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Phase Shifting Transformer (PST) can help improve the power flow distribution

of the transmission section, which can increase thewind power consumption of

the grid. In order to adapt the PST allocation to the grid evolution, this paper

presents a dynamic programming method to allocate PST in each planning

stage of the grid optimally. The optimal allocation model of PST under a single

grid seeks to maximize the wind power consumption and the Total Transfer

Capacity (TTC) between areas. A calculationmethod for TTC of grids containing

PST and wind power is proposed. The Non-Dominated Sorting Genetic

Algorithm II (NSGA2) is used to solve the Pareto sets under each planning

stage of the grid. Then, the optimal planning path of PST is derived based on

dynamic programming. The superiority of the proposed method is

demonstrated by comparing the IEEE-118 system results of dynamic and

static programming.
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1 Introduction

The application of new energy sources in the grid has been rapidly developed, with the

continuous process of energy transition of the grid. In 2021, over 134 GW of renewable

power capacity was added in China, making up 76.1% of the newly installed power

generation capacity (NEA, 2022). The annual growth rate of installed wind power

generation is over 25%, and wind power has become the most rapidly developing

renewable energy. However, the construction cycles of the grid and wind farms are

not in sync while the amount of wind power grid-connected is increasing rapidly,

resulting in the limitations on wind power delivery capacity in areas where wind

power is concentrated (Zhang et al., 2020).

The traditional solutions of grid strengthening have problems such as high investment

costs, low utilization, and increased environmental pressure. Installing Flexible AC

Transmission System (FACTS) devices is another solution (IEA, 2017). FACTS
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devices can improve the wind power delivery capacity by re-

dispatching the power flow distribution of the transmission

section. It plays a good transition role during the planning

cycle of the grid. The primary FACTS devices used currently

are (Ghahremani et al., 2013): Static Var Compensator (SVC),

static synchronous compensator, Thyristor Controlled Series

Compensator (TCSC), PST, and Unified Power Flow

Controller (UPFC). Among them, PST and UPFC have a

more significant impact on wind power integration (Zhang

et al., 2018). Still, the installation and operation costs of PST

are much lower than those of UPFC, giving a substantial

economic advantage (Brilinskii et al., 2020). Installing PST in

the grid can effectively improve the power flow distribution of the

transmission section, thus improving the transmission capacity

and wind power consumption of the grid.

Currently, many studies have proposed optimization models

for the allocation of PST. The models can be divided into two

categories according to their optimization objectives. The first

category mainly focuses on optimizing traditional power system

indicators such as active power loss, power flow balance, grid

transmission capacity, and voltage profile (Preedavichit et al.,

1998). In (Verboomen et al., 2008), the phase shifter distribution

factor based on the DC load flow has been derived, and a method

is proposed to calculate the TTC for grids containing PST. In

(Sebaa et al., 2014), a multi-objective optimization model is

constructed to solve the optimal allocations of PST and SVC,

considering active power loss, power flow balance, and voltage

stability as optimization indicators (Gerbex et al., 2001). gives the

installation numbers of TCSC, Thyristor-Controlled Phase

Shifting Transformer (TCPST), Thyristor-Controlled Voltage

Regulator (TCVR), and SVC. The optimization objective is to

maximize the network transmission power, and the optimal

allocations of each device are found by a genetic algorithm. In

(Kazemi and Sharifi., 2006), the optimal location of PST is found

with congestion management in normal and emergency

conditions, resulting in reduced production cost and increased

load capacity of the power market. In (Wu et al., 2008), a group

search optimizer with multiple producers is presented to

optimize the positions of TCSC, TCPST, and TCVR, and their

control parameters to minimize the active power loss and

improve the voltage profile. In (Lima et al., 2003), an optimal

model for allocating TCPST is presented. It uses mixed integer

linear programming to maximize the system load capacity.

However, the results of the DC optimal power flow model are

subject to errors. The second category mainly focuses on the

optimization of wind power consumption. In (Miranda and

Alves., 2014; Zhang et al., 2021), the optimal location of PST

is found to maximize wind power consumption, but the

investment cost of PST is not considered, and the number of

PST is limited to one (Zhang et al., 2017). proposes a bilevel

optimization model to solve the optimal locations of PST in the

transmission network. The upper level problem seeks to

minimize the investment costs on series FACTS, the cost of

wind power curtailment, and possible load shedding. The lower

level problems capture the market clearing under different

operating scenarios. In (Zhang et al., 2018), a bilevel

optimization model for the optimal locations of TCSC and

PST in the transmission network is proposed, and the

uncertainty of wind power is considered. The proposed

optimal models for allocations of PST and other FACTS

devices only consider the case of a single grid throughout the

existing studies. These studies can only compose the planning

path of PST by solving for the optimal allocation scheme of each

stage, which may not be the optimal path if multi-stage grid

planning is considered. This paper proposes a dynamic planning

method to find the optimal allocation path of PST to solve this

problem, considering the grid evolution and wind power

uncertainty.

In terms of PST single-stage allocation, the existing

optimization models (the second category of optimization

models mentioned above) only consider wind power

consumption and investment cost of PST without considering

the traditional optimization indicators of the power system. This

paper finds that installing PST in the grid can increase the TTC of

the grid while increasing the wind power consumption. However,

wind power’s uncertainty will greatly affect TTC’s calculation

(Wang et al., 2021), so the traditional TTC calculation method

(Verboomen et al., 2008) is no longer applicable. This paper

proposes a method to calculate the TTC of grids with PST and

wind power. Therefore, a multi-objective optimization model is

proposed to find the Pareto sets of PST allocation schemes under

a single grid, considering wind power consumption, investment

and operation costs of PST, and TTC as optimization indicators.

In solving the optimal allocation model of PST, existing

methods are mainly divided into two categories. The first

category uses mixed integer programming to solve the DC

optimal power flow model (Lima et al., 2003; Zhang et al.,

2018). The time required for this solution is short, but a

secondary verification is necessary because of the errors. The

second category uses intelligent algorithms to solve the optimal

model [GA (Gerbex et al., 2001), PSO (Zhang et al., 2021), etc.],

which yields more accurate results but takes more time. Since

solving the PST optimal allocation model PST does not require

high computational speed, NSGA2 is applied in this paper to

ensure the accuracy of the results.

To sum up, this paper proposes a dynamic programming

method to find the optimal path planning of PST, considering

the grid evolution. First, we build a single-stage multi-

objective optimization model, with wind power

consumption, investment and operation costs of PST, and

TTC as optimization indicators. Second, NSGA2 is used to

find the Pareto sets of each grid planning stage. Then a

Technique for Order Preference by Similarity to an Ideal

Solution (TOPSIS) is used to calculate the adaptation

values for each allocation scheme in the Pareto sets.

Finally, the optimal allocation path of PST is obtained
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based on the dynamic programming model. The main

contributions of this paper are as follows:

1) A dynamic programming method is proposed to solve the

optimal allocation path of PST in multi-stage grid planning,

considering wind power uncertainty.

2) A method for calculating the TTC of grids containing PST

and wind power is proposed. TTC is considered as an

optimization indicator for the PST single-stage allocation

model.

The rest of this paper is organized as follows. Section 2 shows

the main framework of the proposed method. Section 3

introduces the basic principle and steady-state model of PST.

Section 4 presents the PST single-stage allocation model. The

solution based on NSGA2 is demonstrated in Section 5. Section 6

describes the dynamic programming model of PST. Section 7

verifies the effectiveness of the proposed method by comparing

the IEEE 118-bus system results of dynamic and static

programming. Finally, the main findings of this study are

summarized with some prospects for future studies in the

conclusion section.

2 Main framework of the proposed
method

The proposed method is developed on the main framework

of dynamic programming, and the main idea is to allocate PST

dynamically in the multi-stage planning of the grid. The method

has two main steps, and the framework of the proposed method

is given in Figure 1.

First, the PST single-stage planning models are built for each

planning stage of the grid. We consider TTC, wind power

consumption, and PST costs as the optimization objectives to

find the PST allocation schemes of each planning stage. TOPSIS

is used to evaluate each allocation scheme by calculating its

evaluation values.

Second, the dynamic programming model is constructed and

solved for the optimal planning path of the PST. The dynamic

planning model is built by considering each planning stage of the

grid as a stage, the PST allocation scheme of each stage as a state,

and the scheme’s evaluation value as the state’s adaptation value.

The target is to maximize the sum of the adaptation values of the

states in the strategy. Then the dynamic programming model is

solved to obtain the optimal multi-stage decision, and the

optimal PST planning path is obtained.

3 Basic principle and steady-state
model of PST

PST changes the power flow by injecting a voltage vector into

the line, resulting in the variation of the phase and voltage

amplitude at both ends of the line (Ding et al., 2017).

FIGURE 1
The framework of the PST allocation method.

FIGURE 2
The equivalent circuit of the branch with PST.
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Figure 2 depicts the equivalent circuit of the branch with PST

(Yeo et al., 2019), and the resistances of the line and PST are

ignored here. In Figure 2, XL represents the equivalent reactance

of the line, Xeq represents the equivalent reactance of the PST, α is

the phase-shift angle, and Ui, θi, Uj, and θj represent the voltage

amplitude and the phase of nodes i and j, respectively. Pij is the

active power of line i-j.

Pij � UiUj

XL
sin(θi − θj), (1)

Pij � UiUj

XL + Xeq
sin(θi + α − θj), (2)

Eqs 1, 2 represent the active power of the line before and after

the installation of the PST, respectively. It can be seen that the

phase angle difference has changed after the PST installation, and

the active power of the line has been regulated.

4 Multi-objective optimal model of
power systems with PST

4.1 Objective functions

The large-scale grid-connected wind power will increase the

power flow of transmission lines, resulting in problems such as

transmission line overloading and inter-regional transmission

capacity limitations. The main focus of this study is to improve

the wind power consumption while considering the investment

cost of PST, and the TTC between grid areas is also one of the

concerns.

4.1.1 Wind power consumption
The first objective function (Eq. 3) seeks to maximize the

wind power consumption.

max f 1 �
∑Sn

k�1ckWk∑Sn
k�1ckWkmax

, (3)

where ck is the probability of scenario k. Wk and Wkmax are the

wind power consumption and total wind power output under

scenario k, respectively. Sn is the number of scenarios.

4.1.2 Total transfer capacity
The second objective function (Eq. 4) is to maximize the TTC

between grid areas.

max f 2 � TTC. (4)

We use the scenario method and linear programming to

solve the TTC between the source and receiving areas. The steps

are as follows:

Step 1. Use K-means clustering to reduce the number of

scenarios to Sn, i = 1.

Step 2. Select a typical condition of the grid and the wind power

output of scenario i is substituted into the typical condition of the grid

as the base grid. The AC power flow of the base grid is calculated.

Whether the wind power in the source area can be fully consumed, if

so, then go to Step3; if not, then TTC is calculated as the power flow

of the transmission section between the source and the receiver area.

Step 3. Calculate the sensitivity factor for line l (sl) when the

power output of all generators in the source area vary except for

the balancer’s.

sl � dPl

dΔE, (5)

where ΔE denotes the variation of the power output of all

generators in the source area except the balancer.

Step 4. The expression of the active power of line l is obtained

based on the sensitivity factor of PST to line l.

Pl � Pl0 +∑Np

j�1
αjξ

j
l, (6)

where ξjl denotes the sensitivity factor of the PST j to the active

power of line l (Li et al., 2022a). Pl0 is the original active power of

line l in the base grid. Np is the number of PSTs installed. αj is the

phase-shift angle of PST j.

Step 5. The final active power expression for line l is obtained

from Eqs 5, 6.

Pl � Pl0 + sl · ΔE +∑Np

j�1
αjξ

j
l . (7)

Step 6. A linear programming model is built to maximize the

TTC, with the phase shift angle and ΔE as the decision variables.

maxTTCi � ∑
i∈Ωt

Pi, (8)

s.t.{−Plmax ≤Pl ≤Plmax,
α min ≤ α≤ α max ,

(9)

where Ωt denotes the regional interlink lines set, and Plmax is the

maximum permissible powers limit of line l.

Step 7. Solve the linear programming model to get the value of

the phase shift angle and ΔE. Then consider these values as the

initial point of the Repeated Power Flow method (RPF) and

obtain the value of TTC, i = i+1.

Step 8. If i = Sn, go to Step 9; If i < Sn, back to Step 2.

Step 9. Calculate the expected value with Eq. 10 considering the

probability of scenarios, and the obtained expectation value is

recorded as the ETTC.
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ETTC � ∑Sn

i�1TTCi · ci. (10)

The RPF in Step7 is based on the conventional AC power

flow, and its basic idea is as follows. From a specific base

state, the output of the generation area is gradually increased

while the load of the receiving area is increased

correspondingly. The AC power flow in the power

increasing process is repeatedly calculated. A series of

power flow solution points are obtained, and various

constraints are checked on these solution points until the

maximum adjustment of the generator that fulfils all

constraints is found. At this point, the active power of the

transmission section between the transmitting and receiving

areas is considered as the TTC.

4.1.3 Investment and operation costs of PST
The third objective function (Eq. 11) means to minimize the

investment and operation costs of PST (Ippolito and Siano.,

2004).

min f 3 � ∑Np

i�1CPi + β · Ti · CPi, (11)
CPi � γ · SPi, (12)

where CPi is the investment cost of the PST i. β denotes the

annual operating cost factor. Ti is the usage time of the PST i. γ is

the cost factor of PST. SPi is the capacity of the PST i.

It is worth noting that the decision variables selected in the

optimal model are the location of the PST, the number of PSTs,

the phase shift angles, and the wind power output.

4.2 Power system constraints

4.2.1 Equation constraints
The active and reactive power constraint equations are as

follows:

PGi − PLi − Ui∑nb
j�1
Uj(Gij cos θij + Bij sin θij) � 0 (13)

QGi − QLi − Ui∑nb
j�1
Uj(Gij sin θij − Bij cos θij) � 0 (14)

where PGi andQGi are the active and reactive power output of the

i-bus generator, respectively. PLi and QLi are the load active and

reactive power of the bus i. nb is the number of lines connected to

node i. Gij and Bij are the conductance and the susceptance of the

line i-j, respectively.

4.2.2 Inequality constraints
Inequality constraints for the active and reactive power

outputs of generators, voltage amplitudes of buses, and active

power of branches are as follow:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Uimin ≤Ui ≤Uimax ,
PGimin ≤PGi ≤PGimax,
QGimin ≤QGi ≤QGimax,
−Pijmax ≤Pij ≤Pijmax,

(15)

where Uimax and Uimin are the maximum and minimum voltage

of node i, respectively. PGimax and PGimin are the maximum and

minimum active power output of generator i, respectively.QGimax

and QGimin are the maximum and minimum reactive power

output limits of generator i, respectively. Pijmax is the maximum

permissible powers limit of line i-j.

Since this paper focuses on the PST allocation in multi-stage

grid planning, the time scale between the stages is in years, so the

model of the generator is moderately simplified. It is assumed

that the responsiveness of conventional power sources is strong

enough to consume wind power. So some temporal constraints

are not considered, such as ramping constraints of generators.

4.3 Constraints of decision variables

It is known that the PST is mainly used to regulate the power

flow of the transmission section where PST is installed

(Hadzimuratovic and Fickert., 2018). We have imposed some

limits on the range of locations and the number of PSTs to avoid

solving unreasonable PST allocation schemes, which are shown

as follows.

1) The locations of PST are limited to the transmission sections,

which contain the wind power transmission lines.

2) Themaximum number of PSTs installed on a line is 1, and the

maximum number of PSTs installed in a transmission

section is 2.

4.3.1 Locations of PST

lp ∈ D. (16)

lp is the line with PST installed. D is the set of transmission

sections that deliver wind power.

4.3.2 Shift-phase angle

α min ≤ α≤ α max . (17)

αmax and αmin are the maximum and minimum phase angles

of PST, respectively.

4.3.3 Number of PSTs
Installing PST in the transmission section can improve

transmission capacity by lessening the power flow of heavily

loaded lines. Since the number of heavy load lines on a specific

transmission section is limited, the transmission capacity
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enhancement will naturally decrease as more PSTs are installed

(numerical simulations are performed in Section 7.5 to verify this

view).

The number of lines in the transmission section is limited in

the real grid. Considering the economics of PST investing, this

study limits the PSTs number of the transmission section to less

than 2.

Ni ≤ 2. (18)

Ni is the PSTs number of the transmission section-i.

4.3.4 Wind power output

0≤Pwi ≤Pwimax . (19)

Pwi and Pwimax are the actual and maximum output of wind

power at node i, respectively.

5 Solution approach

The NSGA2 algorithm is used to solve the Pareto sets of

the PST optimal allocation model. The phase shift angle and

wind power output in the initial population are randomly

generated, which may result in unsolvability or

unreasonable power flow results [power flow reverse (Li

et al., 2022)]. The following improvements are added to

NSGA2 to solve this problem, and the flow chart of

NSGA2 is shown in Figure 3.

1) An additional judgment is added to eliminate the

unreasonable allocation schemes.

2) According to the power flow regulation characteristics of PST,

the unreasonable range of phase shift angle is eliminated to

accelerate the iteration speed of NSGA2

{ 0< αi ≤ α max . . . i ∈ Ωp,
α min ≤ αi < 0 . . . i ∈ Ωq.

(20)

In Eq. 20, Ωp denotes the set of lines with the lowest load

factor of each wind power transmission section, so set α > 0

(Over-regulation, increasing the active power of the line).

Ωq denotes the set of lines with the highest load factor of

each wind power transmission section, so set α < 0

(Hysteresis-regulation, reducing the active power of the

line).

After obtaining the Pareto set by NSGA2, the scores of

allocation schemes in the Pareto set are found by the TOPSIS

method considering the weight coefficients.

FIGURE 3
The flow chart of the multi-objective optimization model solving.
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6 PST allocation based on dynamic
programming

A dynamic programming model of PST is proposed to find

the optimal planning path for PST. It ensures that the allocation

of PST can be better adapted to the grid evolution. Figure 4 gives

the PST dynamic programming model, and the details are as

follows.

Stage: Define a stage as the transformation between two

adjacent planning stages of the grid, and the number of

planning stages is n.

State: Define states as the PST allocation schemes of each

planning stage of the grid. In Figure 4, Yi-j indicates the jth

PST allocation scheme under the ith planning stage of

the grid.

Decision: The decisions represent the transition choices of

PST allocation schemes between two adjacent planning stages

of the grid, which are described in Figure 4 as connections

between neighboring states. In addition, the set of lines with

PST installed in the allocation scheme after the decision must

include that of the allocation scheme before the decision

(without considering the case of decommissioning or

replacement of PST). In Figure 4, Ji is the number of

decisions for stage i.

Strategy: Define each complete planning path through all

planning stages as a strategy, represented in Figure 4 as a

complete concatenation from Y0 to Yn.

Target: The target is to select the optimal planning path with the

maximum sum of adaptation values. In Figure 4, Si-p-q is the

adaptation value of decision Y(i-1)-p-Yi-q at the current stage i,

obtained by the TOPSIS. The specific calculation is as follows.

Step 1: Define all decisions in the current stage as evaluation

objects and take the three objective functions in Section

4.1 as evaluation criteria.

min f 3 � ∑Np

i�1
(CP2 − CP1) + β ·m · CP2. (21)

Equation Eq. 21 shows the improved expression of the

cost objective function, where m is the time of a stage. CP1

and CP2 denote the PST investment cost of the PST

allocation scheme before and after the decision,

respectively.

Step 2: Use the TOPSIS to obtain the unnormalized scores of all

decisions in the current stage.

Step 3: Scores of all decisions at the current stage are

processed as in Equation Eq. 22, ensuring that the

decision scores of each stage are in the same order of

magnitude.

Si−j � hi · Ji · Sj∑Ji
n�1Sn

, (22)

FIGURE 4
PST dynamic programming model.

FIGURE 5
Flowchart of the PST dynamic programming method.
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h1 > h2 > h3/> hn, (23)

where Si is the unnormalized score of decision i. Si-j is the

normalized score of decision j in stage i. hi is the weighting

factor of stage i in all stages, reflecting the importance of

each grid planning stage. Since the PST plays a transitional

role in the grid planning process, the demand for PST

becomes smaller as the grid evolves. So we set

continuous decreasing weighting factors for successive

planning stages, as shown in Equation Eq. 23. The

weighting factors values of grids are derived from

experience in this study.

In conclusion, the flowchart of the proposed PST dynamic

programming method is shown in Figure 5. The steps are as

follows.

Step 1: Build a multi-stage planning model of the grid.

Step 2:Build the optimal allocation model of PST for each

planning stage (Section 4).

Step 3: Use NSGA2 to solve the optimal allocation model based

on the interaction between PSD-BPA (a simulation

software that is used to calculate the power flow in

this paper) and a calculation procedure in MATLAB

(Tao et al., 2013). The scores of the allocation schemes

are obtained by the TOPSIS method considering the

weight coefficients (Section 5).

Step 4: Each planning stage’s allocation schemes are considered

states in the dynamic programming model. Each

allocation scheme’s score is recorded as the adaptation

value of each state in the PST dynamic programming

model. The optimal planning path of PST is obtained by

the dynamic programming algorithm (Section 6).

7 Case study

7.1 Case parameters and wind scenarios

The proposed dynamic programming model and solution

approach are tested on the IEEE 118-bus system. The system data

is derived from the IEEE standard system. The thermal limits for

the transmission lines refer to the values in (Blumsack., 2006).

Three wind farms with a maximum capacity of 1600 MW each

are assumed to be located at bus 5, 26, and 91 (Ziaee and

Choobineh., 2017). The phase shift angle range is set to be

(−50°, 50°). The usage time of PST is set to be 15 years (the

time of a complete planning path in this study). The cost factor of

PST is selected to be 10$/kVA, and the annual operating cost

factor is chosen to be 5%.

We built a multi-stage planning grid model in this case.

Three planning stages are considered base on the IEEE 118-bus

system, and the cycle between two adjacent stages is 5 years. The

specific grid models of each stage are as follows.

The first planning stage: Based on the IEEE 118-bus system,

the wind farm with the maximum capacity of 1600 MW is

located in bus 5, and the load has increased by 20%, h1 = 1.

The second planning stage: Based on the grid of the first

planning stage, the wind farm with the maximum capacity of

1600 MW is located in bus 26, and the load has increased by 10%,

h2 = 0.9.

The third planning stage: Based on the grid of the second

planning stage, the wind farm with the maximum capacity of

1600 MW is located in bus 91. The load in area C (Zhang and

FIGURE 6
Distribution chart of SSE and Sn.

TABLE 1 Wind scenarios.

# Wind intensities/p.u Probabilities

1 0.78 0.1426

2 0.06 0.2570

3 0.61 0.1657

4 0.42 0.1826

5 0.22 0.2521
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Grijalva., 2013) has increased by 10%, and a new transmission

line has been added between bus 91 and bus 92, with line

parameters consistent with the original lines of bus 91 and

bus 92, h3 = 0.8.

To obtain the wind scenarios, the wind power intensities of

each 5 minutes in 7 years provided by DR POWER (National

Energy Renewable Laboratory, 2019) are used to represent the

wind generation profile. We then use the K-means method

(Baringo and Conejo., 2013) to conduct the scenario

reduction, where the optimal number of clusters is

obtained by the Elbow Method (Bandara et al., 2019). The

SSE distribution plots for different Sn values are shown in

Figure 6.

The optimal number of clusters was found to be 5, based on

the results in Figure 6 and the Elbow Method. The probabilities

and wind intensities for the final five scenarios are provided in

Table 1.

7.2 Optimal planning path of PST

In terms of NSGA2 parameters, the initial population is set to

be 300, the number of iterations is set to 200, the crossover rate is

set to be 0.9, and the variation rate is set to be 0.1. The normalized

weight of three evaluation criteria are set to be 0.6, 0.2, and 0.2,

respectively.

The Pareto sets of PST allocation for three planning stages

are derived from the optimization calculation in Section 5 (the

results are shown in Supplementary Tables S1–S3 in the

Supplementary Material).

The proposed PST dynamic programming method is a

multi-stage decision-making problem, and the connection

between each stage is considered. The existing PST

allocation methods are mainly used for single-stage

optimization. When they are used to solve multi-stage

problems, the optimal PST allocation scheme of each stage

needs to be found separately and combined into a planning path

by order. We define this method as static programming and the

result as the static planning path.

Table 2 provides the planning results based on the static

planning and the dynamic planning for Road1 (the static

planning path) and Road2 (the dynamic planning path),

respectively. Columns 2–4 indicate the wind power

consumption of each wind farm. The fifth column shows the

locations of the PST. The sixth column represents the investment

cost of PST. The seventh column denotes the TTC between areas

A and B (Zhang and Grijalva., 2013). The last column gives the

wind power consumption rate of all wind farms. Doublelines 89-

92 (1) and 89-92 (2) denote the lines with smaller and larger

impedances between bus 89 and bus 92, respectively. Figure 7

shows the wind power curtailment rate for the three wind farms

in each scenario.

As observed in Table 2 and Figure 7, the consumption rate of

wind power under Road1 and Road2 has been significantly

improved, and the TTC has also been improved. The wind

power consumption rate and TTC of each planning stage in

Road2 are higher than those in Road1. However, the costs of the

three planning stages are higher in Road2, resulting in a better

allocation scheme in Road1 than in Road2 when the grid of each

planning stage is considered separately.

7.3 Comparison of dynamic programming
and static programming

In this section, two comparison cases are proposed to verify

the effectiveness of the dynamic programming method

proposed in this paper. Both cases compare the results of

multi-stage allocation of PST based on static and dynamic

programming.

TABLE 2 IEEE 118-bus system results for different planning paths of PST.

Planning
stage

Planning
path

Wind power
consumption (%)

PST locations Investment
cost
on PST
(M $)

ETTC
(MW)

Wind power
consumption of
all wind
farms (%)Bus 5 Bus 26 Bus 91

1st Without PST 55.84 — — — — 235.5 55.84

Road1 72.34 — — 8-30 2.2 333.5 72.34

Road2 89.84 — — 8-30, 30-38, 5-3 8.8 535.5 89.84

2nd Without PST 61.36 70.71 — — — 225.1 66.46

Road1 72.02 98.35 — 8-30, 30-38 4.4 460.6 85.19

Road2 85.84 99.51 — 8-30, 30-38, 5-3 8.8 586.8 92.67

3rd Without PST 61.36 70.71 75.80 — — 225.1 69.29

Road1 72.02 98.35 78.68 8-30, 30-38, 89-92 (2) 6.6 460.6 83.01

Road2 85.84 99.51 78.68 8-30, 30-38, 5-3, 89-
92 (2)

11 586.8 88.01
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7.3.1 Comparison case 1
The first comparison case uses the single-stage allocation

model in Section 4, and the results are presented in Table 3. It

compares the IEEE 118-bus system results of Road1 and Road2.

The second column indicates the wind power consumption rate

for 15 years, namely the time of a complete path in dynamic

programming. The third column gives the annual average TTC

value. The fourth column shows the total costs of PST in 15 years.

The last column represents the sum of adaptation values.

As observed in Table 3, the improvement of wind power

consumption under Road2 is 11.94% higher than that under

Road1. The increase in TTC of Road2 is 47.36% higher than that

of Road1. The sum of adaptation values under Road2 is higher

than that under Road1, although the total costs under Road2 are

higher than that under Road1, which means that the planning

path obtained from the dynamic programming scheme is better

than that of the static programming.

7.3.2 Comparison case 2
To further demonstrate the superiority of the proposed

dynamic approach, the single-stage optimization model in

Section 4 is replaced with the single-stage PST allocation

model in (Zhang et al., 2018) while the dynamic

programming framework remains unchanged in this case.

Then the results of the dynamic and static programming are

compared. The optimal allocation model in (Zhang et al., 2018)

converts wind curtailment into the corresponding cost by using

the cost coefficient of wind curtailment. The multi-objective

optimization is converted to a single-objective optimization by

considering the sum of the annual wind curtailment cost and the

annualized investment cost in PST as the total optimization

objective. Therefore, compared to the case1 in Section 7.3.1, there

is no need to evaluate the allocation schemes of each stage, and

the total costs of the planning path can be obtained by directly

summing the costs of all stages according to their weights. Using

this result to compare the effects of various planning paths is

more intuitive.

The results of the second case are shown in Table 4. The

objective value in Table 4 represents the annualized investment

cost in PST plus the annual wind curtailment cost. In Table 4,

Road3 represents the static planning path obtained based on the

static programming method, and Road4 represents the dynamic

planning path obtained based on the proposed dynamic

programming method.

As observed in Table 4, the wind power consumption rate

is higher under Road4 than Road3. The objective value of

Road4 is $8.141M, which is lower than the objective value of

Road3 at $9.139M, which means the planning path under the

dynamic programming is better since the sum of the costs for

annualized investment in PST and annual wind curtailment

lower. So the proposed dynamic planning method is still better

after replacing the optimization model in a single stage,

indicating the universality of the proposed dynamic

planning method.

FIGURE 7
Wind power spillage for each scenario (A) Bus 5 (B) Bus 26 (C)
Bus 91.

TABLE 3 IEEE 118-bus system results of Road1 and Road2.

Planning path of PST Wind power consumption
of 15 years (%)

Annual average of TTC
(MW)

Costs of PST
in 15 years (M
$)

Sum of adaptation values

Without PST 66.25 247.7 — —

Road1 81.96 418.2 9.9 3.19

Road2 89.87 535.5 18.15 3.38
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7.4 Comparison of installing PST and
transmission network expansion

To better verify the effectiveness of installing PST, we compare

the results of installing PSTwith those of installing new transmission

lines. Grids of three planning stages in Section 7.2 are used to find

the respective effects of adding PST and new transmission lines on

wind power consumption. The details of each case are as follows.

The base case: No PST or new transmission lines are installed

in the grids. The case of installing PST: The PST allocation

schemes of each planning stage refer to the results of Road1 in

Table 2.

The case of transmission network expansion: New

transmission lines are added to the heavy load lines of the

wind power transmission section, which is line 8-30 in the

first planning stage, lines 8-30, 30-38 in the second planning

stage and lines 8-30, 30-38, 91-92 in the third planning stage. The

new transmission line parameters are consistent with the original

line parameters for simplicity.

It is worth mentioning that the number of PSTs added and

new transmission lines in each planning year are equal.

Table 5 presents the results of the three cases. Columns

2–4 indicate the wind power consumption of each planning

stage. The fifth column gives the total wind power

consumption in three planning stages. The wind power

consumption with the installation of PST is lower in the

first planning stage compared to the transmission network

expansion, but higher in the second and third planning

stages. In terms of total wind power consumption rate,

the effect of installing PST is also slightly better than

adding new lines. In addition, transmission grid

expansion usually requires higher investment costs, longer

construction time and more stringent environmental

approvals than installing PST in the real grid.

In conclusion, when the wind power transmission section of

the grid has overload problems and the section has exploitable

transmission potential, installing PST is a better transition option

during the long construction cycle of the grid.

7.5 Validation of the limitations on the
number of PST

In order to verify the point in Section 4.3.3, the 118-bus

system in Section 7.1 is used for simulation. The wind farm with

the maximum capacity of 1600 MW is located in bus 5. The wind

power transmission section consists of lines 5-3, 5-4, 5-11, 5-6,

and 8-30, where line 8-30 is the heaviest loaded line of the

transmission section.

Table 6 shows the results for various numbers of PSTs. It can

be seen that the bigger the number of PSTs, the higher the wind

power consumption and the larger the TTC of the transmission

section. However, the increment of the wind power consumption

and the TTC is not proportional to the number of PSTs. In

conclusion, excessive PSTs could inevitably lose the whole

economic efficiency.

TABLE 4 IEEE 118-bus system results of Road3 and Road4.

Planning path of PST Wind power consumption
of 15 years (%)

Costs of PST
in 15 years (M
$)

Objective
value (M $)

Without PST 66.25 — —

Road3 89.6 22.0 9.139

Road4 93.1 32.6 8.141

TABLE 5 IEEE 118-bus system results of installing PST and transmission network expansion.

Wind power consumption of planning stage (%) Wind power consumption
in total (%)

1 2 3

Base case 55.84 66.46 69.29 66.11

Adding new lines 78.81 79.06 82.62 80.80

Installing PST 72.34 85.19 83.01 81.96
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7.6 Computational issues

All the simulations are conducted on a test computer with an

Intel(R) Xeon(R) W-2255 CPU @ 3.70 GHz and 128.00 GB

of RAM.

To demonstrate the computation accuracy of the proposed

method for solving TTC in Section 4.1.2, we selected a typical

scenario to compare the computational results in three

computational models.

Model 1.Use the sensitivity method in 3.1.2 without considering

the correction by RPF.

Model 2. Use the result of the model1 as the initial point for

RPF, and a subsequent correction is applied;

Model 3. Use RPF to calculate TTC directly.

We consider the results obtained by RPF (model3) as the

standard value and calculate the error of the results in

model1 and model2. As observed in Table 7, the error of the

results obtained by the sensitivity method is 1.28% and reduces to

0.03% after the correction by RPF.

In terms of computational speed, the computation time of the

sensitivity method is extremely short. The calculation time of

RPF is very long for two main reasons. First, not only the

generator output but also the phase shift angle need to be

adjusted, so the computation work became greater compared

to the conventional RPF. Second, small adjustment steps for each

generator and phase shift angle have been set to get accurate

results. The proposed method (model2) obtained more accurate

results after the correction by RPF, and the computation time was

greatly reduced compared to model3. Since the initial point

obtained based on the sensitivity method is closer to the final

point.

8 Conclusion

This paper presents a dynamic programming method for

optimal PST allocation, considering the evolution and wind

power uncertainty of the grid. The proposed approach seeks

to identify the optimal planning path of PST in multi-stage grid

planning. To demonstrate the effectiveness of the proposed

method, we compare the results under dynamic and static

programming. The method is also applied to the model of a

published manuscript, and the results prove the superiority of the

proposed method. In addition, we present a calculation method

for TTC of grids containing PST and wind power, for TTC is used

as one of the optimization objectives.

The current research is aimed to optimize the planning path

of PST by considering the evolution of the grid. However, the

addition of other FACTS devices is not considered. Therefore, the

main topics in future works are how the PST cooperates with

other FATCS devices and the dynamic programming of multi-

type FACTS.
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TABLE 6 IEEE 118-bus system results for various numbers of PSTs.

Number of PSTs PST locations Wind power consumption/%
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TTC/MW (increase rate)

None — 39.63 (/) 907.6 (/)
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TABLE 7 Computational comparison for different computational models.

TTC (MW) Computational error (%) Computation time (s)

Model1 342.43 1.28 0.042

Model2 338.0 0.03 77.976

Model3 338.1 — 3833.218
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