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As the bridge between power companies and users, the integrated energy

system has become one of the carriers of energy reform, energy-saving, and

emission reduction. Based on this, a master–slave game bilevel optimization

model considering power company–park-integrated energy system (PIES)–

user is established. In the upper game, the power company, as the leader, takes

the maximization of its interests as the goal to consider and formulate the price

of purchasing and selling electricity with the park. As a follower, combined with

the fluctuation of electricity price and the electricity demand of its equipment,

the park determines the relationship between purchasing and selling electricity

with the power company. In the lower-level game, the park becomes the

leader, taking into account the energy needs of users and formulating a

reasonable price for selling energy. Users, as followers, intend to maximize

consumer surplus and adjust their energy demand strategies to achieve the best

energy consumption experience. Analyzing the properties of the game, it is

verified that there is a unique Nash equilibrium solution in the game model. At

the same time, the idea of solving the distribution of the model is adopted, and

the equilibrium solution of themodel is obtained by using limited information. In

addition, the output uncertainty of renewable energy in the park is dealt with by

adjustable robust optimization. Finally, aiming at achieving a win–win situation

among all stakeholders, the proposed gamemodel is verified to effectively solve

the equilibrium strategy problem among the PIES, the power company, and

users through simulation analysis of an example.
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1 Introduction

At present, with a series of problems such as energy exhaustion

and environmental pollution becoming increasingly serious, the

traditional energy distribution model has been unable to meet

the production and living needs of the modern society.

Therefore, it is urgent to accelerate the transformation of the

energy development mode and solve the problem of sustainable

supply of renewable energy. Based on this background, the park-

integrated energy system (PIES), which combines cold, heat,

electricity, and gas, came into being. It can improve the

operating efficiency of the energy system and make full use of

renewable energy (Xu et al., 2019). In the meantime, as the main

platform for rational and efficient utilization of clean energy, the

comprehensive energy system in the park helps to promote the

complementary advantages of different types of energy andmeet the

diversified energy demand of users in the park (Tan et al., 2019).

Therefore, it is of great significance to conduct an in-depth study on

the connection and optimization scheduling between PIES and users

of the power company (Yang et al., 2021).

With the further development of the integrated energy

system and the gradual opening of the energy market, the

fluctuation of energy prices will affect the energy demand of

users. Through demand response, users are transformed from

passive recipients of the scheduling results to participants, thus

influencing the formulation of energy prices. In view of this

conflict of interest, most scholars use the game theory method to

deal with it. Huang et al. (2022) proposed a joint optimization

scheduling model for the multi-park system and introduced a

bargaining game mechanism to achieve win–win cooperation

between parks. Fang et al. (2021) used game theory to solve the

conflict between the overall optimal operation of the microgrid

and the maximum profit of each investor and obtained the

equilibrium solution to determine the optimal capacity

allocation of the microgrid through the establishment of

internal and external double-layer game iterative optimization.

Wang et al. (2020) put forward amaster–slave game optimization

model of the community-integrated energy system. The authors

constantly adjusted and optimized the pricing strategy of

integrated energy vendors, generation arrangement of

combined cooling and heat power (CCHP), and load demands

of users and used an artificial intelligence algorithm to maximize

the interests of each energy subject. Considering the distributed

power generation-based sales companies and the participation of

virtual power plants, Zhang et al. (2022) proposed the power

transaction and optimal scheduling model based on the

master–slave game optimization model. The establishment of

the model made the main player get the maximum profit, while

the secondary player represented by the virtual power plant

(VPP) got the lowest internal scheduling cost. Taking into

account the interests of all regions in the optimal dispatching

of the comprehensive energy park, Chen et al. (2019) established

a bilevel optimal dispatching model of the PIES based on the

non-cooperative game theory, with the minimum daily cost as

the upper goal and the highest energy efficiency of the

cogeneration system as the lower goal. Then the optimal

operation strategy of each region was obtained through the

game. Li et al. (2021c) proposed a hierarchical and partitioned

coordinated operation method of the distributed integrated

energy system (DIES) based on a master–slave game for the

energy internet system containing multiple communities. The

city-integrated energy system hierarchy structure was given; to

consider interaction energy between different communities and

interests, city managers and operators, as the game of the leader

and followers, established the DIES of the master–slave game

optimization model and used the mixed-integer linear

programming method to solve the model. However, the

current research focused on the game between PIES and the

power company or electricity sellers as well as the game

interaction between the park and users, without considering

the bilevel game between the power company and users. In

addition, when studying the interactive transaction of the

integrated energy system, most literature emphasized the use

of electricity price to play the game and seldom considered the

influence of price fluctuation of other energy in the energy hub

such as cold and heat on the game.

PIES, however, can boost the consumption of renewable

energy such as wind power and photovoltaics. Units with

uncertain output in the park will seriously affect the economy

of system operation. At present, stochastic optimization (SO)

(Mei et al., 2021; Wang et al., 2015) and robust optimization

(RO) (Zhang et al., 2017; Shen et al., 2020) are popular

optimization methods to solve uncertainty. However, both

optimization methods have their own defects: the SO requires

a large amount of data to generate the scene with a deterministic

probability density function (PDF), so the accuracy of probability

density is reduced due to the lack of data (Ioannou et al., 2019).

However, because the optimization results are too conservative,

RO adopts adjustable robust optimization (ARO) (Mejía-Giraldo

and McCalley, 2014), which can adjust the conservative degree,

so that the decision can flexibly balance economy and security.

In summary, the main contributions of this paper are

summarized as follows: while considering the fluctuation of

energy prices, a two-layer master–slave game interaction

model based on PIES is constructed, and the uncertain output

of wind power and photovoltaics in the park is optimized

through ARO. In the upper game, the power company is the

leader and the PIES is the follower. The two play the game

through coordination and interaction, finally achieving the

balance between electricity purchasing and selling. In the

lower game, PIES is the leader and users are followers. PIES

adjusts energy prices to maximize profits. Users adjust their load

demand according to the price provided by PIES to maximize

consumer surplus. Considering power flow and uncertain output

of the power system in PIES, an adjustable robust optimal power

flowmodel is constructed. Finally, the robust optimization model
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is further transformed into a robust equivalence model by norm

theory to eliminate the influence of uncertain forces on the

optimal operation of the system.

2 The master–slave game model
framework of PIES

The master–slave game model framework of PIES is shown in

Figure 1. The power company is connected to a node in the power

system, and the electricity price is adjusted according to the

dispatching and distribution and actual operation to interact with

PIES. By selling as much electricity as possible to maximize their

profits, the PIES is directly connected with the power company

through transmission lines. When the power supply of its

equipment is insufficient, it can purchase power from the power

company at a reasonable price to realize the normal operation of all

equipment in the park and meet the load demand of users.

Conversely, if the PIES produces excess electric energy, it can

also be transmitted to the power company through the

transmission line. Finally, as consumers, users can reasonably

adjust the size of the energy consumption load to adapt to the

energy selling price of the comprehensive energy system in the park

and minimize the cost on the premise of meeting their energy

consumption demands (Li et al., 2021b).

In brief, the upper-level game led by the power company is to

realize the game with PIES through the transmission of electric

power and the adjustment of the corresponding electricity price.

The lower-level game is that PIES realizes game interaction with

users by meeting their demands for electricity, cooling, and heat

load and adjusting the corresponding energy price.

2.1 The power company model

2.1.1 The objective function
The objective function of the power company consists of

transmission line power cost, equipment maintenance cost,

generating cost, and benefits from electricity selling. The

expressions are as follows:

maxFd � Esell − Cgen − Cp − Ccw (1)

Esell � ∑T
t�1
(ctd,s · Pt

s − ctd,b · Pt
b) (2)

Cgen � ∑T
t�1
[a(Pt

s)2 + bPt
s + c] (3)

Cp � ∑T
t�1
(peq · (Pt

s + Pt
b)) (4)

CCW � ∑T
t�1
(ctd,b + ctd,s

2
Pt
GD−EX) (5)

where T is the total number of periods. In this study, it is 24 h.

Esell represents the benefits from electricity selling of the power

company; Pt
s is the amount of electricity the power company sold

to PIES at time t; Pt
b is the amount of electricity the power

company bought from PIES at time t; ctd,s and ctd,b represent the

price of electricity sold to PIES and the price of electricity

purchased from PIES by the power company at time t,

respectively; Cgen is the operating and maintenance cost of the

power company’s equipment; a, b, and c represent the

consumption characteristic parameters of the generator set;

Cp is the equipment operation and maintenance cost of the

power company (Chen et al., 2021); peq is the coefficient of

equipment maintenance cost;CCW is the cost of transmission line

between PIES; and Pt
GD−EX is the transmission line power.

2.1.2 Constraints of the power company
1) Electricity price constraints

0≤ ctd,s ≤ �cd,s,max (6)
0≤ ctd,b ≤ �cd,b,max (7)

where �cd,s,max and �cd,b,max, respectively, represent the maximum

price limit of electricity selling and the maximum price limit of

electricity purchasing by the power company.

2) Transmission line power constraintst

Pt
GD−EX,min ≤

∣∣∣∣Pt
GD−EX

∣∣∣∣≤Pt
GD−EX,max (8)

Pt
GD−EX,min/P

t
GD−EX,max are the upper/lower limits of

transmission line power, respectively.

FIGURE 1
Master–slave game model framework of the PIES.
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2.2 PIES model

The structure of the PIES (Gu et al., 2021) is shown in

Figure 2. The abbreviations for specific components are shown

in Table 1. PIES contains a range of renewable energy units

such as wind power and photovoltaics as well as gas boilers,

micro-turbines, and absorption cooling and energy storage

units to meet the needs of all loads. Modeling is conducted for

different energy sources to ensure that energy balance and

their respective operating constraints are met at each moment

(Tan et al., 2020).

2.2.1 The objective function
PIES takes the maximization of the park’s income as the

objective function, where the objective function FP includes gas

acquisition cost, unit operation and maintenance cost,

punishment cost, interaction cost with the power company,

and user-side energy supply income. The specific function

expressions are as follows:

maxFP � Psell − Cgas − COM − Cpc − Cgrid (9)

Psell � ∑N
n�1

∑T
t�1
(γtn · Pt

n) (10)

Cgas � ∑T
t�1

Rt
gas

Ht
gas

[Pt
MT

ηMT

+ Pt
GB

ηGB
] (11)

COM � ∑T
t�1
(Ct

PV−OM + Ct
WT−OM + Ct

MT−OM + Ct
ES)

� ∑T
t�1
[cPVPt

PV + cWTP
t
WT + cMTP

t
MT+

cEES(Pt
EES−C + Pt

EES−D) + cCES(Pt
CES−D + Pt

CES−C)+
cTES(Pt

TES−D + Pt
TES−C)]

(12)

Cpc � θ∑T
t�1
(Pt

DL − Pt
PV − Pt

WT) (13)

FIGURE 2
Master–slave game model framework of the PIES.

TABLE 1 Symbol definition of equipment in PIES.

Nomenclature Abbreviations Nomenclature Abbreviations

Micro-turbine MT Heat exchange HE

Photovoltaics PV Absorption cooling AC

Wind turbine WT Electricity storage unit ESU

Gas boiler GB Cooling storage unit CSU

Waste heat boiler WHB Heat storage unit HSU

Electric refrigeration ER Electricity load EL

Electric boiler EB Cooling/heat load CL/HL
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Cgrid � max(Pt
DL − Pt

DS, 0)ctd,s +min(Pt
DL − Pt

DS, 0)ctd,b (14)

where Psell is the income from selling energy to users of PIES, n

represents the n-th energy, N is the set of energy, γtn represents

the real-time price of energy n at time t, and Pt
n represents the

real-time power of energy n at time t. Cgas represents the cost of

natural gas acquisition; Rt
gas is the unit price of purchasing gas

(¥/m3); Ht
gas is the calorific value of natural gas (kW h)/m3; and

ηMT and ηGB are the efficiencies of the micro-turbine gas boiler

turning gas to electric. COM is the operating and maintenance

cost of the park. Ci,t
PV−OM, Ci,t

WT−OM, Ci,t
MT−OM, Ci,t

ES, and Ci,t
GD−EX

represent the operating and maintenance cost of photovoltaics,

wind power, micro-turbines, energy storage, and interconnected

line power, respectively. ctMT, cPV, cWT, and cEES/CES/TES represent

the cost coefficient of micro-turbines, photovoltaics, wind power,

and energy storage, respectively. CPC is the punishment cost,

representing the penalty of the difference between the output of

renewable energy and the actual electric demand at time t. θ is the

penalty price coefficient of unit electric power. Cgrid is the

interaction cost with the power company. When Cgrid > 0, the

park purchases electricity from the power company; otherwise,

the park sells electricity to the power company. Pt
DL and Pt

DS

represent the electricity load and output electrical power at time

t, respectively.

2.2.2 The constraints of PIES
The busbar balance of each energy and safe operation

constraints of each equipment should be considered when

PIES operates. The second-order cone programming (SOCP)

(Alizadeh and Goldfarb, 2003) is used to formulate the

constraints on AC power flow in the power system. The

detailed constraints are as follows:

1) Power balance constraints

Pg
i,t − Pd

i,t � Giicii + ∑k
j�1
j ≠ i

[Gijcij − Bijsij] (15)

Qg
i,t − Qd

i,t � –Biicii + ∑k
j�1
j ≠ i

[ − Bijcij − Gijsij] (16)

where k is the total number of power systems; Pg
i,t and P

d
i,t are the

active power and the load of bus i, respectively; Qg
i,t and Qd

i,t are

the reactive power and load of bus i, respectively; Gij and Bij are

the conductance and susceptance of line i − j; and cij and sij are

variables.

2) Line security constraints

Pg,min
i ≤Pg

i ≤P
g,max
i (17)

Qg,min
i ≤Qg

i,t ≤Qg,max
i (18)∣∣∣∣∣(cii − cij)Gij + sijBij

∣∣∣∣∣≤Pij
max (19)

cij � cji (20)
sij � −sji (21)

c2ij + s2ij + (cii − cjj
2

)2

≤ (cii + cjj
2

)2

(22)

(Vi
min)2 ≤ cii ≤ (Vi

max)2 (23)

Pg,max
i /Pg,min

i represent the maximum active power and

minimum active power of generator i, respectively,

Qg,max
i /Qg,min

i represent the maximum reactive power and

minimum reactive power of generator i, respectively,

Vi
max/Vi

min are the upper and lower limits of voltage

amplitude i, respectively, and Pij
max is the maximum

transmission power of line i − j.

3) Cooling balance constraints

Pt
ER−EX + Pt

AC−EX + Pt
CES−D � Pt

CES−C + Pt
CL (24)

where Pt
CL is the cooling load of PIES

4) Thermal power balance

Pt
EB−EX + Pt

HE−EX + Pt
TES−D � Pt

TES−C + Pt
HL (25)

where Pt
HL is the heat load of PIES.

5) Gas node balance constraints

Pt
REC−EX · (1 − μ) + Pt

GB−EX � Pt
HE (26)

where Pt
HE is the heat consumed by the heat exchanger and μ is

the proportion coefficient of flue gas distribution.

6) Energy conversion constraints

Electric refrigerating unit:

Pt
ER · COPER � Pt

ER−EX (27)

Absorption cooling:

Pt
AC � Pt

REC−EX · μ
Pt
AC−EX � Pt

AC · ηAC (28)

Electric boiler:

Pt
EB · COPEB � Pt

EB−EX (29)

Heat converter:

Pt
REC · ηREC � Pt

REC−EX (30)

Heat recovery steam generator:

Pt
REC · ηREC � Pt

REC−EX (31)

Gas boiler:

Pt
GB · ηGB � Pt

GB−EX (32)
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where COPER represents the energy efficiency coefficient of the

electric refrigerating unit,COPEB represents the energy efficiency

coefficient of the electric heat unit, and η is the efficiency of

energy conversion.

7) Energy storage unit constraints

Wt+1
EES � Wt

EES(1 − σEES) + (Pt
EES−C · ρEES−C − Pt

EES−D
ρEES−D

) ·△t

(33)
Wt+1

CES � Wt
CES(1 − σCES) + (Pt

CES−C · ρCES−C − Pt
CES−D

ρCES−D
) ·△t

(34)
Wt+1

TES � Wt
TES(1 − σTES) + (Pt

TES−C · ρTES−C − Pt
TES−D

ρTES−D
) ·△t

(35)
where ρEES−C, ρCES−C, and ρTES−C represent the charging

efficiency; ρEES−D, ρCES−D, and ρTES−D represent the

discharging efficiency; and σBT, σCD, and σHC represent the

self-discharge efficiency.

8) Energy storage capacity constraints

0≤Pt
EES/CES/TES−C ≤Cap

t
EES/CES/TES · σEES/CES/TES−C (36)

0≤Pt
EES/CES/TES−D ≤Capt

EES/CES/TES · σEES/CES/TES−D (37)
Wt

EES/CES/TES−D,min ≤W
t
EES/CES/TES ≤Wt

EES/CES/TES−D,max (38)

where Capi,t
EES/CES/TES is the rated capacity of electric/cooling/

heat storage and σEES/CES/TES−C/σEES/CES/TES−D is the maximum

rate of charge/discharge. Themaximum andminimum capacities

of energy storage in Eq. 38 take 0.92 and 0.2 times the rated

capacity, respectively.

9) Energy price constraints

0≤ γtDL ≤ �γtDL,max0≤ γ
t
CL ≤ �γtCL,max0≤ γtHL ≤ �γtHL,max (39)

where �γtDL,max, �γtCL,max, and �γtHL,max represent the maximum

selling price of electricity, cooling, and heat, respectively.

10) Heat recovery steam generator and gas boiler constraints

Pt
REC,min ≤Pt

REC ≤Pt
REC,max (40)

Pt
GB,min ≤P

t
GB ≤Pt

GB,max (41)

where Pt
REC,max/P

t
REC,min are the upper and lower limits of heat

recovery steam generator output, respectively, and

Pt
GB,max/P

t
GB,min are the upper and lower limits of gas boiler

output, respectively.

11) The output of energy conversion constraints

Pt
ER−EX,min ≤P

t
ER−EX ≤Pt

ER−EX,max (42)

Pt
EB−EX,min ≤P

t
EB−EX ≤Pt

EB−EX,max (43)
Pt
AC−EX,min ≤Pt

AC−EX ≤Pt
AC−EX,max (44)

Pt
HE−EX,min ≤P

t
HE−EX ≤Pt

HE−EX,max (45)

where Pt
ER−EX is the output of the electric refrigerating unit,

limited by the upper and lower limits Pt
ER−EX,max/P

t
ER−EX,min;

Pt
EB−EX is the output of the electric boiler; Pt

EB−EX,max/P
t
EB−EX,min

are the corresponding upper and lower limits; Pt
AC−EX is the

output power of the lithium bromide refrigeration unit using

waste heat flue gas; Pt
AC−EX,max/P

t
AC−EX,min are its upper and

lower limits, respectively; and Pt
HE−EX is the output of heat

conversion equipment, limited by the upper and lower limits

Pt
HE−EX,max/P

t
HE−EX,min.

2.3 The load model of users

Based on the known selling price of electricity, cooling, heat

from PIES, and user satisfaction with energy, users adjust energy

demands. The two points form users’ objective function, which is

different between the utility function and energy cost of users (Li

et al., 2021a).

maxFu � ∑T
t�1
[ft

u − Psell] (46)

where ft
u is the utility function of users, which is a measure of

user satisfaction. This paper uses a commonly used expression of

a quadratic function form to describe it (Maharjan et al., 2013;

Chai et al., 2014):

ft
u � ∑N

n�1
[αnPt

n − βn(Pt
n)2] (47)

where αn and βn are energy preference parameters of users. αn is

approximately twice as large as βn. The change of preference

parameters will directly affect the variation of user satisfaction,

and the change of user satisfaction will further affect the user

demand for energy.

The electricity load of the user side is divided into fixed

electricity load and shifting electricity load (Huang et al., 2019),

which can be expressed as

Pt
DL � Pt

fDL + Pt
aDL (48)

where Pt
fDL is the fixed electricity load at time t. Its consumption

time is relatively specific to ensure the demand of normal life and

work. Pt
aDL is the shifting electricity load at time t. Users adjust

their electricity demand according to the price from PIES and

follow the constraints:

Pt
aDL,min ≤

∣∣∣∣Pt
aDL

∣∣∣∣≤Pt
aDL,max (49)

where Pt
aDL,max and P

t
aDL,min are the maximum and minimum of

shifting electricity load at time t, respectively.
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Moreover, the heat load can be divided as fixed heat load and

reducing heat load, which can be expressed as

Qt
HL � Qt

fHL − Qt
aHL (50)

where Qt
fHL is the fixed heat load at time t and Qt

aHL is

the reducing heat load at time t. It can be reduced in

a certain proportion according to the users’ actual

use of energy and comfort. The reducing heat load should

satisfy

Qt
aHL,min ≤

∣∣∣∣Qt
aHL

∣∣∣∣≤Qt
aHL,max (51)

where Qt
aHL,max and Qt

aHL,min are the upper and lower limits of

reducing heat load at time t, respectively.

The cooling load is also composed of fixed cooling load and

reducing cooling load, which can be expressed as

Qt
CL � Qt

fCL − Qt
aCL (52)

where Qt
fCL is the fixed cooling load at time t and Qt

aCL is the

reducing cooling load at time t, which can adjust reasonably

according to the park’s sufficient degree of energy supply and its

demand. The reducing cooling load should satisfy the following

constraints:

Qt
aCL,min ≤

∣∣∣∣Qt
aCL

∣∣∣∣≤Qt
aCL,max (53)

where Qt
aCL,max and Qt

aCL,min are the upper and lower limits of

reducing cooling load at time t, respectively.

Summarily, although the model of the power company is a

nonlinear model with nonlinear constraints, it is still a convex

programming problem. Similarly, the PIES model and load

model of users are both convex programming problems, and

the global optimal solution can be obtained by selecting

appropriate solution methods.

3 Model analysis and solution
methodology

3.1 Game interaction and equilibrium

3.1.1 Analysis of game interaction
In the process of energy trading, variation in the real-time

purchase and sale prices of power companies will affect the

purchase and sale strategies of PIES. At the same

time, PIES adjusts the selling price to users based on the

output of each piece of equipment in the park. Affected by the

fluctuation of energy price, users will adjust part

reducing and interruptible loads and develop new energy

purchasing strategies. These factors will trigger the

interaction among participants, and participants

constantly adjust their strategies to coordinate the

interests of each other and finally maximize the interest of

each subject to obtain the equilibrium solution of the game.

In this game model, PIES serves as a bridge between the

power company and users in a bilevel game. As the power

company, PIES, and users have their interests, and there is

no agreement among them. However, there is a

sequence of decisions among the three; the game model is

as follows:

G � <P; δ;U> (54)

Eq. 54 contains the three elements of the master–slave game,

participants P, strategies δ, and utility U, specifically as

follows:

1) Participants: The participants in the game are the power

company, PIES, and users.

2) Strategies: In the upper game, the strategy set of the leading

power company is the selling and purchasing prices of PIES

at each moment {ctd,s, ctd,b}. The strategy set of the following
PIES is the sale and purchase of electricity {Pt

b, P
t
s} to power

companies at each moment. In the lower game, the strategy

set of the leading PIES is the sale price {γtDL, γ
t
CL, γ

t
HL}. The

strategy set of the following users is the transferable load

{Pt
aDL, Q

t
aHL, Q

t
aCL}.

3) Utility: The utility of each participant is the objective

function of the subject, which has been shown in the

previous section.

3.1.2 The proof of game equilibrium
When all followers make the optimal response according to

the strategy given by the leaders and the leader also accepts the

response, the game reaches equilibrium, and the optimal solution

is called Nash equilibrium.

Only when the master–slave game model satisfies the

following three conditions can there be a unique master–slave

game equilibrium solution (Liang and Su, 2018; Xiang et al.,

2021):

1) In the game process, both the leader and follower’s strategy

sets are non-empty sets and also satisfy to be closed and

bounded;

2) In the game, if the leader determines the strategy, as a

follower, there is only one optimal strategy;

3) In the game process, if the follower determines the strategy,

the leader also has only one optimal strategy.

Then, we verify whether the above three conditions are

satisfied from the lower game model.

a) Condition 1) is satisfied because the strategy sets of power

companies, PIES, and users are all non-empty, closed, and

bounded convex sets in Euclidean space.

b) Verify that the follower has a unique optimal strategy after

the leader gives a strategy. Taking the following layer game

as an example, the first-order partial derivative of the users’
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objective function against the energy consumption load

can be obtained:

zFu

zPt
n

� z(ft
u − Pt

sell)
zPt

n

� αn − 2βnP
t
n − γn (55)

Let the first-order partial derivative of the above equation

equal 0. The optimal value of available energy consumption

load is

Pt
n �

αn − γn
2βn

(56)

Then take the second-order partial derivative of Eq. 56

concerning Pt
DL, P

t
CL, and Pt

HL, respectively,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

z2Fu

z(Pt
DL)2 � −2βDL

z2Fu

z(Pt
CL)2 � −2βCL

z2Fu

z(Pt
HL)2 � −2βHL

(57)

Since the user energy preference parameters are generally positive,

the second-order partial derivatives here are all less than 0, so Eq. 56 is

themaximumvalue of the users’ objective function. As the sale energy

price of PIES changes, the extreme value may be located on the

boundary of the load, but no matter how the sale energy price

changes, the unique optimal load solution can be obtained.

c) Verify that the leader has a unique optimal strategy when the

followers of the game are given a strategy. Substitute the

optimal energy consumption load Eq. 56 into the PIES

objective function Eq. 9 and take the second-order partial

derivatives of γDL, γCL, and γHL, respectively,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

z2FP

z(γDL)2 � − 1
βDL

z2FP

z(γCL)2 � − 1
βCL

γHL

z2FP

z(γHL)2 � − 1
βHL

(58)

According to Eq. 58, the second-order partial derivatives are

all less than 0, and there is a maximum value. Therefore, when

the energy consumption load is determined by the user, there is a

unique optimal solution for the sale price of PIES.

The proof process of the upper game is similar to that of the

lower, which is not described here. Since the upper and lower of

the game are interrelated and affect each other, it is proved that

both the upper and lower game models have a unique Nash

equilibrium solution, which indirectly proves that the two-level

master–slave game model proposed in this section has a unique

Nash equilibrium solution.

3.2 Adjustable robust optimal power flow
model

ARO (Mejia Giraldo and Mccalley, 2014) is used to process

wind power and photovoltaics with large fluctuation. The

feature of robust optimization is that it makes decisions in

the worst case to minimize the influence of decision parameters,

but it also has the disadvantage of being too conservative. The

emergence of ARO improves this disadvantage, and it can make

a better choice between conservatism and robustness according

to its own needs.

ARO controls the size of the uncertain set by

introducing uncertainty. Suppose uncertain

parameter ~P
PV
i,t ∈ [PPV

i,t − ΔPPV
i , PPV

i,t + ΔPPV
i ],

~P
WT
i,t ∈ [PWT

i,t − ΔPWT
i , PWT

i,t + ΔPWT
i ]. PPV

i,t is the predicted

photovoltaic active power output, and ~P
PV
i,t is the actual

photovoltaic active power output. PWT
i,t is the predicted active

wind power, and ~P
WT
i,t is the actual active wind power. Because

the maximum or minimum value in the uncertain set is covered,

if the uncertain set is directly adopted, it will bring absolute

conservatism and uneconomy to the system. Therefore,

ARO is used to process the set to reduce the conservatism of

the model.

The uncertain sets of photovoltaics and wind power are

defined as follows:

UPV(ΓPV, PPV
i,t ) � {~PPV

i,t ∈ [PPV
i,t − ζ iΔPPV

i , PPV
i,t + ζ iΔPPV

i ]} (59)���ζ i���∞≤ ΓPV, i ∈ NPV (60)
UWT(ΓWT, PWT

i,t ) � {~PWT

i,t ∈ [PWT
i,t − τ iΔPWT

i , PWT
i,t + τ iΔPWT

i ]}
(61)

‖τi‖∞≤ ΓWT, i ∈ NWT (62)
where NPV and NWT are the sets of photovoltaic and wind

power nodes, respectively. ΓPV and ΓWT represent

photovoltaic and wind power uncertainty levels,

respectively, which are 1 by default. When ζ i � 0 and τi � 0,

it means that the output errors of photovoltaics and

wind power are both 0, and the model becomes a

deterministic model with the worst system robustness.

With the increase of ζ i and τi, the uncertainty prediction

error becomes larger, and the robustness and anti-interference

ability are enhanced.

Therefore, based on the optimal power flow of the

PIES deterministic power system introduced above, wind

power and photovoltaics with uncertain output are

considered to build an adjustable robust optimal power

flow model.

1) Power balance constraints
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Pg
i,t + PWT

i,t + PPV
i,t − Pd

i,t � Giicii + ∑k
j�1
j ≠ i

[Gijcij − Bijsij] (63)

Qg
i,t + QWT

i,t + QPV
i,t − Qd

i,t � –Biicii + ∑k
j�1
j ≠ i

[ − Bijcij − Gijsij] (64)

2) Line security operation constraints

Pg,min
i ≤Pg

i,t +⎛⎝ ∑
i∈NWT

ΔPWT
i ζ i + ∑

i∈NPV

ΔPPV
i τi⎞⎠≤Pg,max

i (65)
���ζ i���∞≤ ΓPV, i ∈ NPV (66)
‖τ i‖∞≤ ΓWT, i ∈ NWT (67)∣∣∣∣∣(cii − cij)Gij + sijBij

∣∣∣∣∣≤Pij
max (68)

cij � cji (69)
sij � −sji (70)

c2ij + s2ij + (cii − cjj
2

)2

≤ (cii + cjj
2

)2

(71)

(Vi
min)2 ≤ cii ≤ (Vi

max)2 (72)

In the above adjustable robust optimal power flow model,

there are constraints with uncertain parameters, so the model

cannot be solved directly. In this paper, the dual norm theory is

used to transform the original model into a robust equivalence

model. The constraints with uncertain parameters in the original

model are Eqs 65–67. According to the dual norm theory,

max‖ζ i‖∞≤ 1 ∑
i∈NWT

ΔPWT
i ζ i is the dual norm of ‖ ∑

i ∈ NWT

ΔPWT
i ‖1.

Similarly, max‖τi‖∞≤ 1 ∑
i∈NPV

ΔPPV
i τi is the dual norm of

‖ ∑
i ∈ NPV

ΔPPV
i ‖1. Therefore, the original constraint can be

expressed as

Pg,min
i ≤Pg

i,t +
��������� ∑
i ∈ NWT

ΔPWT
i

���������
1

+
��������� ∑
i ∈ NPV

ΔPPV
i

���������
1

≤Pg,max
i (73)

Obviously, the constraint Eq. 73 no longer contains the

constraint of uncertain parameters, and the model is

transformed into a convex model that can be solved directly,

which is convenient for a subsequent solution.

3.3 The idea of a distributed solution

In the process of the real transaction and game, transaction

subjects do not want other participants to know their objective

function and strategy (Lin et al., 2019). To better protect the

information of each participant, the distributed solution of the

game equilibrium of the power company, the PIES, and users is

provided. In this way, the independent decision of each

participant can be realized without disclosing the objective

function information of both parties.

The idea of a distributed solution is as follows:

It is assumed that there is a control center in the middle

of each participant, which is responsible for summarizing

the real-time information provided by the participant,

allowing other participants to obtain the information and

FIGURE 3
Model distribution solution flow chart.
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accept their feedback decision information, and realizing the

coordinated solution of game equilibrium through continuous

iteration. The specific flow chart is shown in Figure 3.

In the upper game, the power company initializes the unit

purchase and sale prices, satisfies the purchasing and selling price

constraints, and informs the control center of the initial price

information. After obtaining the corresponding price from the

control center, PIES determines the purchasing and selling

relationship with the power company by taking into account

the output of the equipment in the park.

In the lower game, PIES determines a reasonable initial

selling price based on users’ energy usage and passes this

information to the control center. After users obtain the

energy price from the control center, they make an

adjustment based on their actual situation and feedback the

information to the control center. The park then makes new

energy prices according to the strategy feedback from users from

the control center and meets the energy price constraints. PIES

achieves the Nash equilibrium by constantly updating the pricing

strategy and purchasing and selling strategy, feeding back to the

customer and the power company.

4 Simulation example

4.1 Analysis of the result of a calculation
example

In this chapter, simulation results verify the rationality and

economy of the proposed power company–PIES–user

master–slave game model.

The simulation is carried out using Matlab 2021a combined

with the Yalmip optimization toolbox (Lofberg, 2005) on a

standard personal computer with an Intel Core i7-7700 CPU

running at 16 GB RAM, and the Gurobi solver (Optimization,

2014) is used to solve the master–slave game model. In this

section, the PIES uses an IEEE 30-bus system for example

analysis. The simulation results are presented in the form of

standard identity data, and the power reference value is 100 kW.

The optimization results of electrical output, cooling output, and

thermal output within PIES are shown in Figures 4–6,

respectively. The comparison of user demand before and after

the game of various loads is shown in Figures 7–9.

As shown in Figure 4, the PIES stores the excess electrical

energy in the electrical energy storage unit and transfers it to the

electrical power because the wind power output is high in the

early morning and late night, and the users’ electricity loads are

low. During the peak power consumption period from 7:00 to 11:

00 in the daytime, the output of photovoltaic and micro-

combustion units gradually increases, while the output of

wind power gradually decreases, and energy storage units

release energy to further meet the load demand. Nevertheless,

the equipment in the park still fails to meet the load power

demand of users, so the part of power shortage needs to be

purchased from power.

As shown in Figure 5, the output of absorption cooling will be

limited by the waste heat power, so the output gradually increases

to the peak value during daytime working hours, and the output

is less at night. The output of electric refrigeration changes with

the fluctuation of cooling load demand.When the load demand is

large from 8:00 to 11:00 and from 16:00 to 17:00, the output of

electric refrigeration will be large, and the energy storage unit will

FIGURE 4
Optimization results of electricity output.
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FIGURE 6
Optimization results of thermal output.

FIGURE 5
Optimization results of cooling output.

FIGURE 7
Comparison between the users’ initial electricity load and the electricity load after considering the game.
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also provide energy during this period to meet the energy

demand.

In Figure 6, the electric heating device provides heat

according to the users’ demand, presenting a double-peak

shape as a whole, reaching the peak value at 11:00 and 17:00,

which matches the users’ energy usage habits. Heat exchange is

mainly affected by the gas boiler and waste heat boiler, and the

output is not much throughout the day, reaching the peak at 16:

00. The thermal energy storage unit as a whole presents the

characteristics of internal charging when the load demand is

small and provides energy when the load demand is large.

Figure 7 shows the comparison between the users’ initial

electricity load and the electricity load demand after considering

the game. As can be seen from the figure, after considering the

game, the electricity price for users in the park keeps rising

during the peak periods of 7:00–12:00 and 15:00–18:00. At this

point, the load is significantly optimized, and the fluctuation

range of electricity load becomes smaller, which plays a good role

in peak load cutting and valley filling. It relieves the power supply

pressure of the park during peak hours and also reduces the

power purchase cost of users so that the system can operate more

safely and reliably.

Figure 8 shows the comparison between users’ initial cooling

load and cooling load demand after considering the game. As

seen from the figure, to ensure users’ energy consumption

experience and comfort, the cooling load is reduced by a

small amount, which is mainly reflected in the load reduction

near the peak energy consumption and when the energy sale

price is high. In the stage of low energy consumption and

relatively cheap cooling prices in the park, the load demand

should be appropriately increased.

Figure 9 shows the comparison between the users’ initial heat

load and the heat load demand after considering the game. As

shown in the figure, after the game, the heat load is cut in the two

stages of 8:00–12:00 and 15:00–17:00 to reduce the energy

consumption cost and relieve the pressure on the equipment

output of the comprehensive energy system in the park during

the peak energy consumption period.

Figure 10 shows the price at which PIES buys and sells

electricity to power companies. The dotted line in the figure

represents the latest time-of-use price provided by electricity.

As seen from the figure, PIES formulates the electricity

purchase price strategy within the range of the dotted line.

Compared with the time-of-use price, most of the periods are

lower than the time-of-use price; that is, after considering the

game, it has a better price advantage. At the same time,

increasing the purchased and sale electricity price during

peak electricity consumption encourages the equipment in

the comprehensive energy system of the park to generate

more electricity, therefore reducing the purchase of

electricity from the power company to achieve the purpose

of increasing the total income of the park.

Figure 11 shows the energy selling price of PIES to users. In

order to maximize revenue, the energy selling price of each

energy in the park is increased during peak energy consumption

of users to obtain more excess revenue. In the low-energy-

consumption period, the energy price of each energy in the park

will be reduced to encourage users to increase energy

consumption at this stage. Compared with the traditional

time-of-use electricity price, it is smoother and easier to

accept by users and ensures that the system runs more safely

and stably.

FIGURE 8
Comparison between users’ initial cooling load and cooling load after considering the game.
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4.2 Contrastive analysis

4.2.1 The influence of game interaction on the
income of each subject

In order to better reflect the influence of game interaction on the

incomeof each subject, the following scenarios are set up in this paper:

Scenario 1: Consider the electricity price game between the

power company and the PIES and the energy price game between

the PIES and the users.

Scenario 2: The price game between the power company and

the PIES is considered, but the energy selling price between the

PIES and the users is fixed.

Scenario 3: The price game between the PIES and the users is

considered, but the energy selling price between the power

company and the PIES is fixed.

Scenario 4: Regardless of any game, the upper and lower

levels are trading at fixed prices.

The fixed prices in scenarios 2, 3, and 4 are taken from the

average prices of the corresponding variables in scenario 1.

Table 2 shows the income comparison between the power

company and the PIES in different scenarios. Scenarios 2 and

3 with the only a single-layer game have significantly higher

benefits than the traditional scenario 4 without considering

the game. For scenario 1 with two games, the benefits are

obviously higher than those of scenarios 2 and 3 with only a

single game. Under the guidance of the price game, a variety

of energy shows a more reasonable optimal allocation after

participating in the game, so the best benefits for both sides of

the game are achieved. Therefore, the game

model proposed in this paper has a better economy.

TABLE 2 Income comparison of the integrated energy system of the
distribution network and park under different scenarios.

Scenario Earnings from electricity
selling by the
power company/¥

Interests in PIES/¥

Scenario 1 5443.3 1824.9

Scenario 2 5296.6 1021.5

Scenario 3 4627.4 1262.7

Scenario 4 4500.2 1207.8

TABLE 3 Partial line power comparison.

Scenario Line power/pu

1–2 2–4 3–4 4–6 8–28 16–17 19–20

0 0.8136 1.4171 0.7236 0.1252 1.5896 1.0127 0.0641

1 0.7598 0.7214 0.4263 0.1296 0.6841 0.7402 0.0527

FIGURE 9
Comparison between users’ initial heat load and heat load after considering the game.
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4.2.2 Influence of network power flow on PIES
To study the influence of power network flow on PIES, we set

the following two scenarios:

Scenario 0: PIES ignoring the power flow of the power

system.

Scenario 1: PIES in this paper considers the optimal power

flow of the power system.

As shown in Table 3, scenario 1 takes into account the power

flow constraints of the power system and the power of each line is

within a reasonable operating range. In contrast, in scenario 0,

lines 2–4 and 8–28 appear as power overload (The power overload

is indicated in bold) because the line safety operation constraints

are not considered. If such an overload problem appears in the

actual system, it will bring unnecessary losses and make the

scheduling plan not feasible. Therefore, PIES considering power

system network flow is more feasible and stable.

4.2.3 The influence of uncertainty changes on
model results

As shown in Table 4, when ΓPV � ΓWT � 0, the model is

deterministic, the PIES benefit is the highest, but system

robustness is the worst. As wind power and photovoltaics

have a larger output range, the robustness and anti-

interference ability of the system are enhanced and can

achieve more secure and stable operation. When ΓDG equals

to 1, the system’s economy is the worst for all uncertainties of

renewable energy units in the system considered.

4.2.4 User preference analysis
The influence of user preference parameters on the game

equilibrium solution, that is, the influence of parameter value

changes on the game solution, is observed.

Taking the transaction situation at a random time as an

example, the user energy preference parameters are gradually

increased from 20 to 200 to observe the influence of energy

preference parameters on the game results.

As shown in Figure 12, when the energy preference parameter is

below 40, users have low requirements for energy consumption

experience and can reduce large amounts of various loads, so

users are more sensitive to energy consumption experience. When

the user preference parameters increase to more than 40, the users’

sensitivity to energy experience decreases obviously, and the users’

actual energy load increases with the increase of the preference

parameters.

TABLE 4 Benefits of the PIES under different adjustable uncertainty
levels.

ΓPV/ΓWT Interests in PIES/yuan

0 1824.9

0.1 1800.5

0.2 1769.5

0.3 1748.6

0.4 1739.5

0.5 1723.1

0.6 1708.6

0.7 1689.4

0.8 1682.6

0.9 1680.3

1.0 1677.5

FIGURE 10
PIES purchases and sells electricity from the power grid.
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5 Conclusion

In this paper, a two-level master–slave game optimization

model of the power company, PIES, and users is proposed, and a

distributed algorithm solution to protect the privacy of each

participant is provided to solve the model. Finally, the

cooperative optimization of PIES and other subjects is

realized, and the game balance is achieved. At the same time,

considering the existing renewable energy units in the park, the

method of ARO is considered to deal with the uncertain output.

Finally, the following conclusions are drawn through the analysis

of calculation examples:

1) It is proved that the two-level master–slave game interaction

strategy constructed in this paper has a Nash equilibrium

solution. In addition, the feasibility of this strategy is verified

by the method of distribution solution, and the purpose of

protecting the privacy of participants is realized.

2) By comparing the proposed game model with the traditional

optimization model, both sides of the game have better

economic performance after introducing the price game of

the power company and the energy sale price game.

3) Considering the ARO model, the conservatism of the

traditional robust model is improved, and the adjustable

robust optimal power flow model is established. In

FIGURE 12
Influence of users’ preference parameters on game results.

FIGURE 11
Price of PIES to users.
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addition, this paper also studies the influence of user

preference parameters on users. The difference in

preference parameters will affect users’ energy

consumption and then affect the game equilibrium solution.

Future work will consider not only the electricity price game

between the power company and the PIES but also the gas price

game between the natural gas company and the PIES. In

addition, the cooperative optimization operation of

source–load–storage will be focused on, and the multi-energy

free trade among multi-PIES is considered to optimize the energy

utilization rate further (Li et al., 2021c).
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