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This article investigates the pulsatile flow of viscous incompressible MHD

nanofluid in a rectangular channel. At the upper and lower walls, the

channel has symmetrical constrictions. The goal is to analyze the heat

transfer features of the nanofluid flow under the effect of the magnetic field

and thermal radiation. Five different nanofluids, formed with nanoparticles of

copper (Cu), magnetite (Fe3O4), silver (Ag), titanium oxide (TiO2), and single

wall carbon nanotube (SWCNT) in the base fluid of water, are considered in the

study. The unsteady governing equations are transformed using the vorticity-

stream function approach. The solution is obtained using the finite difference

technique (FDM). The effect of various flow controlling parameters on velocity,

temperature, Nusselt, and skin-friction profiles is inspected by using graphs.

Across the channel, graphs of vorticity, streamlines, and temperature

distribution are also displayed. The thickness of the thermal boundary layer

upsurges with escalating values of the magnetic field, radiation parameters, and

solid volume fraction, whereas it declines with escalating values of the Strouhal

and Prandtl numbers. The profiles are usually found to have a more regular

pattern upstream of the constriction than that downstream of the constriction.

At the throat of the constriction, the carbon nanotube-based nanofluid attains

higher temperatures than the other nanofluids downstream of the constriction.

However, in the lee of the constriction, silver-based nanofluid attains higher

temperatures than the other nanofluids downstream of the constriction. The

behavior, inmost cases, is opposite upstreamof the constriction. The findings of

the study can be utilized to cure stenosis in blood vessels, design biomechanical

devices, and employ flow pulsation to control industrial operations.
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1 Introduction

Conventional heat transfer liquid sources are incapable of

satisfying current cooling requirements largely due to their poor

convective heat transfer coefficients. Researchers have

demonstrated that nanoparticles (NPs) usually made of metals

or oxides enhance the coefficients of heat convection and

conduction in fluids, allowing for higher heat transfer rates

for the coolants. Thus, the heat transfer and thermal system

effectiveness can be improved significantly by mixing NPs in

pure fluid, forming nanofluid (NF). NFs have promising

applications in many areas of industry and biomedicine due

to their enhanced thermal conductivity. The characteristic of

improved thermal conductivity might serve as a major factor for

performance improvement. As NFs can enhance heat transfer,

heat exchangers can be designed to be both energy efficient and

small.

Wang andMujumdar (2008) investigated the convective heat

transfer of NF flow (NFF). Saidur et al. (2011a), Saidur et al.

(2011b), Mahian et al. (2013), and Kasaeian et al. (2015) worked

to enhance the thermophysical properties as well as heat transfer

capacity of the fluids using NPs. The study of these flows through

stretching surfaces got motivation from the perspective of its

application, particularly in plastic film drawing. Hence, several

researchers paid a lot of attention to this issue and studied the

movement of boundary layers over different forms of stretching

surfaces. Akbar et al. (2014) used a homogeneous model to study

NFF at stagnation point above a stretching plate with slip

boundary conditions. Analysis of pulsatile flow in a

constricted channel under the impact of magnetic field was

presented by Bandyopadhyay and Layek (2011) and

Bandyopadhyay and Layek (2012). Nasir et al. (2019)

explained the Darcy–Forchheimer 2D thin-film fluid of NF.

Mustafa et al. (2011) considered the NFF at the stagnation

point above a stretching sheet. Wong and Leon (2010)

reported that the thermophysical properties of fluids are

improved significantly, even at moderate NP concentrations.

Haq et al. (2016) investigated the fully developed flow of

water-functionalized magnetite NPs among two parallel disks

by taking water as the base fluid. The peristaltic flow of

incompressible viscous fluid having metallic NPs was

examined by Akbar (2014) via an irregular duct. Aly (2020)

explained a non-homogeneous two-phase model for

Al2O3–water NF-filled annulus used for the simulation of an

incompressible smoothed particle hydrodynamic system (ISPH)

between a wavelength rectangle and the square cavity. Two-

dimensional Fe3O4–water NF under the combined impact of

Lorentz and Kelvin forces was inspected by Sheikholeslami et al.

(2017a). Said et al. (2015) analyzed the influence of short

suspended SWCNT thermophysical properties in water and

enhanced the thermal productivity of a flat plate solar

collector. Sheikholeslami and Ganji (2013) explained the

Cu-H2O NFF between parallel plates. Yang et al. (2020)

explained air purification with total heat recovery using NFs

for the first time, demonstrating the synergistic application of

NFs for heat, mass transfer, photocatalysis, and sterilization.

In the magnetohydrodynamic (MHD) flow, the magnetic

area induces an electric current in a moving conductive fluid. The

induced current causes force on conductive fluid ions. Natural

convection under the impact of the magnetic field remained a

topic of great interest because of its comprehensive applications

in the design of liquid-metal cooling systems, accelerators, and

pumps, as well as MHD generators and flow meters (Cha et al.,

2002). In a single constricted channel, Ali et al. (2020)

investigated the steady and pulsatile modes of non-Newtonian

MHD Casson fluid. Sheikholeslami (2017a) researched the

hydrothermal study of MHD nanofluid in an open porous

cavity by using the Lattice–Boltzmann method with the

Brownian motion impact on NF properties. Shah et al. (2019)

addressed the idea of the electrical MHD rotational flow of

SWCNTs and MWCNTs for engine oils. Sheikholeslami et al.

(2017b) researched the forced convection of MHD NFF. They

considered the power of Brownian motion for modeling NF. Haq

et al. (2017) supposed the heat transfer efficiency of engine oil

between two dispersed cylinders with MHD effects in the

presence of both SWCNTs and MWCNTs, to monitor the

spontaneous motion of the NPs. There are several studies, as

well, regarding MHD NF flow problems past a plate/sheet under

various physical conditions and objectives (Narayana and

Venkateswarlu, 2016; Babu et al., 2018; Tarakaramu et al.,

2019; Devaki et al., 2020; Tarakaramu et al., 2020;

Venkateswarlu and Narayana, 2021; Alzahrani et al., 2022;

Mahmood et al., 2022; Puneeth et al., 2022; Qi et al., 2022;

Ramadan et al., 2022; Tlili and Alharbi, 2022; Tlili et al., 2022).

Kakarantzas et al. (2009) investigated the natural convection

of MHD at the sinusoidal upper wall temperature in a vertical

cylindrical cavity. Rashidi et al. (2016) examined the convective

heat transfer of MHD NFF in a vertical channel with sinusoidal

walls. Sheikholeslami (2017b) tested the Buongiorno model to

investigate the melting heat transfer of NFF due to the magnetic

field. The impacts of heat and mass transfer of NFF flow over a

vertical infinite flat plate were investigated by Turkyilmazoglu

and Pop (2013). They derived the exact analytical solutions for

various water-based NFs containing Cu, Ag, CuO, Al2O3, and

TiO2. Pakdaman et al. (2012) explored the thermophysical

properties and overall efficiency of MWCNT NFs flowing

within vertical helically coiled tubes. In the occurrence of a

non-uniform magnetic field, Sheikholeslami et al. (2015)

explored the transport of forced convection heat within a lid-

driven semi-annulus enclosure filled with Fe3O4–water NF.

Using a continuously stretching porous layer, Gopal et al.

(2021) investigated the thermo-physical properties

characteristics of complex order chemical processing and

viscous dissipation on NF. Two space coordinates are used to

model the porous medium, laminar, time-invariant, and MHD

incompressible Newtonian NF. The role of heat source and Soret
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impacts on MHD convective Ferro-NF (Fe3O4-water) flow

across an inclined channel with a porous media were

examined by Sabu et al. (2021). The heat transfer of NFF

from an inclined channel in the occurrence of a magnetic

field, heat flux, and mass diffusion was explored using the

FDM by Kumar et al. (2021).

Krishna et al. (2021a) and Krishna et al., 2021b) investigated

the radiative MHD flow of an incompressible viscous electrically

conducting non-Newtonian Casson hybrid NF over vertical

moving porous surface under the influence of slip velocity in

a rotating frame. Kavya et al. (2022) explore the varying fluid

momentum and thermal energy characteristics of the laminar,

steady, incompressible, 2D, non-Newtonian pseudo-plastic

Williamson hybrid NF over a stretching cylinder with MHD

effects.

Shah et al. (2022) determined the heat transfer properties of a

MHD Prandtl hybrid NF over a stretched surface in the presence

of bioconvection and chemical reaction effects. Zhang et al.

(2022) presented the solar source, although it can reduce

energy consumption (EC) for buildings on cold days; in the

summer, its presence on the envelopes intensifies EC. Gao et al.

(2022) examined the hydrodynamic and thermal performances

FIGURE 1
The channel geometry with a constriction on each wall. The walls are defined by.

TABLE 1 Thermophysical properties of different NPs and the base fluid.

Physical properties Base Fluid
H2O

Cu Ag Fe3O4 TiO2 SWCNT

cp (J/kg K) 4076.4 385 235 670 686.2 600

ρ (Kg/m3) 997.8 8933 10,500 5180 4250 2100

K (W/m K) 0.60475 401 429 9.7 8.9538 3500

FIGURE 2
WSS distribution for the pulsatile flow, for M � 5, 10, at Re � 700, h1 � h2 � 0.35, St � 0.02, and t � 0.25.
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of liquid water in the attendance of two carbon structures by

molecular dynamics simulation (MDS). Nayak et al. (2022)

conducted a numerical treatment on flow and heat transfer of

radiative hybrid NF past an isothermal stretched cylinder set in a

porous medium.

The goal of the present work is to numerically investigate the

heat transfer characteristics of pulsatile viscous MHD NFF in a

constricted channel. The study is conducted for five different

nano-impurities (Cu, Fe3O4, Ag, TiO2, and SWCNT), which

have been chosen for the preparation of NFs. The mathematical

analysis is done using the transformation of the vorticity-stream

function, and numerical computations are made using FDM. The

impact of the flow controlling parameters (M, St, Pr , Rd) on
the flow profiles of the five NFs, as well as on the skin-friction and

Nusselt number profiles, are also observed. The objective is to

examine the cumulative impact of the applied magnetic field and

thermal radiation on the wall shear stress (WSS), velocity, and

temperature profiles in 2D. The Newtonian pulsatile NF flows

help in understanding the influence of various metallic NPs

homogeneously suspended in the blood, which is driven by

drug trafficking (pharmacology) applications.

The following is how the article’s next section is organized.

Section 2 defines the mathematical model and transformation.

The outcomes and relevant discussions are presented in Section

3. The final remarks are eventually presented in Section 4.

2 Mathematical model

We are working at an incompressible electrically conducting

NF flowing via a rectangular channel that should be laminar at

Reynolds number 700. The channel walls have a pair of

symmetrical constrictions. The resulting electric field J is

normal, and the direction of B is perpendicular to the plane

of flow. We take a Cartesian coordinate system (x,y) in which the

flow direction and the direction of B are, respectively, along the
~x-axis and ~y-axis. Because the magnetic Reynolds number (Rem)
for the flow is so small, the induced electric can be deemed

insignificant. In the transformed coordinate system (to be

discussed later on), as illustrated in Figure 1, the constrictions

span from x � −x0 to x � x0, with the center at x � 0

y1(x) �
⎧⎪⎪⎪⎨⎪⎪⎪⎩

h1
2
[1 + cos(πx

x0
)], |x|≤ x0

0, |x|> x0

y2(x) �
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 − h2
2
[1 + cos(πx

x0
)], |x|≤ x0

1, |x|> x0

(1)

where y � y1(x) and y � y2(x) symbolize the lower and upper

walls, respectively, and h1 and h2 are the heights of the

FIGURE 3
The WSS distribution for distinct values of ϕ for the five NFs at t � 0.25.
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constrictions at the lower and upper walls, respectively

(Bandyopadhyay and Layek, 2012; Ali et al., 2020).

The flow phenomenon is represented by the unsteady

incompressible viscous flow equations as follows.

The continuity equation:

z~u

z~x
+ z~v

z~y
� 0. (2)

The momentum equation:

z~u

z~t
+ ~u

z~u

z~x
+ ~v

z~u

z~y
� − 1

ρnf

z~p

z~x
+ μnf
ρnf

∇2~u + 1
ρnf

(J × B)x, (3)

z~v

z~t
+ ~u

z~v

z~x
+ ~v

z~v

z~y
� − 1

ρnf

z~p

z~y
+ μnf
ρnf

∇2~v. (4)

The energy equation:

z~T

z~t
+ ~u

z~T

z~x
+ ~v

z~T

z~y
� knf(ρCp)nf∇2 ~T − 1(ρCp)nf zq

z~y
, (5)

where q � −( 4σ
3k* 4T

3
∞

z ~T
z~y) is the radiative heat flux. We get by

expanding ~T
4
about T∞ and omitting higher-order terms

~T
4 � 4T3

∞ ~T − 3T4
∞

Then, q � −( 4σ
3k* 4T

3
∞

z ~T
z~y) and zq

z~y � −(16σ3k*T
3
∞

z2 ~T
z~y2).

Eq. 5 becomes

z~T

z~t
+ ~u

z~T

z~x
+ ~v

z~T

z~y
� knf(ρCp)nf⎛⎝z2 ~T

z~x2 +
z2 ~T

z~y2
⎞⎠ + 16σT3

∞
3k*(ρCp)nf z2 ~T

z~y2 ,

(6)
where ~u (along ~x-axis) and ~v (along ~y-axis) show the velocity

components and the subscript “nf” represents the nanofluid, ~p

symbolizes the pressure, ρ symbolizes the density, U symbolizes

the characteristic flow velocity, ] symbolizes the kinematic

viscosity, and ~T symbolizes the temperature. k symbolizes the

thermal conductivity, Cp symbolizes the specific heat,

J ≡ (Jx, Jy, Jz) symbolizes current density, B ≡ (0, B0, 0)
symbolizes the magnetic field, B0 symbolizes the strength of

the uniform magnetic field, σ symbolizes electric conductivity,

and μm symbolizes the magnetic permeability of the medium. As

the electric current direction is normal to the channel plane,

therefore E ≡ (0, 0, Ez). Ohm’s law gives

Jx � 0, Jy � 0, Jz � σf(Ez + ~uB0). (7)

Maxwell’s equation ∇× E � 0 �⇒Ez � C (constant) for the

steady flow. For the present study, Ez is assumed to be zero. Then,

Eq. 7 gives Jz � σ~uB0. Therefore, J × B � −σf~uB2
0. Hence, Eq. 3

becomes

z~u

z~t
+ ~u

z~u

z~x
+ ~v

z~u

z~y
� − 1

ρnf

z~p

z~x
+ μnf
ρnf

∇2~u − 1
ρnf

σf~uB
2
0. (8)

FIGURE 4
The velocity profile u versus y at x � 0 and t � 0.25 for the five NFs for distinct values of M.
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The dimensionless version of the governing model is created

by considering the following quantities:

x � ~x

L
, y � ~y

L
, u � ~u

U
, v � ~v

U
, t � ~t

T
,

θ � ~T − T2

T1 − T2
p � ~p

ρfU
2, Re �

ρfUL

μf
, St � L

UT
, M � B0L

����
σf
ρf]f

√
, Pr

� μfCp,f

kf
, Rd � 16σT3

∞
3k*kf

(9)

Here, L symbolizes the maximum width of the channel, U

symbolizes the characteristic flow velocity, T symbolizes the

period of the pulse, Re symbolizes the Reynolds number, St

symbolizes the Strouhal number, M symbolizes the Hartmann

number, Pr symbolizes the Prandtl number, and Rd symbolizes

the radiation parameter.

The effective dynamic viscosity μnf, effective density ρnf,

heat capacitance (ρCp)nf, and effective thermal conductivity knf
of a NF are given as:

μnf � μf(1 − ϕ)2.5
ρnf � (1 − ϕ)ρf + ϕρs(ρCp)nf � (1 − ϕ)(ρCp)f + ϕ(ρCp)s

knf
kf

� ks + 2kf − 2ϕ(kf − ks)
ks + 2kf + 2ϕ(kf − ks) (10)

whereϕ symbolizes the volume fraction of NF, and the

subscripts nf correspond to NF, f corresponds to the pure

fluid, and s corresponds to the solid state. For the present

work, the following five different NFs are considered:Cu-H2O,

Fe3O4-H2O, Ag-H2O, TiO2-H2O, and SWCNT-H2O. The

thermophysical properties of the five different NPs and

water are shown in Table 1 (Sheikholeslami and Ganji,

2013; Sheikholeslami et al., 2017a). Using the quantities

from Eqs 9, 10 in Eqs 2–4, 6 gives

zu

zx
+ zu

zy
� 0 (11)

St
zu

zt
+ u

zu

zx
+ v

zu

zy
� − 1

∅1

zp

zx
+ 1
Re∅3

∇2u − 1
∅1

M2

Re
u (12)

St
zv

zt
+ u

zv

zx
+ v

zv

zy
� − 1

∅1

zp

zy
+ 1
Re∅3

∇2v (13)

St
zθ

zt
+ u

zθ

zx
+ v

zθ

zy
� 1
PrRe

∅5

∅4
(z2θ
zx2

+ (1 + Rd

∅5
) z2θ

zy2
) (14)

where ∅1 � 1 − ϕ + ρs
ρf
ϕ, ∅2 � 1

(1−ϕ)2.5,
∅3 � (1 − ϕ)2.5(1 − ϕ + ρs

ρf
ϕ), ∅4 � 1 − ϕ + (ρCp)s

(ρCp)f ϕ
, ∅5 � knf

kf
.

FIGURE 5
The velocity profile u versus y at x � 2 and t � 0.25 for the five NFs for distinct values of M.
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2.1 Boundary conditions

For the steady case of the flow problem under consideration,

the boundary conditions, obtained by solving the dimensionless

form of Eq. 8 and performing some manipulations using Eq. 10,

are given as follows:

u(y) � ⎡⎢⎢⎣cosh(M2 )[cosh( M
2
��
∅2

√ ) − cosh( M��
∅2

√ (y − 1
2))]

8sinh2(M4 )cosh( M
2
��
∅2

√ ) ⎤⎥⎥⎦
v � 0,M ≠ 0. (15)

When M � 0, the u-velocity at the inlet takes the form:

u(y) � y − y2, v � 0. (16)
The flow is classified as sinusoidal for the pulsatile flow:

u(y, t) � u(y)[1 + sin(2πt)], v � 0. (17)

Furthermore, u � 0 and v � 0 (i.e., no-slip conditions) are

assumed on the walls. For the outlet boundary, the fully

developed flow conditions are incorporated. In the

dimensionless form, the temperature condition at the lower

wall, θ � 1, and at the upper wall, θ � 0.

2.2 Vorticity-stream function formulation

u � zψ

zy
, v � −zψ

zx
,ω � zv

zx
− zu

zy
(18)

We differentiate Eqs 12, 13 with respect to y and x, respectively.

Then, from their subtraction and using Eq. 18, we get

transformed equations from the variables (u, v) to vorticity-

stream functions (ψ, ω) as follows:

St
z

zt
(zv
zx

− zu

zy
) + u

z

zx
(zv
zx

− zu

zy
) + v

z

zy
(zv
zx

− zu

zy
)

� 1
Re∅3

[ z2

zx2 (zvzx − zu

zy
) + z2

zy2 (zvzx − zu

zy
)] + 1

∅1

M2

Re

zu

zy
,

St
zω

zt
+ zψ

zy

zω

zx
− zψ

zx

zω

zy
� 1
∅3

1
Re

[z2ω
zx2

+ z2ω

zy2
] + 1

∅1

M2

Re

z2ψ

zy2

(19)
And the stream function ψ equation (Poisson equation) is

given as

z2ψ

zx2
+ z2ψ

zy2
� −ω. (20)

FIGURE 6
The temperature profile θ versus η at x � 0 and t � 0.25 for the five NFs for distinct values of M.
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2.3 Transformation of coordinates

For treating the channel walls as the straighten ones, the

coordinates are transformed as

ξ � x, η � y − y1(x)
y2(x) − y1(x) (21)

Thus, the lower wall symbolizes by η � 0 and the upper wall

symbolizes by η � 1. In the updated coordinate system (ξ, η),
Eqs 14, 19, 20 are

St
zω

zt
+ u(zω

zξ
− Q

zω

zη
) + vD

zω

zη

� 1
∅3

1
Re

[z2ω
zξ2

− (P − 2QR) zω
zη

− 2Q
z2ω

zξzη
+ (Q2 +D2) z2ω

zη2
]

+ 1
∅1

M2

Re
D2z

2ψ

zη2
, (22)

z2ψ

zξ2
− (P − 2QR) zψ

zη
− 2Q

z2ψ

zξzη
+ (Q2 +D2) z2ψ

zη2
� −ω, (23)

St
zθ

zt
+ u(zθ

zξ
− Q

zθ

zη
) + vD

zθ

zη

FIGURE 7
The temperature profile θ versus η at x � 2 and t � 0.25 for the five NFs for distinct values of M.

FIGURE 8
The temperature distribution plots for distinct values of M
with Re � 700, St � 0.02, Pr � 1, and Rd � 0.2 for the NF Cu-H2O.
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FIGURE 9
The temperature profile θ versus η at x � 0 and t � 0.25 for the five NFs for distinct values of St.

FIGURE 10
The temperature profile θ versus η at x � 2 and t � 0.25 for the five NFs for distinct values of St.
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� 1
RePr

∅5

∅4
[z2θ
zξ2

− (P − 2QR) zθ
zη

− 2Q
z2θ

zξzη
+ (Q2

+ (1 + Rd

∅5
)D2) z2θ

zη2
], (24)

where

P � P(ξ, η) � ηy2
″(ξ) + (1 − η)y1

″(ξ)
y2(ξ) − y1(ξ) ,

Q � Q(ξ, η) � ηy2
′(ξ) + (1 − η)y1

′(ξ)
y2(ξ) − y1(ξ) , R � R(ξ)

� y2
′(ξ) − y1

′(ξ)
y2(ξ) − y1(ξ), D � D(ξ) � 1

y2(ξ) − y1(ξ).
(25)

The velocity components u and v in terms of (ξ, η) take the

forms

u � D(ξ) zψ
zη

, v � Q(ξ, η) zψ
zη

− zψ

zξ
(26)

Furthermore, the wall boundary conditions in (ξ, η) system for ψ

and ω are given by

ψ(η, t) � ⎡⎢⎣ ���
∅2

√
cosh(M

2
)tanh( M

2
���
∅2

√ )
8Msinh2(M

4
) ⎤⎥⎦[1 + ϵ sin(2πt)], at η � 0 ,

ψ(η, t) �
M cosh(M

2
)

8
���
∅2

√
sinh2(M

4
)[1 −

���
∅2

√
M

tanh( M

2
���
∅2

√ )]
[1 + ϵ sin(2πt)], at η � 1 ,

where ϵ symbolizes the pulsating amplitude. If ϵ � 0, we get

steady flow

ω � −[(Q2 +D2) z2ψ
zη2

]
η�0,1

. (27)

The temperature’s converted boundary conditions are θ � 1,

at η � 0; θ � 0, at η � 1.

The other concerning non-dimensional physical quantities

comprise the skin-friction coefficient and Nusselt number,

defined by

Cf � τw
ρu2

w

, Nu � −( L

kf(T1 − T2))(knf + 16σT3
∞

3k*
)z~T
z~y

∣∣∣∣∣∣∣∣∣∣
~y�0

FIGURE 11
The temperature profile θ versus η at x � 0 and t � 0.25 for the five NFs for distinct values of Pr.
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where τw and qw are defined as

τw � [μnfz~uz~y]
~y�0
, qw � ⎡⎢⎢⎣z~T

z~y
⎤⎥⎥⎦
~y�0

By using dimensionless variables from Eq. 9 and the

coordinate transformation from Eq. 21, we get

Cf � 1
u2
w

[ − 1
Re∅3

D
zu

zη
]
η�0

, Nu � [ −∅5(1 + Rd)D zθ

zη
]
η�0
(28)

where Rd � 16σT3∞
3k*knf

and ∅5 � knf
kf
.

3 Results and discussion

The problem Eqs 22–24 is computed using a numerical

scheme based on FDM, subject to the relevant boundary

conditions in Sections 2.1, 2.3. The numerical scheme adopts

a standard approach, as used by Bandyopadhyay and Layek

(2011), Bandyopadhyay and Layek (2012), and Ali et al.

(2020). The computational domain is assumed as

FIGURE 13
The temperature distribution plots for distinct values of Pr
with Re � 700, M � 5, St � 0.02, and Rd � 0.2 for the NF Cu-H2O.

FIGURE 12
The temperature profile θ versus η at x � 2 and t � 0.25 for the five NFs for distinct values of M.
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FIGURE 14
The temperature profile θ versus η at x � 0 and t � 0.25 for the five NFs for distinct values of Rd.

FIGURE 15
The temperature profile θ versus η at x � 2 and t � 0.25 for the five NFs for distinct values of Rd.
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{(ξ, η)|ξ ∈ [−x1, x1] and η ∈ [0, 1]}. The resulting linear systems

are solved using TDMA during each of the ADI process’s two half-

steps. A Cartesian grid (ξi, ηj) of 400 × 50 elements is formed for

−10≤ ξ ≤ 10 and 0≤ η≤ 1, with Δξ � 0.05 and Δη � 0.02. For time

integration, a step size of Δt � 0.00005 is considered. The

constriction length is assumed as 2x0 � 4. The constrictions on

the lower and upper walls are assumed to have heights

h1 � h2 � 0.35; hence, at the constricted part of the channel, the

minimum width is still 30% of the maximum channel width L. The

computations for the current study are performed in a sequential

fashion. The results can be found by parallel computing for time-

efficient solutions (Ali and Syed, 2013).

The pulsatile motion is modeled by adding in the inflow

boundary condition the sinusoidal time-dependent function

sin(2πt). For comparison of the five NFs, the effects of the

physical parameters such asM, St, Pr, and Rd on the existence

of the dimensionless streamwise velocity (u) and temperature

(θ) are analyzed. We perform simulations for a long enough

time but display the results graphically only for t � 0.25, the

point at which the flow rate is at its maximum and taking the

location x � 0 (throat of the constriction) as well as x � 2 (in

FIGURE 16
The temperature distribution plots for distinct values of Rd
with Re � 700, St � 0.02, and Pr � 1 for the NF Cu-H2O.

FIGURE 17
The velocity profile u versus y at x � 2 for the five NFs at the four time levels.
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the lee of the constriction) where the fluid has entered in the

low-pressure zone from the high-pressure zone. For a pulse

cycle, 0< t< 0.25 is the acceleration phase, and 0.25< t< 0.75 is

the deceleration phase.

For validation, the present results for the pulsatile flow condition

are compared with those obtained by Bandyopadhyay and Layek

(2012) without the heat effect. Figure 2 shows a good agreement of the

present results, specifically for the wall shear stress (WSS), with

(Bandyopadhyay and Layek, 2012) for M � 5, and 10 at t � 0.25.

The effects of varying the volume fraction on the wall shear

stresses (WSS) at the upper wall are computed for ϕ �
0, 0.01, 0.02, 0.03 with M � 5, St � 0.02, Pr � 1, and Rd �
0.2 of the five NFs. The results are shown in Figure 3 at x � 0

and t � 0.25. The WSS is maximum at t � 0.25 as the flow rate is

maximum. The WSS decreases for SWCNT-H2O, TiO2-H2O,

and Fe3O4-H2O on increasing ϕ, whereas the WSS slightly

increases for Cu-H2O and Ag-H2O on increasing ϕ.

The velocity and temperature profiles for each of the five NFs

for M � 0, 5, 10, 15 are shown in Figures 4, 5 and Figures 6, 7,

respectively, by setting the other parameters as St � 0.02, Pr � 1,

Rd � 0.2, and ϕ � 0.02. The slope/gradient of the velocity profile

rises with rising values of M, i.e., the viscous boundary layer

declines with rising values of M. In Figure 4, u profiles at x � 0

and t � 0.25 are shown. It has been noted that the peak value of u

rises with M and exhibits a parabolic profile at t � 0.25. The

velocity reaches its maximum at the middle of the constriction.

SWCNT-based NF attains the peak value of the velocity higher

than that of the other NFs. In Figure 5, u profiles at x � 2 and

t � 0.25 are shown. The profiles are not parabolic as some

FIGURE 18
The temperature profile θ versus η at x � 2 for the five NFs at the four time levels.

FIGURE 19
The temperature profile θ versus η for distinct values of ϕ for
Cu-H2O.
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FIGURE 20
Impact of (A) Re, (B) Pr, and (C) Rd on Nu.

FIGURE 21
Impact of (A) Re, (B) Pr, and (C) Rd on Sk.
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backflow in the vicinity of the walls is observed. The backflow

reduces with an increase in M. Ag-based NF attains the peak

value of velocity higher than that of the other NFs. In Figures 6, 7,

the temperature profiles θ for t � 0.25 are shown at x � 0 and

x � 2, respectively. It is seen that the thickness of the thermal

boundary layer increases, resulting in the rise of the temperature

as M is increased. The temperature distribution across the

channel at t � 0.25 for distinct values ofM is shown in Figure 8.

The temperature profiles for each of the five NFs for St �
0.02, 0.04, 0.06, 0.08 are computed by setting the other

parameters as M � 5, Pr � 1, Rd � 0.2, and ϕ � 0.02. In

Figures 9, 10, the temperature profiles θ for t � 0.25 are

shown at x � 0 and x � 2, respectively. It is seen that the

thickness of the thermal boundary layer declines, resulting in

a decline of the temperature profile as the St rises.

The temperature profiles for each of the five NFs for Pr �
1, 3, 5, 7 are computed by setting the other parameters asM � 5,

St � 0.02, Rd � 0.2, and ϕ � 0.02. In Figures 11, 12, the

temperature profiles θ for t � 0.25 are shown at x � 0 and

x � 2, respectively. It is seen that the thickness of the thermal

boundary layer declines, resulting in a decline of the temperature

profile as the Pr increases. The temperature distribution across

the channel at t � 0.25 for distinct values of Pr is shown in

Figure 13.

The temperature profiles for each of the five NFs for Rd �
0.2, 0.6, 1, 1.4 are computed by setting the other parameters as

M � 5, St � 0.02, Pr � 1 � 0.2, and ϕ � 0.02. In Figures 14, 15,

the temperature profiles θ for t � 0.25 are shown at x � 0 and

x � 2, respectively. It is seen that the thickness of the thermal

boundary layer rises, resulting in the rise of the temperature asRd

rises. The temperature distribution across the channel at t � 0.25

for distinct values of Rd is shown in Figure 16.

Nearly for all of the cases discussed above, for the variation of

any of M, St, Pr, and Rd, a common behavior can be noticed. At

the throat of the constriction, SWCNT-based NF attains higher

temperatures than the other NFs downstream of the constriction.

In the lee of the constriction, Ag-based NF attains higher

temperatures than the other NFs downstream of the

constriction. The behavior, in most cases, is opposite upstream

of the constriction.

The velocity and temperature profiles for each of the fiveNFs for

the four selected time levels: t � 0, 0.25, 0.5, 0.75, are shown in

Figures 17, 18, respectively, by setting the parameters as M � 5,

St � 0.02, Pr � 1, Rd � 0.2, and ϕ � 0.02. The selected time levels

are related to the start of pulsatile motion, the maximum flow rate,

the minimum flow rate, and the instant zero net flow, respectively.

In Figure 17, it is observed that the streamwise velocity achieves its

peak value when the flow rate is maximum during the pulse cycle.

The profiles are parabolic at t � 0. It is found that the u profile is

symmetric for all t. Ag-based NF attains the peak value of the

velocity higher than that of the other NFs. In Figure 18, it is detected

that during the acceleration (0≤ t≤ 0.25) and deceleration

(0.25≤ t≤ 0.75) phases of the pulsation cycle, Ag- and

Cu-based NFs attain higher temperature values than that of the

other NFs downstream of the constriction. Whereas, for the same

phases, SWCNT-based NF attains higher temperature values than

that of the other NFs upstream of the constriction.

The effects of the variation of the solid volume fraction for

ϕ � 0, 0.01, 0.02 and M � 5, 10 on the temperature profiles are

presented in Figure 19 forCu-based NF. It is evident that the heat

transfer rate is higher for the NF with a higher concentration of

NPs. Moreover, the temperature gradients are higher near the

lower wall of the channel.

The effects of Re, Pr, and Rd on the Nusselt number, as well

as skin-friction profiles, are shown in Figures 20, 21, respectively.

It is observed that the Nusselt number rises for higher values of

Re, Pr, and Rd. The Nusselt number grows as the flow becomes

more turbulent due to the rising number of collisions among the

FIGURE 22
(A) Streamlines, (B) vorticity, and (C) temperature distribution plots at the four instants of a pulse cycle with Re � 700, M � 5, St � 0.02, Pr � 1,
and Rd � 0.2 for Cu-H2O.
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fluid particles. Also, the skin friction coefficient as the values of

Re upsurges. However, it remains unchanged for Pr and Rd.

The streamlines, vorticity, and temperature distribution plots

at distinct instants of a pulse cycle with Re � 700, M � 5,

St � 0.02, Pr � 1, and Rd � 0.2 are shown in Figure 22 for

Cu-based NF. In Figure 22, the formation of vertical eddies in

the vicinity of the walls can be observed. Over time, the eddies

grow for a specific value ofM and slowly occupy a greater part of

the channel downstream. At t � 0.75, the presence of the

backflow is observed, and even before the constriction bump,

the vertical eddies are formed. The formation of these vertical

eddies and flow separation is essential. However, these can be

handled by increasing the strength of the magnetic field.

4 Concluding remarks

In this research, the numerical analysis of the pulsatile flow of

five different NFs in a channel impacted by themagnetic field and

thermal radiation through a rectangular channel having

constricted walls is presented. The NPs include Cu, Fe3O4,

Ag, TiO2, and SWCNT that are mixed in the base fluid,

water (H2O), to form the five NFs. The impacts of each of

M, St, Pr, and Rd on the flow profiles are studied. In this analysis,

the following major outcomes were observed:

• The streamwise velocity escalates as the values of M

upsurge. The slope/gradient of the velocity profile is

higher for higher values of M, i.e., the viscous boundary

layer declines with rising values of M. At the throat of the

constriction, SWCNT-H2O attains the velocity’s peak

value higher than that of the other NFs. However, in

the lee of the constriction, Ag-H2O attains the velocity’s

peak value higher than that of the other NFs.

• The thickness of the thermal boundary layer rises as any ofM,

Rd, and ϕ is increased. This results in the rise of temperature.

• The thickness of the thermal boundary layer declines as

any of St, and Pr is increased. This results in a decline in

the temperature profile.

• At the throat of the constriction, SWCNT-H2O attains

higher temperatures than the other NFs downstream of the

constriction.

• In the lee of the constriction, Ag-H2O attains higher

temperatures than the other NFs downstream of the

constriction. The behavior, in most cases, is opposite

upstream of the constriction.

• The streamwise velocity attains its maximum at the middle

of the constriction at t � 0.25 during the pulse cycle.

Ag-H2O attains the velocity’s peak value higher than

that of the other NFs.

• During the acceleration and deceleration phases of the

pulsation cycle, Ag- and Cu-based NFs attain higher

temperature values than that of the other NFs downstream

of the constriction. Whereas, for the same phases,

SWCNT-based NF attains higher temperature values than

that of the other NFs upstream of the constriction.

• The heat transfer rate is higher for the NF with a higher

concentration of the NPs.

• The skin-friction coefficient escalates with escalating values of

Re. However, no difference is found in the case of variation in Pr

and Rd.
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