we
inject the attack vector, denoted as a, into the measurement
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Algorithm 1. Data preprocessing of the attack detection approach.

data and formulate the process of the data injection attack, as
follows:

z′ = z + a, (13)

where z is the original measurement data and z′ is the
measurement data after the system is attacked. Then we label
the measurement data, such that label = [1,0] means that the
data are under attack, and label = [0,1] means that they are not
being attacked. In this way, we transform the attack detection
problem into a supervised learning problem, and we utilize a
deep neural network to classify the labeled observations. Finally,
we divide the labeled observations into a training set and a
testing set, using the training set to update the parameters of
the neural networks and the testing set to evaluate the accuracy
of the attack detection approach. The pseudocode for the data
preprocessing is presented in Algorithm 1, in which we obtain
the system states in the IEEE standard bus system and inject
attacks to themeasurements data.Thenwe label the observations
and utilize the deep neural network for classification.

3.3.2 Neural network training
As shown in Figure 2, we utilize the training data divided

from the labeled observations to update the parameters of the
neural network. The neural network has an excellent ability
to model nonlinear functions Nielsen (2015). The proposed
classifier is a deep neural network that consists of three layers.
We randomly initialize the parameters θ of the neural network
including weights ω and bias b at the beginning of the training.
In each training episode e, we sample amini-batch of the training
data with size M. We regard the LSTM layer as the input layer
to make full use of the impact of previous observations on the
current state, and we feed the LSTM layer with the time series
of observations [ot−m,ot−m+1,…,ot]with lengthm.Therefore, the
output of the LSTM layer is given as follows:

o (t) = f1 (ot−m,ot−m+1,…,ot) , (14)

where f1(⋅) represents the calculation function of the LSTM layer.
Then the output of the LSTM layer o(t) is fed into the hidden
layer, including two fully-connected neural networks.The output

Algorithm 2. Neural network training of the attack detection approach.

is represented by:

h (t) = f3 (f2 (ot)) . (15)

where f2(⋅) and f3(⋅) are the calculation functions of each
fully-connected layer. Finally, the output layer contains two
neurons that generate the judgment of the system state based
on the system observations in the current parameters of the
neural network. Specifically, the output of the neural network is
P = [p0,p1], where p0 > p1 indicates that the detector believes that
the system is operating normally, and p0 < p1 denotes that the
system is under attack.

The loss function of the entire neural network is indicated as
the square of the difference between the outputs and labels:

L (e) =
M

∑
i=1
(Pi − labeli)

2, (16)

where Pi is the output of the neural network from feeding the
i− th observations and labeli is the label for the i− th observations
in the mini-batch. The gradient of loss function ∇θL(e) is back-
propagated, and the neural network parameters θ are updated as
follows:

θ = θ− α∇θLθ, (17)

where α is the learning rate, which determines neural network
training speed.

The pseudocode for the neural network training is given in
Algorithm 2, which mainly describes the training process for the
neural network, using the sampled mini-batch from the training
data. The parameters of the neural networks are updated by the
back-propagation of the gradient of loss function.

3.3.3 Detection accuracy testing
After the training process, the trained neural network is

used to evaluate detection accuracy againstmalicious attacks.We
utilize testing data with size N2 from the labeled observations
to determine whether the system can correctly capture false
data injection attacks. First, sequential observations are regarded
as the input of the trained neural network. Then the network
generates the output P = [p0,p1]. If p0 > p1, the detector believes
that the system is operating normally, and if p0 < p1, the detector
thinks the system is under attack. Finally, we compare the output
of the detector with the label of the observations to indicate
the correctness of detection and define the number of correctly
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Algorithm 3. Detection accuracy testing.

classified samples, divided by the total number of samples as the
metric. The procedure for detection accuracy testing is outlined
in Algorithm 3, in which it can be seen that the trained neural
network is utilized to evaluate the accuracy of detecting the
malicious data injection attacks.

4 Experiments

In this section, we evaluate the detection accuracy of the
proposed detection approach in IEEE standard bus systems.
We first describe the experimental settings. Then, the detection
accuracy of our proposed detection approach is presented,
compared with benchmarks. After that, we evaluate the impact
of different attack amplitudes and different model parameters on
the performance of detection accuracy.

4.1 Experimental settings

4.1.1 Parameters
We investigate the performance of our proposed attack

detection approach in IEEE-9, 14, 30, 118, and 300 standard
bus systems. The initial state value of the system and
measurement matrix are obtained from MATPOWER
Zimmerman et al. (2010). The main parameters of the proposed
detection approach are presented in Table 2. Specifically, we
set the size of the observation sequence of the LSTM layer
as 4. We set the number of training data accounting for 90%
of the total number of labeled observations, such that the
testing process utilizes 10% of the observations to evaluate
detection performance. The amplitude of the attack is 1% of
the measurement data. The size of the mini-batch is set as 40.
The number of episodes E is set to 100, and each episode lasts for
50 time steps. In addition, the learning rate α is set to 0.001, and
the structure of hidden layer is set as (36,64,64).

4.1.2 Benchmarks
To evaluate its effectiveness, we compare the

proposed attack-detection method with the following two
benchmarks:

TABLE 2 Parameters of proposed detection approach.

Parameter Value

Size of the observation sequencem 4
The proportion of the training set 90%
The proportion of the testing set 10%
Attack amplitude 1%
Size of the mini-batchM 40
Number of episodes E 100
Number of time steps T 50
Learning rate α 0.001
Structure of hidden layers (36,64,64)

• BPNN: Back propagation neural network-based (BPNN)
detection approach utilizes a fully connected neural network
to detect whether the grid system is under attack. The
BPNN-based detection approach does not utilize the LSTM
layer to extract the previous observations to estimate the
current state. The remaining settings are the same as those
of the proposed approach.
• BPNN-imp: BPNN-imp is an enhanced detection approach
based on the BPNN. It utilizes the concept of a sliding
window to input multiple observations into the neural
network at once Kurt et al. (2018a). We set the size of the
sliding window to the same length as m. The remaining
settings are the same as a BPNN-based approach.

4.1.3 Attack scenario
To demonstrate the effectiveness of the proposed

detection mechanism in improving the detection accuracy, we
introduce two types of attack scenarios: continuous attack and
discontinuous attack. The details of these attack scenarios are
given in the following:

• continuous attack: in a continuous attack scenario, the attack
is launched at the half time step of the episode, i.e., t = T

2
, and

the attack is sustained until the end of the episode.
• discontinuous attack: in the discontinuous attack scenario,
the attack is launched at any time step after the half time
step of the episode, i.e., t = T

2
. Each time steps after t = T

2
,

the system has 50% probability of being attacked.

4.2 Results of attack detection

We utilize detection accuracy as the evaluation metric to
identify the effectiveness of the proposed detection method. The
detection accuracy is defined as the number of correctly classified
samples, divided by the total number of samples.

We first conduct experiments to compare the detection
accuracy of the proposed attack detection approach with BPNN-
based approach and a BPNN-imp-based approach against a
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TABLE 3 Detection accuracy in continuous attack scenario.

Systems IEEE-9 IEEE-14 IEEE-30 IEEE-118 IEEE-300

Proposed 0.9422 0.9452 0.9424 0.9442 0.9368
BPNN-imp 0.875 0.8692 0.8626 0.8728 0.8628
BPNN 0.7362 0.7462 0.7424 0.7424 0.7442

TABLE 4 Detection accuracy in discontinuous attack scenario.

Systems IEEE-9 IEEE-14 IEEE-30 IEEE-118 IEEE-300

Proposed 0.7634 0.7598 0.757 0.7642 0.7582
BPNN-imp 0.6794 0.6792 0.6754 0.6784 0.674
BPNN 0.5918 0.5972 0.6004 0.6096 0.5944

continuous false data injection attack under the IEEE-9, 18, 30,
118, and 300 bus standard systems. Table 3 shows the simulation
results:

Table 3 proves that our proposed detection approach
outperforms BPNN-based approach and the BPNN-imp-
based approach on the continuous attack scenario in terms of
attack detection accuracy. Specifically, the average detection
accuracy of the proposed approach reaches about 0.9422, 0.9452,
0.9424, 0.9442, and 0.9368 in the IEEE-9, 14, 30, 118, and
300 systems, respectively. Obviously, the proposed detection
approach significantly outperforms the benchmarks in detecting
the continuous false data injection attacks, which achieves
a 7.7,8.7,9.3,8.2, and 8.6% higher detection accuracy than
the BPNN-imp-based approach and a 28.0,26.7,26.9,27.2,
and 25.9% higher detection accuracy than the BPNN-based
approach in IEEE-9, 14, 30, 118, and 300 systems, respectively.
In addition, the accuracies of the three detection approaches
are basically unchanged under different systems, which
demonstrates that the complexity of the system has no impact
on the performance of detection accuracy against a continuous
attack.

We then compare the detection accuracy of our proposed
detection approach with benchmarks for the discontinuous
attack model.Table 4 shows the detection accuracy for detection
approaches on a discontinuous attack scenario. The results
in Table 4 are in general same as those for the continuous
attacks.The average detection accuracy against the discontinuous
attack of the proposed approach reaches 0.7634, 0.7598, 0.757,
0.7642, and 0.7582 in IEEE-9, 14, 30, 118, and 300 systems,
respectively. Clearly, the proposed detection approach achieves
a 12.4,11.9,12.1,12.6,and 12.5% higher detection accuracy
than the BPNN-imp-based approach and a 29.0,27.2,26.1,25.4,
and 27.6% higher detection accuracy than the BPNN-based
approach in IEEE-9, 14, 30, 118, and 300 systems, respectively.
Furthermore, as can be seen inTables 3, 4, discontinuous attacks
are more difficult to detect than continuous ones, which have

lower detection accuracy with the same approaches and the same
testing systems.

4.3 Training time

Next, we investigate the training time of the proposed
detection approach in different systems in Figure 4, where we
can see that, although the detection accuracy of the proposed
detection approach under different systems is substantially equal,
there is a large difference in the training time. Specifically, as the
complexity of the system gradually increases, the running time of
the detection approach increases significantly. The running time
of the detection approach for the IEEE-9 bus system is only 6.57 s,
and the running time of the detection approach on IEEE-300 bus
system increases by nearly 118 times, to 777.32 s.

FIGURE 4
Training time of different systems.
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FIGURE 5
Detection delay under different attack amplitudes.

4.4 Discussion of attack amplitude

We now consider the impacts of different attack amplitudes
on the performance of detection accuracy on an IEEE-30 bus
standard system. The results are shown in Figure 5, in which
we set the attack amplitude to increase from 0.1 to 2% at
a step of 0.1%. In Figure 5, the red line with square marks
represents detection accuracy of the continuous attacks. The
blue line with triangle marks illustrates the detection accuracy
of discontinuous attacks. From Figure 5 we can see that, with
increasing attack amplitude, detection accuracy also increases,
which demonstrates that the attacks with larger amplitudes are
easier to identify by the detection approach. We can also see
from Figure 5 that the increment of the detection accuracy is
more obvious with increasing attack amplitude when the attack
amplitude is small (e.g., the attack amplitude is larger than
0.1% and less than 0.5%). As the attack amplitude gradually
increases, the growth rate of the detection accuracy also gradually
slows. When the attack amplitude reaches a certain level, the
detection accuracy tends to be stable. Moreover, the increment
of detection accuracy with the increase in attack amplitude in a
continuous attack scenario is faster than that in a discontinuous
attack scenario, and the detection accuracy in a continuous attack
scenario is always higher than that in a discontinuous attack.

4.5 Impact of training parameters

Finally, we evaluate the impact of the observation sequence
lengthm on the performance of the proposed detection approach
in the IEEE-30 bus standard system. The results are shown
in Figures 6 and 7, where Figure 6 represents the results of
detection accuracy at different m under continuous attack, and
Figure 7 represents the results of detection accuracy at different

FIGURE 6
Detection accuracy at different m under continuous attacks.

FIGURE 7
Detection accuracy at different m under discontinuous attacks.

m under discontinuous attack. From Figures 6 and 7, we can see
that, when the observation sequence lengthm is larger than 1 and
smaller than 4, the increase of m results in the improvement of
the detection accuracy. However, when the observation sequence
length m is larger than 4, the increase of m has little impact on
the accuracy of detection, and the detection accuracy for both
continuous and discontinuous attacks tends to converge to a
certain value.

5 Conclusion

In this study, we propose an LSTM-based false data injection
attack detection approach for dynamic state estimation in a
smart grid. We propose a neural network model that utilizes
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the LSTM network to extract the previous observations to
determine the current state estimation.We transform amalicious
data injection attack detection into supervised learning and
train the proposed deep neural network for classification. We
conduct extensive experiments to illustrate the effectiveness
of proposed detection method and investigate the impact of
attack amplitudes and model parameters on detection accuracy.
The simulation results demonstrate that the proposed detection
approach outperforms BPNN-imp-based approach and BPNN-
based approach in detection accuracy.
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