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Increasing penetration of wind power with intermittency and variability

threatens the stability of the power system frequency. The fast response

capability of the energy storage system (ESS) makes it an effective measure

to improve frequency regulation performance. However, designing an optimal

control for numerous energy storage units (ESUs) with different power and

energy characteristics is challenging. To solve the dilemma that the distributed

control methods cannot achieve optimality over time horizons while the

centralized optimization methods would cause high computational burdens,

a bi-layer optimal control approach is proposed in this study. In the upper layer,

a multi-area secondary frequency control (SFC) problem is established to

determine control policies for ESS clusters under continuous wind power

fluctuations and is solved by the Itô theory-based stochastic optimization

(ITB-SO) method with high computational efficiency in a rolling-horizon

manner. In the lower layer, the power output of ESUs is dispatched and

coordinated using the distributed algorithm (DA) method via communication

networks, considering different characteristics and the current state-of-charge

(SoC) levels. Simulation studies carried out in a dual-region test system

evidence the improvement of system frequency stability by compensating

for rapid wind power fluctuations immediately via ESSs. The results show

that the proposed ITB-SO method without scenario generation is suitable

for real-time SFC for the ESS. The effectiveness of the DA method and its

robustness in encountering loss of communication links are also verified.
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1 Introduction

In the past few decades, the penetration of renewable energy

sources (RES) has been increasing rapidly. At the end of 2020, the

RES capacity, including wind power and photovoltaic power

generation, was 1300GW, accounting for 9.4% of the total

installed power generation capacity in the world (Khan et al.,

2021). The increasing RES penetration level in the

interconnected power grids results in a decrease in the system

inertia (Meegahapola and Flynn, 2010). For example, the wind

turbine generators are decoupled from the system frequency by

converters, so they cannot provide frequency regulation support

for a long time (Tsili and Papathanassiou, 2009). Severer

frequency fluctuations would happen in the areas with low

system inertia than others in the interconnected power

systems (Miller et al., 2011). Meanwhile, the intermittency

and variability nature of RES power generation would lead to

continuous power imbalances and system frequency deviations

(Bidram and Davoudi, 2012). Therefore, the increasing

integration of RES will inevitably bring challenges to the

stability of system frequency.

Exploiting energy storage systems (ESSs) for maintaining

frequency stability of the systems with high penetration levels of

the RES has recently attracted attention both in industry and

academia. In recent years, the application of the ESS is gradually

becoming widespread. In 2021, the rated power of installed ESS

was 173.7GW, and 1,363 ESS projects were operational globally

(U.S.DOE, 2021). The ESS has higher ramping and faster

response capability than conventional generators, so better

dynamic tracking performance is available for frequency

regulation control. Since the traditional automatic generation

control (AGC) signal is unsuitable for ESSs with limited energy

capacity, filtering mechanisms are developed to extract fast-

moving and high-frequency components of the AGC signal

for the ESS to participate in SFC (Cheng et al., 2014).

Meanwhile, the management of state-of-charge (SoC) for ESS

during frequency regulation is important as well. It needs to

prevent the second frequency drop issue due to sudden

withdrawals of some ESSs. Karrari et al. (2020) propose an

SoC recovery mechanism for flywheel ESS so that the residual

energy capacity is always in the optimal state. Garcia-Torres et al.

(2021) apply the stochastic optimization (SO) method

considering the management SoC level and address the

prediction uncertainties of RES.

In order to further exploit the complementary advantages

of different types of ESSs in terms of rated power and energy

capacity, hybrid ESSs are developed and utilized in frequency

regulation. The main ESS types, including batteries (Li-ion,

Pb-Acid), flywheels, and supercapacitors, possess different

power-to-energy ratio characteristics. Jan et al. (2020) used

a fuzzy PI controller for ESSs to cater to the frequency

variations adaptively. Shim et al. (2018) proposed droop

control with the SoC feedback to improve their frequency

response and regulation services to the grid. However, the

control strategies in these studies are separate and

independent, which means different ESSs cannot be

coordinated, and hence unnecessary mutual regulation and

waste of resources would be caused. Esmaili et al. (2013)

decomposed the power signal into fast/slow components to

allocate responsibility for hybrid ESSs. Oshnoei et al. (2020)

adopted the model predictive control method to determine an

ESS control scheme with various characteristics, which is

robust to uncertain disturbances. Nevertheless, these

centralized ways are sensitive to noise and communication

failure (Zhao and Ding, 2018b). On the contrary, the

distributed realizations relying on local and neighboring

information can reduce computation time and

take advantage of local intelligent agents (Anderson et al.,

2021).

Distributed methods such as the consensus algorithm are

widely used in economic dispatch problems (Li et al., 2019),

control for photovoltaic arrays (Zhang et al., 2021) and batteries

(Chen C. et al., 2019), etc. Alsharif et al. (2020) applied the

distributed algorithm (DA) method coordinating ESS power

output to enhance the frequency nadir and improve the

dynamic performance. Lee et al. (2016) coordinated the group

battery ESS by a distributed control algorithm for voltage and

frequency deviation regulation. Cherukuri and Cortes (2018)

developed a distributed method for ESSs considering the change

of load, but uniform storage efficiency is assumed. However,

these studies did not take into account random wind power

generation or the influence of ESS control strategies on the

frequency of interconnected grids. Zhao and Ding (2018a)

present a DA method to maximize the total welfare of battery

ESSs during frequency regulation considering changes in wind

power. But, it relies on accurate predictions of wind power, which

is difficult to accomplish, considering their inherent variability.

As a result, the stochastic characteristics of RES should be taken

into account when designing accurate control strategies for

the ESS.

However, a disadvantage of the distribution methods is that

the optimality of power dispatching between ESSs can only be

achieved at the current time step, instead of considering the

optimal solution over a future finite time horizon. The power

output scheme is possibly not adapted to the energy-constrained

ESSs when the signal is constantly biased, resulting in storage

saturation. It indicates that the ESS can participate in the SFC

only if the energy content of the signal is kept low (Megel et al.,

2018). So, it is necessary to develop reasonable control strategies

to maintain optimal energy levels of ESSs. But, on the other hand,

if the power output of all ESSs is decided in a centralized

optimization problem over a period, a large scale of variables

would lead to computational burdens and intractability, which is

unsuitable for real-time SFCs.

In order to fill the abovementioned research gap, a bi-layer

SFC framework for the ESS is presented in this article. Different
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energy storage units (ESUs) in the same area are combined as an

ESS cluster to reduce the computational complexities of upper-

layer control, and the optimal control policies are updated in a

rolling-horizon manner to ensure frequency regulation

performance. Then, the ESUs coordinate their power output

via communication networks in real-time. Therefore, different

from the previous studies, the proposed approach can achieve a

balance between the optimization method considering wind

power uncertainty and the distribution method with high

efficiency. The main contributions of this article are

summarized as follows:

1) An upper-layer optimization problem of multi-area

frequency regulation considering stochastic wind power

fluctuation is established to determine the optimal control

policy of ESS clusters. The Itô theory-based stochastic

optimization (ITB-SO) method is proposed to efficiently

obtain the solutions, in which the wind power uncertainty

is modeled by stochastic differential equations (SDE) without

scenario generation. The computational burden is

significantly reduced so that it is suitable for real-time

frequency regulation.

2) To make full use of the local computing capability, a DA

method with high efficiency and robustness is applied to

dispatching power output among ESUs. The power command

can be adaptively decomposed considering the different

characteristics of power-type and energy-type units. The

evaluation of the SoC level is improved by adopting the

logistic function to better reflect the safe and dangerous

SoC zones. Sudden withdrawal of ESUs due to energy

saturation and violation of power limits can be avoided to

guarantee power tracking performance.

The remainder of the article is organized as follows: Section

2 describes the multi-area frequency regulation model

considering ESSs and wind power uncertainties. Section 3

proposes an optimal SFC approach for ESS clusters based on

the ITB-SO method. Section 4 proposes a power dispatching

approach for ESUs in the clusters based on the DA method.

Case studies are presented in Section 5. Section 6 gives a

conclusion.

2 System model

2.1 Dynamic model of frequency
regulation considering the ESS

The system frequency is affected by load and generation

sources, including conventional generators and ESSs. Regardless

of the power loss, the dynamic frequency response model of

multi-areas can be expressed as follows (Mauricio et al., 2009; Li

et al., 2016):

d

dt
Δfi � − 1

2Hi

⎛⎝DiΔfi − ΔpM
i + pE

i + ΔpL
i

+ ∑
j: i �����→ j

Δptie
ij
⎞⎠,∀i, j ∈ A (1)

d

dt
ΔpM

i � − 1
Tt
i

(ΔpM
i − ΔpAGC

i + 1
Ri
Δfi),∀i ∈ A (2)

d

dt
Δptie

ij � 2π∑Tij(Δfi − Δfj),∀i, j ∈ A (3)

d

dt
ΔpAGC

i � −KI
i
⎛⎝BiΔfi + ∑

j: i �����→ j

Δptie
ij
⎞⎠,∀i, j ∈ A (4)

whereA is the set of area systems; Δfi is the frequency deviation of

the ith area from the rated value; ΔpM
i is the active power deviation

of conventional generators from the nominal value in the ith area;pE
i

is the active power of the ith ESS cluster because numerous units can

be equivalently combined to reduce the number of variables; ΔpL
i is

the change of load;Δptie
ij represents the tie line power from the ith to

the jth area; ΔpAGC
i is the AGC reference; Hi and Di are the

equivalent system inertia and damping, respectively; Tt
i is turbine

time constant; Ri is the droop coefficient; Tij is the synchronizing

coefficient; Bi is the frequency bias factor; and KI
i is the integral

coefficient. Eq 1 gives the frequency dynamic characteristic; Eq. 2

shows the change of regulation output from the generators,

including primary frequency regulation and AGC; Eq. 3 shows

the power change on the tie line between different areas; tie-line bias

control in Eq. 4 automatically adjusts the AGC reference by driving

the area control errors (ACE) to zero.

The wind power output can be considered a negative system load

as shown in Eq. (5), which is more difficult to accurately forecast than

load. Hence, the continuous wind power fluctuations would pose a

threat to the safety and stability of the system frequency.

ΔpL
i � −ΔpW

i ,∀i ∈ A (5)

where ΔpW
i is the deviation of wind power from its initial value in

the ith area.

2.2 Energy storage model

Different ESUs are combined into an ESS cluster, so the

overall power output and energy level of the ith cluster can be

represented by the sum of that of the member ESUs as follows:

pE
i � pE,d

i − pE,c
i � ∑

k

(pd
k − pc

k),∀k ∈ Si (6)

sEi � ∑
k

sk,∀k ∈ Si (7)

d

dt
sk � pc

kη
c
k − pd

k/ηdk, (ηck, ηdk) ∈(0, 1],∀k ∈ Si (8)

where S is the set of ESS clusters; pE,d
i and pE,c

i are the discharge

and charge power of the ith ESS cluster, respectively; pd
k and pc

k
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are the discharge and charge power of the kth ESU, respectively;

sEi and sk are the energy level of the ESS cluster and ESU,

respectively; the initial condition is s0; and ηck and ηdk are the

charge and discharge efficiencies, respectively. The power output

and energy level satisfy the limit constraints as shown in (9 and

10), and the state-of-charge (SoC) can be obtained according to

the energy level as shown in (11).

0≤pd
k ≤Pk

max, 0≤pc
k ≤Pk

max (9)
0≤ sk ≤ Sk

max (10)
SoCk � sk

Sk max
(11)

where Pk
max represents the rated power; Sk max is the rated

energy capacity; and SoCk is the SoC level of the kth ESU.

2.3 Model of wind power prediction error

SDE has been widely used as an effective model of RES

prediction error, such as wind power (Verdejo et al., 2016) and

photovoltaic power (Lingohr and Müller, 2019). The probability

distribution information and the temporal correlation characteristic

could be simultaneously expressed. It is convenient to fit the non-

Gaussian distribution via the Itô process by adopting different

functions in SDE models so as to well-reflect the detailed

characteristics of RES uncertainty. On the other hand, the SDE

model can be embedded into SO problems without scenario

generation in order to significantly release computational burdens.

Specifically, the wind power output value consists of the

ultra-short-term prediction in a finite time period and the

prediction error, which is modeled via the Itô process as follows:

ΔpW
i � ΔpW,pred

i + ξ i,∀i ∈ A (12)
dξ i � μ(ξ i)dt + σ(ξ i)dWt,∀i ∈ A (13)

μ(ξ i) � −(ξ i − b1)
τ

, σ(ξ i) � b2
τ
(ξ i − b3)(b4 − ξ i) (14)

where ΔpW,pred
i is the predicted wind power deviating from the

initial forecast; ξi represents the prediction error; μ(·) and σ(·)
are the drift and diffusion function of SDE, respectively; Wt is a

Wiener process; τ represents the time constant; parameter b1 is

the mean deviation from the predicted value; b2 is the fluctuation

intensity; and b3 and b4 indicate the fluctuation interval. The

parameters can be easily adjusted in different time periods

according to the preference of operators in advance.

2.4 Bi-layer SFC framework for ESS
clusters

The optimal SFC for ESS clusters is divided into two control

layers. In the upper layer, the convex SO problems are established

to decide the optimal power output minimizing the frequency

deviation. However, modeling numerous ESUs will result in a

large number of decision variables for the optimization problem,

which is difficult to solve rapidly. Therefore, optimal control

policies for the overall power output of ESS clusters are

determined to reduce computational complexities. The ITB-

SO method is applied instead of scenario-based methods in

order to quickly obtain the optimal solutions for the SFC.

In the lower layer, the total power command is dispatched

between the ESUs in the same ESS cluster with a communication

network. The optimal dispatching scheme is obtained by the DA

method considering the current SoC levels and different

characteristics of power-type and energy-type units. In

summary, the framework of the bi-layer optimal SFC is

shown in Figure 1.

3 Optimal SFC of ESSs based on
ITB-SO

3.1 Objective function

The frequency regulation control problem to minimize the

frequency deviation and operation cost of the ESS can be

described as a SO problem over T : t ∈ [0, T], and the

objective function is defined as

min J � Eξ0{∫T

0
(Δf Tt ΛfΔf t + RT

t ΛRRt)dt}
+ Eξ0

⎧⎨⎩ΛS ∑
i

(SoCi,T − SoCref)2⎫⎬⎭ (15)

where T is the set of time index; T represents the terminal time; Δf t
is the vector form of the frequency deviation of each area shown in

(16); Rt is the vector of control variables of the ESS shown in (17),

including the discharge and charge components of power output.

Since the objective is to achieve a minimum of the square power

output, simultaneous non-zero charging and discharging power can

be avoided; SoCref is the reference value for SoC, which is set as 0.5 in

this study; ξt is the vector of wind power prediction error ξi; Eξ0{·}
denotes the expectation operator under the initial conditions ξ0;Λf,

ΛR, and ΛS are the weight parameters.

Δf t � [Δfi,t]T,∀i ∈ A,∀t ∈ T (16)
Rt � [pE,d

i,t , p
E,c
i,t ]T,∀i ∈ A,∀t ∈ T (17)

Since different ESUs are combined into an ESS cluster and

meet the power command, their overall SoC level can be

estimated by

d

dt
SoCi � 1

Si max
(pE,c

i ηc,eqi − pE,d
i /ηd,eqi ),∀i ∈ A (18)

where ηd,eqi and ηc,eqi are the equivalent discharge and charge

efficiency, respectively, which are set as the average over ESUs;

and Si max is the total rated energy capacity of the ith ESS cluster.
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It can be seen that the objective function (15) shows the

trade-off between frequency regulation performance and the

power and energy cost of the ESS. At the terminal time, the

SoC level is forced to be close to the reference value by the

objective function because it is necessary to maintain the

feasibility of the next rolling horizon after the terminal time.

Moreover, the frequency deviation constraint and SoC

constraint should be considered, as shown in (19) and (20), to

enhance frequency regulation performance and guarantee the

operation of the ESS. It is to be noted that constraint (19) could

be violated sometimes when ESSs do not have enough power

capacity to participate in frequency regulation, and hence it

should be removed if the problem is infeasible.

−Δf max ≤Δfi,t ≤Δf max,∀i ∈ A,∀t ∈ T (19)
SoC ≤ SoCi,t ≤ SoC, ∀i ∈ A,∀t ∈ T (20)

3.2 Itô theory-based stochastic
optimization method

3.2.1 Series expansion of stochastic assessment
function

To obtain the expected value of the objective function under

all uncertainties, an ITB approximation method is adopted to

evaluate it in a deterministic way (Chen et al., 2019c) so that the

SO problem can be solved efficiently. For convenience, the

stochastic system is expressed as (21) considering the

stochastic resources ξt described by SDE.

dXt � (AXt + Bξt)dt
dξt � μ(ξt)dt + σ(ξt)dWt

(21)

where Xt represents the state variables, which is aNx × 1 column

vector; ξt is a Nξ × 1 column vector representing wind power

prediction error in this study; A and B are the coefficient

matrices; and the initial condition of the stochastic system is

X0 and ξ0.

The stochastic assessment function (SAF) is defined and

denoted as u(t,X0) when specific functions of Xt are given

and can be expanded into a series of deterministic terms as

follows:

u(t,X0) � Eξ0{∫t

0
g(Xs)ds + h(Xt)} � ∑∞

n

~un(t,X0) (22)

where g(·) and h(·) are functions of Xt with continuous second-

order derivatives and ~un is the nth order deterministic

components of the SAF. Therefore, SAF can be approximately

estimated by ignoring the high-order terms.

Specifically, the objective function (15) evaluated by SAF at

time T can be decomposed into low-order terms as

J � u(T,X0) ≈ ~J0 + ~J1 (23)

FIGURE 1
Framework of bi-layer secondary frequency control for energy storage clusters in multi-area systems.
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Given that g � Δf Tt ΛfΔf t + RT
t ΛRRt and

h � ΛS ∑
i
(SoCi,t − SoCref )2, the 0-th and 1-st order terms of

the objective function are defined as

~J0 � ∫T

0
g( ~Xt)dt + h( ~XT) (24)

~J1 � ∫T

0

1
2
σ(~ξt)Tθtσ(~ξt)dt (25)

where ~Xt is the auxiliary state variables by ignoring σ(ξt)dWt in

(21). Hence, they can be recognized as the expected state

variables in the deterministic system without the influence of

uncertain resources; ~ξt is independent of the state variables, so

σ(~ξt) can be obtained once the initial condition ξ0 is given. θt
represents the second-order derivative of SAF components and is

defined as

θt � ∫t

0
X̂

T

s [∇2g]X̂sds + X̂
T

t [∇2h]X̂t (26)

where ∇2 is the operator of the Hessian matrices and X̂t is

another group of auxiliary state variables with

X̂t � z~Xt/zξ0, X̂0 � 0Nξ×Nx. The detailed proof of the

abovementioned series expansion method based on Itô theory

can be found in (Chen et al., 2019c).

3.2.2 Control policy
The control output of the ESS should be appropriately

adjusted in response to different wind power values. However,

it is hard to accurately predict wind power so the design of the

control strategy is challenging considering unrevealed

uncertainties. Disturbance feedback control is needed to

address the problem (Skaf and Boyd, 2010). An effective

measure is parameterizing the control policies as an affine

policy (Chen et al., 2019b; Qiu et al., 2020), which is

expressed in (27). The control policy only needs to be

updated once in each rolling period, and once ξt is measured,

the control output can be determined in real-time.

Rt � r(ξt) � r0,t + Kξt,∀t ∈ T (27)

where r0,t is the base control output and K is the gain matrix

which leads to correction of power output according to the

disturbance ξt. Thus, the auxiliary control variables are

~Rt � r0,t + K~ξt,∀t ∈ T
R̂t � K ξ̂t,∀t ∈ T

(28)

where ~Rt and R̂t are included in ~Xt and X̂t, respectively; there is

ξ̂t � z~ξt/zξ0, ξ̂0 � INξ×Nξ
. Based on the control variables, the

auxiliary variables of SoC can also be obtained as

d

dt
S̃oCt � 1

S max η~Rt,∀t ∈ T

d

dt
ŜoCt � 1

S max ηK ξ̂t,∀t ∈ T
(29)

where SoCt and η are the vector forms of SoCi,t and

[ηc,eqi , 1/ηd,eqi ], respectively. It can be seen that the auxiliary

variable of SoC is related to the historical information of wind

power uncertainties, so the assessment of SoC would be gradually

inaccurate over time. Therefore, the rolling-horizon manner

should be used to guarantee good control performance.

3.2.3 Chance constraint
In the established SO problem, the constraints are classified

into equality constraints, including (1)–(6), (18), (28), and (29);

and inequality constraints, including (9), (19), and (20). The

linear inequality constraints are considered in a probabilistic way

as chance constraints, expressed as

Pr{ϕT
rXt ≤ �ϕr}≥ γ,∀r ∈ C (30)

where C is the set of all inequality constraints; Pr{·} represents the
probability operator; ϕr and �ϕr are the coefficients vector and the

upper bound of the rth constraint, respectively; and γ is the

chance tolerance. Chance constraint (30) can be rewritten as (31)

for inner approximation with coefficient κγ under specific

probability level (Calafiore and Ghaoui, 2006).

κγ

         
var{ϕT

rXt}√
+ ϕT

r
~Xt ≤ �ϕr (31)

According to the abovementioned series expansion theory,

the variance term can be evaluated by SAF as (32), and a detailed

explanation of (31) and (32) can be found in Supplementary

Appendix SA.

var{ϕT
rXt} � ∫t

0
σ(~ξs)TX̂T

s ϕrϕ
T
r X̂sσ(~ξs)ds (32)

3.2.4 Convex optimization problem
reformulation

The convexity of the SO problem can be guaranteed when the

affine feedback policy is adopted, and the optimization problem

is formed as a quadratically constrained quadratic programming

(QCQP) problem. The trapezoidal rule (Sanchez-Gasca et al.,

1995) can be used in the numerical calculation of the integral. To

express the chance constraints as a second-order cone constraint

form, the coefficient vector πr is introduced to reformulate the

variance term in (32), considering the accumulation

characteristic of integral operator as         
πT
rY tY

T
t πr

√
≤ − 1

κγ
(ϕu

r
~Xt − �ϕr),∀r ∈ C

whereY t � [X̂T

0 , X̂
T

1 ,/, X̂
T

t ]T,∀t ∈ T
(33)

Moreover, the ‘ = ’ in the objective function can be replaced

by ‘≥’ to relax and can be rewritten into second-order cone

constraints similar to themethod in (33). In summary, the overall

optimization problem is expressed as
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min
r0,t ,K , ~Xt ,X̂t

J≥φ2

s.t.

‖ ωT
0
~X ‖2 ≤φ0, ‖ ωT

1 X̂ ‖2 ≤φ1,
∣∣∣∣∣∣∣∣∣∣∣∣φ0

φ1

∣∣∣∣∣∣∣∣∣∣∣∣2≤φ

‖ πT
rY t ‖2≤ − 1

κγ
(ϕu

r
~Xt − �ϕr),∀r ∈ C

equality constraints (1) − (6), (18), (28), (29)

(34)

where φ0 and φ1 are the square root value of ~J0 and ~J1,

respectively; ω0 and ω1 are the introduced coefficient vectors;

and ‖ · ‖2 represents 2-norm operator.

4 Power dispatching approach for
ESUs based on DA

Once the total power command is given by the upper-layer

optimal SFC, different ESUs in the same ESS cluster are required

to coordinate with each other to determine their power output

and completely meet the command. However, the characteristics

of different ESUs are probably inconsistent, including rated

power, rated energy capacity, and the current SoC level. Thus,

the possible energy saturation and violation of power limits

would lead to sudden withdrawals of ESUs, which might

influence the frequency regulation effect. Therefore, a DA

method is proposed in this section to coordinate the power

output of ESUs with communication networks and guarantee the

frequency regulation performance.

4.1 Optimization control problem of ESUs

Similar to the cost of conventional generators in economic

dispatch (Wen et al., 2018), the virtual cost function of ESUs can

be defined as a quadratic function with respect to the power

output of the ESU and the current SoC level (Megel et al., 2018) at

each time step t as

Ck,t(pk,t) � 1
2
αkp

2
k,t + βk(SoCk,t)pk,t (35)

where pk,t denotes pd
k,t − pc

k,t; αk is the quadratic term coefficient;

and βk(SoCk,t) is the linear term coefficient, used as an evaluation

FIGURE 2
Different curves of F (SoC) when the value of the adaptive
factor m increases from 25 to 65.

FIGURE 3
Flowchart of the DA method.
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function of the current SoC level. The detailed derivation of (35)

can be found in Supplementary Appendix SB.

Thus, the optimization control problem of ESUs is to achieve

the minimizing objective function (36) under equality constraint

(37) and other inequality constraints.

min∑Ni

Ni

k�1
Ck,t(pk,t) (36)

∑Ni

Ni

k�1
pk,t � pE

i,t,∀i ∈ A,∀k ∈ Si (37)

where Ni is the number of ESUs in the ith ESS cluster and pE
i,t is

the total power command determined by the upper control layer

for all ESUs in the same cluster.

In addition, the inequality constraints are twofold: power and

energy limits, and power direction constraints,

i.e., sign(pk,t) � sign(pE
i,t). It is to avoid the opposite direction

of the ESU power output, which might cause some to charge

others and result in a waste of resources.

This problem is a quadratic programming problem and can

be solved in a centralized way (Yin et al., 2021). However, the

local computing capability in a parallel way is not fully used, so

the efficiency of solving optimization problems would be

reduced. Therefore, the DA needs to be developed.

According to the general process of utilizing distributed

methods to solve optimization problems (Wang et al., 2019),

the Lagrange function L(p, λ) is constructed in (38) based on

the objective function (36) and equality constraint (37). p
represents the vector form of pk. The inequality constraints

are ignored here, which will be considered later in DA. For

convenience, the time step label t is omitted hereafter.

L(p, λ) � ∑Ni

Ni

k�1
Ck(pk) + λ⎛⎝pE

i −∑Ni

Ni

k�1
pk
⎞⎠ (38)

where λ is the Lagrange multiplier. If zL(p, λ)/zpk � 0,∀k, for
any ESU, there is

zCk(pk)
zpk

− λ � 0,∀k (39)

In other words, when all zCk(pk)/zpk are equal to λ, the

original objective function (36) can achieve its extreme value.

Therefore, the value of the consensus variable xk should

approach the value of λ as shown in (40). In addition, xk is

the input for the dispatching scheme of pk, where a higher xk

leads to a higher pk and vice versa.

xk � zCk(pk)
zpk

� αkpk + βk(SoCk),∀k (40)

Specifically, the evaluation function βk(SoCk) with the basic

form of logistic function (Postnikov, 2020) is proposed in this

article to better-reflect the safe and dangerous zones of SoC as

shown in (41).

FIGURE 4
Structure of two-area systems considering wind power and energy storage systems.

TABLE 1 Parameters of the system frequency regulation model in p.u.

Parameters Values Parameters Values

H1 12 H2 10

D1 1.6 D2 1.2

R1 0.08 R2 0.09

Tt
1 0.3 Tt

2 0.2

KI
1 0.01 KI

2 0.015

B1 , B2 20 T12 1.67
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βk(SoCk) � wk · sign(SoCref − SoCk) · F(SoCk) (41)

where wk is the weight factor with wk ∈ [0, 1] and F(SoCk) is
constructed above and below the reference value and

defined as

F(SoCk) � em(|SoCk−SoCref |−1
2 |SoClim

k
−SoCref |)

1 + em(|SoCk−SoCref |−1
2 |SoClim

k
−SoCref |) (42)

where SoClim
k is the SoC limit: when SoCk < SoCref , there is

SoClim
k � SoCk

min; when SoCk > SoCref , there is

SoClim
k � SoCk

max; and m is an adaptive factor used to

adjust the steepness of F(SoCk) in (42), in order to adjust

the scope of safe and dangerous SoC levels. After several

comparative analyses, m is selected as 35 as shown in Figure 2.

4.2 Discrete consensus algorithm

The main idea of DA is that the agents use a

communication network to share information to complete

the iterative calculation. The communication network

topology can be modeled by a directed or undirected

graph denoted by G � (V, E) (Pourbabak et al., 2018),

where V is the set of nodes and E is the set of edges

formed by adjacent nodes. A Laplace matrix L � [Lkn] is

defined as shown in (43), where the diagonal element is

the degree of nodes in graph G, and the non-diagonal

TABLE 2 Parameters of energy storage units.

Number Type Pmax (MW) Smax (MWh) ηc, ηd SoC0

ESS cluster 1 1 Power-type 20 1.085 0.80, 0.85 0.62

2 Power-type 14 1.125 0.85, 0.95 0.58

3 Power-type 14 1.755 0.95, 0.95 0.73

4 Energy-type 10 4.36 0.80, 0.85 0.59

5 Energy-type 6 6.0325 0.90, 0.85 0.66

6 Energy-type 5 15.17 0.95, 0.85 0.51

ESS cluster 2 1 Power-type 11 2.1375 0.95, 0.85 0.47

2 Energy-type 9 4.44 0.85, 0.85 0.39

3 Energy-type 8 5.0625 0.95, 0.95 0.33

4 Energy-type 6 10.325 0.80, 0.80 0.38

5 Energy-type 2 10.625 0.95, 0.90 0.41

FIGURE 5
Predicted and actual wind power deviation in (A) area 1 and
(B) area 2.

FIGURE 6
Comparison of frequency deviation under different control
methods of (A) area 1 and (B) area 2.
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element is the (0–1) element akn, which is determined by

whether the nodes k and n are adjacent.

⎧⎪⎨⎪⎩ Lkk � ∑
k≠n

akn

Lkn � −akn
(43)

The agents obtain information from their neighbors through

the communication network and update their own information.

All agents finally converge to the same value after several

iterations. The first-order discrete consensus algorithm can be

updated according to (44).

xk[l + 1] � ∑N
n�1

dkn[l]xn[l] (44)

where l is the discrete sequence representing the lth iteration; xk

is the consensus variable of the kth agent; and dkn[l] is the

element of Dn×n � [dkn] and is defined as

dkn[l] � |Lkn|
∑N
n�1

|Lkn|
(45)

4.3 Control procedure of DA

1) Step 1: Initializing power dispatch and consensus variables.

Set l � 0. Current SoC level information is measured to

compute the evaluation function by (41). The total power

command is allocated equally to each ESU as the initial

condition, and the consensus variable is initialized by (40).

2) Step 2: Iterative calculation.

The consensus variables are iterated by DA. In order to

ensure that the final dispatching scheme can match the total

power command, a power correction term is introduced for the

leader agent. The update rule is shown as

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
xk[l + 1] � ∑Ni

Ni
n�1

dkn[l]xn[l] + δpdev[l], k is leader

xk[l + 1] � ∑Ni

Ni

n�1
dkn[l]xn[l], k is follower

(46)

where δ is the convergence coefficient that determines the

convergence speed of the leader and pdev is the deviation

from command at the current iteration:

pdev[l] � pE
i −∑Ni

Ni

n�1
pk[l] (47)

pk is updated according to the consensus variable xk by the

following rules:

�pk[l] �
xk[l] − βk(SoCk)

αk
(48)

pk[l] � {�pk[l]}restriction (49)

where (49) makes a restriction on the theoretical power output by

(48), which is possibly infeasible due to inequality constraints,

i.e., power and energy limits and power direction constraints.

FIGURE 7
Comparison results under different control methods of (A) ESS cluster 1 and (B) ESS cluster 2.
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Then, the remaining power deviation would be fed back to

the consensus variable through the correction term and shared

by other neighbors.

3) Step 3: Judging the convergence condition.

First, each ESU agent should reach an agreement with the

adjacent agents on their consensus variables. However,

complete consensus cannot be achieved for all

agents actually, so the approximate condition is

implemented as

|xk[l + 1] − xn[l + 1]|< ε1, k ↔ n (50)
where k ↔ n means adjacent and ε1 is a small constant.

Second, the power deviation is also taken as a factor in the

convergence condition as shown in (51). In order

to avoid over-iteration, ε2 is set as a small constant close

to 0, and it determines the accuracy of tracking the command.

FIGURE 8
Actual results andMonte Carlo samples of (A,B)wind power deviation, (C,D) frequency deviation (E,F) power output of the ESS cluster, and (G,H)
SoC level of the ESS cluster.
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∣∣∣∣pdev[l + 1]∣∣∣∣< ε2 (51)

In summary, the flowchart of the control procedure of the

DA method is shown in Figure 3.

5 Case study

5.1 Simulation model setting

The simulations are performed usingMatlab software and run on

amachine equippedwith Intel i7 3.2 GHzCPUand 16 GBRAM.The

established optimization problems are solved by the Yalmip toolbox

called Gurobi optimizer. The test simulations based on the actual

wind power scenario are conducted using the Simulink platform.

The structure of the simulation system for frequency

regulation is shown in Figure 4 containing two areas with rated

capacities of both 600 MW and a rated system frequency of both

50 Hz. The parameters of the simulation system are listed in

Table 1 (Kundur et al., 1994; Pathak et al., 2018). The

parameters and initial SoC levels of the ESSs are listed in

Table 2. The predicted and actual wind power deviations in the

two areas are shown in Figure 5. The total simulation time is set as

7200s; the time step is set as 1s; the parameters of the SDE models

can be found in Supplementary Appendix SC; the upper-layer SO

problem is solved every 60 s, in which the parameter Δfmax is set

as 0.2Hz, κγ as 1.7, and SoC and SoC as 0.2 and 0.8, respectively;

and the lower-layer DA is implemented at each time step, in which

the matrices Di are listed in Supplementary Appendix SD.

5.2 Frequency regulation results

In this section, two contrast cases are introduced for

comparison. Contrast method 1: the contribution of the ESS

is not considered during the frequency regulation, and Contrast

method 2, namely, PI: the power command for the ESS is

computed via PI controller, where the input signal of PI is

FIGURE 9
Objective value estimated by SAF compared with Monte Carlo samples: (A) objective of frequency deviations, (B) objective of control variables,
and (C) objective of SoC deviations. Keywords: energy storage, frequency regulation, wind power uncertainty, stochastic optimization, Itô theory,
distributed algorithm.
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high-frequency components of the ACE signal via a high-pass

filter. In addition, our proposed method is denoted as ITB-SO for

convenience.

The results of frequency deviations under these different

control methods are compared in Figure 6. It is clear that when

the ESS participates in frequency regulation, the peak and nadir

value of system frequency is always reduced and increased. Most

of the time, the frequency deviations of the two areas can be

limited within the ±0.2 Hz bounds, both under the PI and the

ITB-SO methods. However, the PI method cannot respond

immediately to wind power fluctuation, so it is difficult to

make full use of the rapid adjustment capability of the ESS.

The root mean squared (RMS) value of frequency deviations is

given for comparison as shown in Figure 6. It can be seen that the

RMS value under the ITB-SO method is the lowest, and that of

the two different areas can be restricted to a similar level.

To verify that the proposed ITB-SOmethod can adaptively

adjust the power output of the ESS considering different rated

power and energy capacity, Figure 7 gives the simulation

results under the PI and the ITB-SO methods. It can be

seen that the power command for ESS cluster 2 cannot be

accurately met by the actual output during several periods

because the rated power of ESS cluster 2 is small. On the

FIGURE 11
Results of iteration times and mean value of connectivity for
simulation systems with different numbers of ESUs Nomenclature.

FIGURE 10
Power output and SoC level of each ESU compared under
(A,B) DA control and (C,D) equally allocation method.
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contrary, the scheme determined by ITB-SO is based on the

estimation of the future possible power and SoC in a finite

horizon; therefore, the violation of power and energy

restriction can be avoided, and the frequency regulation

performance can be guaranteed.

In addition, the SoC level under ITB-SO is closer to the

reference value than that of the PI method. For example, the

ESS cluster 2 operates near the lower SoC bound, i.e., 0.2 after

5500 s under PI control, while under ITB-SO, ESS cluster 1,

with a higher energy level, discharges more power to release

the burden of ESS cluster 2. That is because the penalty of

SoC deviation is also considered in the

objective function in order to force the SoC to the reference

value.

5.3 Accuracy and results of stochastic
assessment

The effectiveness of the rolling-horizon manner is validated

in this section by comparing it with Monte Carlo sample (MCS)

simulations, where the MCS simulations are conducted under

100 wind power generation scenarios. Results of the two

successive rollings (100th and 101st) are shown in Figure 8.

The violet bands represent 85–100% (5% interval) of all

100 MCS results, and the actual operation results are clearly

in the scope of the MCS. The four subgraphs in the left column

show the wind power deviation, frequency deviation, power,

and SoC of the ESS cluster in area 1, and those in area 2 are in

the right column.

In Figures 8C and D, the expected value is obtained without

taking into account wind power uncertainty, where the impact of

stochastic fluctuation on the objective and chance constraints in

the optimization problem cannot be considered. Therefore, the

application of SO is necessary. In Figures 8E and F, it can be seen

that the control output of the ESS can be further corrected

according to the feedback policy and respond to the real-time

wind power prediction error rapidly. In Figures 8G and H, the

curve marked ‘real’ is the mean value of all ESUs in the ESS

cluster, and the estimated results are obtained by equivalent

discharge and charge efficiency as in (18). It indicates that

accuracy can be ensured, and the effectiveness of ITB-SO can

be verified.

To verify the effectiveness of the approximately

decomposed reformulation of SAF in the first-order form,

the objective value assessed by SAF of each rolling iteration is

compared with the results via MCS simulations. The gross

objective is divided into multi-objective for comparison as

shown in Figure 9, including the objective of frequency

deviations, control variables, and SoC deviations. It

evidenced the accuracy of SAF without scenario

generation; thus, the computational efficiency can be

enhanced.

5.4 Results of DA

Taking the ESUs in the ESS cluster 1 as an example, Figure 10

shows their output power and SoC level under the DA method,

compared with the contrast method, which is to reach the

average command signals. It is easy to be implemented

without iteration, and the power command can be met under

ideal situations.

However, the tracking error cannot be eliminated because of

the SoC saturation or violation of rated power in some cases

when the power command is equally allocated to each ESU. For

example, in Figures 10C and D, some ESUs withdraw from

frequency regulation since their SoC level reaches the upper

bound (such as 800 s) and the lower bound (such as 2500 s) or the

power signal is larger than the rated output (such as 1080 s),

while others with large energy capacity are barely used.

Therefore, the effect of frequency regulation could deteriorate

due to sudden withdrawals. In contrast, the proposed DA

method enables all ESUs to coordinate their output power

and adjust their SoC at optimal levels. It is clear from

Figure 10B that the SoC level is attracted to their reference

value and the saturation can be avoided. Therefore, the DA

method can make full use of the characteristics and advantages of

power-type and energy-type units effectively.

Random communication failure between the ESU agents is

implemented to verify the robustness of the DA dispatching

method. The results are studied in different simulation systems

containing 5, 10, 20, and 50 ESUs. The situation with complete

connectivity is defined as all units being connected with each

other. Then, the proportion of missing communication links

varies from 10 to 80% (10% interval) by disconnecting the

communication links randomly. The boxplot of iteration times

and the mean value of algebraic connectivity are shown in

Figure 11. The algebraic connectivity is the second smallest

eigenvalue of the Laplace matrix L, which reflects the

connectivity of the graph (Yoonsoo and Mesbahi, 2006).

When parts of the communication links disconnect between

ESUs, they can still share information through other remaining

links and successfully track the power command as well. It can be

found in Figure 11 that with the increase in the number of

missing links, the connectivity gradually decreases while iteration

times increase. However, the trend is diverse with different

numbers of units: iteration times with 20 and 50 units

increase slower than that with 5 and 10 units, and the

iteration characteristic is more stable. It indicates that random

communication failure has a slight impact on the system with

numerous ESUs and the robustness is higher.

6 Conclusion

In this article, a bi-layer optimal SFC approach is proposed for

ESSs to participate in multi-area systems frequency regulation under

Frontiers in Energy Research frontiersin.org14

Wang et al. 10.3389/fenrg.2022.1005281

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.1005281


continuous wind power fluctuations. The upper-layer control based

on the ITB-SO method in a rolling-horizon manner is implemented

to determine the power command for different ESS clusters

considering wind power uncertainties. The power output of ESUs

in the same cluster is coordinated using the DAmethod in the lower-

layer control to track the total power command. The simulation

applications reveal that 1) the stability of the system frequency can be

enhanced by compensating for wind power volatility immediately via

ESSs. Moreover, the trade-off between frequency regulation

performance and the operation cost of the ESS can be achieved.

2) The ITB-SO method can solve optimization problems precisely

without generating scenarios of wind power. The computational

efficiency is high, so it is suitable for real-time SFCs. 3) Sudden

withdrawals of ESSs due to energy saturation and violation of power

limit can be avoided by dispatching power signals using the DA

method. The robustness of the DA method is also validated while

missing limited communication links between ESUs. In future work,

the addition of PV systems would be considered.
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Glossary

RES Renewable energy sources

SFC Secondary frequency control

ESS Energy storage system

ESU Energy storage unit

SoC State-of-charge

AGC Automatic generation control

ACE Area control errors

ITB-SO Itô theory-based stochastic optimization

DA Distributed algorithm

SDE Stochastic differential equation

SAF Stochastic assessment function

MCS Monte Carlo samples

Variables

Δfi Frequency deviation of the ith area

ΔpM
i Active power deviation of conventional generators in the

ith area

pE
i Active power of ith ESS cluster

ΔpL
i Change of load in the ith area

Δptie
ij Tie line power from the ith to the jth area

ΔpAGC
i AGC reference for the ith area

ΔpW
i Deviation of wind power in the ith area

ΔpW,pred
i Predicted wind power in the ith area

ξi Prediction error of wind power in the ith area

pE,d
i , pE,c

i Discharge and charge power of ith ESS cluster

pd
k, p

c
k Discharge and charge power of kth ESU

sEi Energy level of ith ESS cluster

sk Energy level of kth ESU

SoCk SoC level of kth ESU

r0,t Base control output of the ESS

K Gain matrix of feedback control

Parameters

Hi Equivalent system inertia

Di Equivalent system damping

Tt
i Turbine time constant

Ri Droop coefficient

Tij Synchronizing coefficient

Bi Frequency bias factor

KI
i Integral coefficient

ηck, η
d
k Charge and discharge efficiencies

Pk
max Rated power

Sk max Rated energy capacity

Δfmax Bound of frequency

SoC , SoC Lower and upper bound of SoC

Di Communication matrix of ith ESS cluster
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