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Accurate and reliable estimation of state of health (SOH) for lithium-ion

batteries under slight overcharge voltage cycling has great significance for

battery management systems. In this study, commercial lithium-ion phosphate

batteries are investigated under slight overcharge voltage cycling. The aging

mechanism is discussed based on incremental capacity analysis and differential

voltage analysis. Moreover, the syncretic health indicator is obtained from the

incremental capacity curves based on principal component analysis.

Specifically, the capacity retention and Coulombic efficiency are analyzed

under slight overcharge voltage cycling. The incremental capacity peaks

(i.e., peak B and peak C) are discussed to extract potential health indicators,

and a syncretic health indicator is adopted based on principal component

analysis. Finally, the Gaussian process regression is established for accuracy

SOH estimation with a 95% confidence interval under small data of slight

overcharge cycling. In comparison with the traditional methods, the

proposed method exhibits higher accuracy with a 95% confidence interval,

and the error is limited to 3%.
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1 Introduction

With the increasingly serious problems of energy shortage and environmental

pollution, the development of electric vehicles (EVs) has widely attracted researchers

all over the world (Hu et al., 2020). Lithium-ion batteries (LIBs) are applied in the EV field

because of their long-term cycle life, high energy density, and no memory effect (Pang

et al., 2020; Semeraro et al., 2022). Among commercial LIBs, lithium iron phosphate (LFP)

and lithium nickel manganese cobalt oxide (NCM) batteries are most commonly applied

to provide power for EVs (Reniers et al., 2019). Owing to the advantages of long-term

cycle life and strong safety performance, the LFP batteries are focused. However,

considering the voltage and capacity of actual use (i.e., EVs), hundreds and thousands
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of LFP cells are applied in series and parallel connections (Liu

et al., 2022). With long-term cycling, the batteries exhibit

different aging states, which may cause poor matching

performance of charging for some cells (Juarez-Robles et al.,

2020; Xiong et al., 2020). Therefore, the problem of slight

overcharge voltage will occur. Considering the LFP batteries

with slight overcharge voltage cycling, accurate and reliable

state of health (SOH) estimation is essential for optimizing

the battery management system (BMS).

With long-term cycling, the loss of active material and

lithium-ion will cause capacity fading and power degeneration

(Chen et al., 2022). The SOH is an important indicator to

evaluate the aging state. Currently, the SOH estimation

methods have been mainly divided into two categories:

model-based methods and data-driven methods (Xiong et al.,

2018; Liu F. et al., 2021; Khaleghi et al., 2022; Wu et al., 2022).

Among them, the model-based methods mainly include

electrochemical methods, empirical methods, and equivalent

circuit methods. The aging model of the solid electrolyte

interphase (SEI) layer is established for the electrochemical

method (Tian et al., 2021; Wu et al., 2022). The

electrochemical method can not only describe the complex

electrochemical reaction but also provide an accurate aging

model. However, the measurement of parameters in the

electrochemical method requires specific equipment.

Moreover, the solution of the electrochemical method is

complex (Wu et al., 2021). The empirical data

(i.e., impedance, internal resistance, and cycle) are used to

establish the empirical estimation method. Due to the

problem of divergence, the empirical method is limited (Li

et al., 2021a; Vichard et al., 2021). The state estimation and

measurement equation are built for the equivalent circuit method

(i.e., Kalman filtering) (Wang et al., 2020; Wu et al., 2022).

However, the accurate model of SOH is difficult to establish. In

recent times, the data-driven method has been wildly applied for

SOH estimation. This method can not only address the strongly

nonlinear regression problems for accurate SOH estimation but

also break the constraint of the model-based methods. The data-

driven methods are trained from the experimental data to obtain

the time series relationship with the health state, including neural

networks, support vector machines (SVM), extreme learning

machines (ELM), and Gaussian process regression (GPR) (Shu

et al., 2020; Liu K. et al., 2021; Huang et al., 2022;Wei et al., 2022).

Artificial neural networks (ANNs) are widely used in data-driven

methods (i.e., back propagation neural network (BPNN), radial

basis function neural network (RBFNN), and recurrent neural

network (RNN)) (Ma et al., 2020; Wang et al., 2022). Owing to

the simple structure, the BPNN avoids building the complex

aging model. However, BPNN is shown with low estimation

accuracy and high calculation cost. The RBFNN has three layers

of forward neural network, and higher estimation accuracy is

obtained. However, the computational efficiency of RBFNN is

poor (Yao et al., 2022). The SVM is based on

Vapnik–Chervonenkis dimension and structural risk

minimization theories. Although the SVM method has good

prediction performance, it is not suitable for dealing with high-

dimensional nonlinear problems. Due to the advantage of

nonparametric estimation, the GPR has the ability to deal

with small samples and nonlinear problems (Richardson et al.,

2017; Yang et al., 2018; Li et al., 2022).

Recently, the incremental capacity analysis (ICA) and

differential voltage analysis (DVA) were selected to assess the

health of the battery. Usually, the direct health indicators

(i.e., internal resistance and capacity) are used for SOH

estimation (Hu, 2022). However, those indicators are difficult

to measure online with common sensors, which limits their

application. Currently, the direct measurement parameters

(i.e., voltage, current, and temperature) have attracted the

attention of indirect health indicators (Zhu et al., 2020; Li

et al., 2021b). The incremental capacity (IC) curves and

differential voltage (DV) curves can reflect the oxidation

reaction and phase transition for lithium-ion batteries (Li

et al., 2020). The obvious peaks on the IC curve are

transformed from the voltage plateau curves under a constant

current charging/discharging approach. The commercial LFP

cells were investigated based on the ICA method under

different temperatures to explain the aging mechanisms

(Dubarry et al., 2011). Meanwhile, the IC peaks were analyzed

to extract health indicators for SOH estimation (Feng et al.,

2013). Similarly, the ICA method combined with the GRA

method was proposed for SOH estimation (Li et al., 2019).

Considering the LFP cells with slight overcharge voltage

cycling, the ICA and DVA are used for analyzing the phase

transition and aging mechanism under slight overcharge voltage

cycling. Based on the abovementioned analysis, the

characteristics of IC curves are extracted for analyzing the

aging mechanism and SOH estimation under slight

overcharge voltage cycling.

In this article, the LFP batteries are investigated under slight

overcharge voltage cycling (i.e., an upper cut-off voltage of 3.65,

3.75, and 3.80 V). The ICA and DVA are used for analyzing the

phase transition process and aging mechanism. According to the

IC curves of LFP batteries under slight overcharge cycling, the

health indicators are extracted and correlations are analyzed

between proposed health indicators and capacity. Finally, the

GPR is proposed for accurate and reliable SOH estimation.

Compared with the previous work, the innovations of this

article are as follows:

1. The LFP batteries are investigated with slight

overcharge voltage cycling, and the phase transition

and aging mechanism are analyzed based on ICA

and DVA.

2. The health indicators are extracted based on the IC peaks

under slight overcharge cycling, and the syncretic health

indicator is obtained.
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3. The method of LFP batteries with slight overcharge is

proposed based on GPR to obtain accuracy and reliable

SOH estimation with a 95% confidence interval.

The organization of this study is as follows: the methods of

LFP batteries with slight overcharge are drawn in Section 2.

Results and discussion are shown in Section 3. Conclusions are

drawn in Section 4.

2 Methods

2.1 Experimental test and analysis

To investigate the LFP batteries with slight overcharge cycling,

the three commercial LFP cells were tested on the BT2000 battery

test system at room temperature. The three 18650 LFP cells were

used, which were named as No. 1, No. 2, and No. 3. Due to the long

cycle life for LFP cells, the rate of charging and discharging is set as

1 C (i.e., 1.5 Ah). Specifically, those cells were rested for 10 min. The

current charging with 1 C is set for No. 1, No. 2, and No. 3 until

different upper cut-off voltages (i.e., 3.65, 3.75, and 3.80 V),

respectively. Then, the constant voltage is set until the cut-off

current is at 0.02 C. For the rest of 10 min, cells were discharged

with constant current (i.e., 1 C) until the cut-off voltage (i.e., 2.3 V).

Finally, the cycle was repeated until failure. The specific test flow is

shown in Figure 1.

To analyze the aging mechanism under slight overcharge

voltage, the capacity retention, Coulombic efficiency, and

capacity decay rate per 50 cycles are shown in Eq. 1–3.

Then, the result of the experimental test is investigated

based on ICA and DVA. IC and DV curves, as important

means of battery non-destructive aging analysis, can reflect

the oxidation reaction and phase transition of the battery

during charging and discharging.

Capacity retention � Qc

Qi
× 100%, (1)

Coulombic efficiency � Qdis

Qch
× 100%, (2)

Capacity decay rate � (QN − QN+50)
Qi

× 100%, (3)

where Qi presents the initial discharge capacity, Qc presents the

current discharge capacity, Qch presents the charging capacity,

and Qdis presents the discharging capacity.

As shown in Figure 2, the capacity-voltage curve of the LFP

battery is obtained under 3.75 V slight overcharge cycling. We

can find that with the long-term cycling under overcharge

voltage, the constant current charging time is significantly

shortened as shown in Figure 2A, which indicates that the

internal resistance increases with the long-term cycle. At the

same time, the discharge capacity is shown in Figure 2B. We can

see that after 300 cycles, the decay of capacity is significantly

aggravated.

FIGURE 1
Specific test flow under slight overcharge.
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As shown in Figure 3, after 2,300 cycles of normal upper cut-

off charging voltage (i.e., 3.65 V) for the LFP battery, the capacity

retention rate decreased to 80%. We can find that the long-term

life is shown in the normal charging voltage at 1 C. At the same

time, the Coulombic efficiency of the LFP cell shows a slight

decline.

As shown in Figure 4A, after 500 cycles of 3.75 V slight

overcharge for the LFP battery, the capacity retention decreased

to 78%. It can be seen that the aging retention of the LFP battery

is significantly accelerated after a 3.75 V slight overcharge voltage

for the LFP battery. It shows that under the slight overcharge

voltage cycling, the life of the battery is shortened by about 75%.

At the same time, it can be seen that in the first 10 cycles of the

LFP battery, considering the formation of a new LFP battery in

the initial cycle process, the battery capacity increases slightly.

According to the Coulombic efficiency in Figure 4A, it can be

clearly seen that during the aging cycle of 3.75 V slight

overcharge voltage for LFP cells, the Coulombic efficiency has

a downward trend. Especially after 300 cycles, the Coulombic

efficiency of the battery has an obvious decline trend. According

to Figure 4B, the capacity retention of the LFP battery decreased

to 77% after 500 cycles under 3.80 V slight overcharge voltage,

which clearly shows that the Coulombic efficiency of the battery

decreased significantly after 300 cycles. In summary, under the

slight overcharge voltage cycling of the LFP battery (i.e., 3.75 V

and 3.80 V), the life of the battery is shortened by about 75%.

FIGURE 2
(A) Constant current charging capacity voltage curves and (B) constant current discharging capacity voltage curves.

FIGURE 3
Capacity retention and Coulombic efficiency under normal
charging voltage.

Frontiers in Energy Research frontiersin.org04

Ye et al. 10.3389/fenrg.2022.1001505

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.1001505


FIGURE 4
(A) Capacity retention and Coulombic efficiency under 3.75 V slight overcharge voltage, (B) capacity retention and Coulombic efficiency under
3.80 V slight overcharge voltage, (C) capacity decay rate per 50 cycles under 3.75 V slight overcharge voltage, and (D) capacity decay rate per
50 cycles under 3.80 V slight overcharge voltage.

FIGURE 5
(A) Original IC curve under 3.75 slight overcharge voltage and (B) IC curve based on Gaussian filtering under 3.75 slight overcharge voltage.
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According to the capacity decay rate of Figure 4C, it can be

seen that after the first 50 cycles, the capacity decay rate of the

battery is the lowest, about 0.51%, indicating that the slight

overcharge voltage at the first 50 cycles has little impact on

the life of LFP battery. With the increase of long-term cycling, the

decay rate per 50 cycles tends to increase (i.e., about 1% to 2%)

during the 50 to 300 cycles. During 300 to 500 cycles, the decay

rate per 50 cycles is around 3%, and the maximum decay rate of

50 cycles is 3.5%. According to the aging decay rate of

3.80 V slight overcharge cycling for the LFP battery in

Figure 4D, it is obvious that the decay rate of the battery is

higher than 3% every 50 cycles at the end of 300 cycles, and the

maximum decay rate per 50 cycles reaches 5.09%. In summary,

the slight overcharge cycling of the LFP battery (i.e., 3.75 V and

3.80 V) significantly intensifies the aging rate of the battery,

resulting in the life of the LFP battery being reduced by

about 75%.

According to Figure 5A, the IC curve of constant current

charging to a slight overcharge voltage (i.e., 3.75 V) at 1 C.

Considering that the battery IC curve is disturbed by noise,

the Gaussian filtering method is used to obtain a relatively

smooth IC curve, in which the Gaussian template size is set as

24 and the standard deviation is set as 8.

The smooth IC curve is shown in Figure 5B, we can clearly

see that the IC curve of the LFP battery has three obvious peaks

under the slight overcharge voltage. The research shows that the

three peaks of the LFP battery correspond to the specific

combination of the positive and negative phase transition, and

the LFP cathode material has a main phase transition platform

(i.e., FePO4-LiFePO4) as the peak ∏. Graphite anode mainly

includes three phase transition platforms (i.e., 210 mV, 120 mV,

and 85 mV), which are recorded as⑤,②, and① peaks (Ouyang

et al., 2015). IC and DV curves under 3.75 and 3.80 V slight

overcharge cycling are shown in Figure 6. From Figures 6A and

FIGURE 6
(A) IC curves under 3.75 V slight overcharge cycling, (B) IC curves under 3.80 V slight overcharge voltage cycling, (C) DV curves under 3.75 V
slight overcharge voltage cycling, and (D) DV curves under 3.80 V slight overcharge voltage cycling.
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B, it can be seen that there are three obvious peaks on the IC

curves of slightly overcharged voltage cycling for the LFP battery,

which are recorded as peak A, peak B, and peak C from low

voltage to high voltage, where peak A is located near 3.41 V, peak

B is located near 3.40 V, and peak C is located near 3.43 V.

During the slight overcharge cycling process for LFP cells,

peak A has an obvious decline from the beginning cycles,

which may be inferred from the formation cycles (Gao et al.,

2017). The degeneration of peak B is inferred to be mainly

caused by the loss of active material in the slight overcharge

cycling. The decline of peak C is the most obvious, which is

considered to be mainly caused by the irreversible loss of

lithium ion (Ouyang et al., 2015). Especially after

300 cycles, the degeneration of peaks (i.e., peak B and peak

C) is significantly increased. At the same time, the IC curves of

slight overcharge cycling for LFP batteries showed a new peak,

which inferred that the new phase or new reaction in the

battery reaction process is caused by the destruction of

electrode materials or the dissolution of metals.

In Figures 6C and D, it can be seen that there are three

obvious valleys based on DVA. The valleys are marked as

valley A, valley B, and valley C from low to high, respectively,

corresponding to the areas of peak A, peak B, and peak C. DV

curves can clearly reflect the corresponding relationship

between battery capacity and valley. The state of charge

(SOC) of the battery corresponding to valley A is about

10%, that of the battery corresponding to valley B is about

35%, and that of the battery corresponding to valley C is

about 80%. It can be clearly seen that the areas of the three

troughs have a declining trend with the intensification of the

aging cycle. To sum up, it is considered that the loss of

lithium is the main reason for battery degeneration,

accompanied by the loss of active material. Meanwhile,

the IC curves of slight overcharge cycling for LFP

batteries showed a new peak.

2.2 Health indicators

Considering the uncontrollable discharge current during the

actual use of the battery, the charging IC curve is selected to

extract indirect health indicators. Based on the IC curves of the

slight overcharge voltage cycling for LFP batteries, it can be seen

that peak B and peak C decay seriously. Therefore, the charging

IC curves (i.e., peak B and peak C) are selected for the extraction

of health indicators.

As shown in Figure 7, the height of peak C and the area

decrease, which indicates that the amount of lithium ion

decreases. The peak C moves significantly to the right,

indicating that the internal resistance is increasing with the

long-term cycle. The half-width length of the peak C is

related to the rate of redox reaction. The width of peak C

becomes widened, which indicates that the rate of redox

reaction decreases. The basic change trend of peak B is similar

to that of peak C. In the early stages of slight overcharge voltage

cycling, the change in peak B is not significant. This phenomenon

infers that the loss of active material is not serious. Therefore, the

height, area, position, and width of peaks C and B are extracted as

FIGURE 7
Extraction health indicators based on IC curves.

TABLE 1Correlation between capacity and potential health indicators.

IC (3.75 V) Correlation IC (3.80 V) Correlation

Height of peak B 0.8872 Height of peak B 0.835

Area of peak B 0.8440 Area of peak B 0.8641

Position of peak B 0.8257 Position of peak B 0.8483

Width of peak B 0.7542 Width of peak B 0.7445

Height of peak C 0.9016 Height of peak C 0.9336

Area of peak C 0.9435 Area of peak C 0.9235

Position of peak C 0.8866 Position of peak C 0.9008

Width of peak C 0.7455 Width of peak C 0.7907
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potential health indicators. The grey relational analysis (GRA) is

used to analyze the correlation between the SOH and the

proposed potential health indicators. As shown in Table 1, the

correlation coefficients between the proposed health factors and

battery capacity degradation are strong under the aging of

slightly overcharge voltage cycling for LFP batteries. It can be

seen that the area, position, height, and width of the peaks have a

good correlation with the SOH of the battery. Among them, the

correlation of the area of peak C is the highest, which means that

the loss of lithium has a strong correlation with capacity

degradation. The correlations of peak B are lower than those

of peak C. It is considered that the degradation of battery peak B

is not significant during the initial cycle of slight overcharge

cycling for LFP batteries.

2.3 Syncretic health indicator

According to the GRA, the abovementioned eight

characteristic parameters (i.e., peak B and peak C) are

extracted as potential health indicators for SOH estimation for

LFP batteries. Due to the small data samples under slight

overcharge voltage (i.e., 3.75 and 3.80 V), machine learning

methods are sensitive to redundant information. Therefore,

the principal component analysis (PCA) is used to obtain a

syncretic health indicator to reduce the dimension and noise. The

specific algorithm steps of PCA are as follows:

Step 1. During the n cycles of the LFP battery under slight overcharge

voltage, the eight potential health indicators (i.e., peak B and peak C) are

used as the m dimensions feature. Normalization of the input sample

variable matrix is as follows:

X � ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
x11 x12 · · · x2m

x21 x22 · · · x2m

· · · · · · · · · · · ·
xn1 xn2 · · · xnm

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (4)

Step 2. The covariance matrix Σ is obtained.

Σ � 1
n
XTX, (5)

Step 3. The eigenvalues and eigenvectors of the correlation

coefficient matrix are obtained.

Step 4. The contribution rateCi and cumulative contribution rateC

are calculated.

Ci � λi/∑m
i�1
λi, (i � 1, 2, · · ·, m), (6)

C � ∑p
i�1
λi i/∑m

i�1
λi, (p � 1, 2, · · ·, m). (7)

Step 5. The value of p is used based on C reaching more than 85%.

The score matrix of the principal components is obtained, and the new

matrix is selected as the input for the GPR method.

2.4 Gaussian process regression

The GPR is introduced to obtain reliable and accurate SOH

estimation for LFP batteries under slight overcharging cycling.

The training samples are defined as D � (X, y) .The X presents

the input data, and the y presents the output data. Then, the GPR

is as follows:

μx � E(f(x)), (8)
k(x, x′) � E[(μ(x) − f(x))(μ(x′) − f(x′))], (9)

where f presents the Gaussian distribution function, μ(x)
presents the mean function, and k(x, x′) presents the kernel

function. Then, the Gaussian regression is defined as shown in

Eq. 10.

y � f(X) + ϵn. (10)

Among these, the noise is ϵn ~ N(0, σ2n) , the prior

distribution of y is shown in Eq. 11, and the prior

distribution of estimated y* is shown in Eq. 12.

y ~ N(0, k(X,X) + σ2
nI), (11)

[ y
yp

] ~ N([ 0
0
],[ k(X,X) + σ2nIn k(X, xp)

k(xp, X) k(xp, xp)]). (12)

Then, the posterior distribution of yp is followed as Eq. 13.

P(yp

∣∣∣∣X, y, xp) ~ N(μp,Σp), (13)
μp � k(xp, X)[k(X,X) + σ2nIn]−1y, (14)

Σp � k(xp, xp) − k(xp, X)[k(X,X) + σ2nIn]−1k(X, xp), (15)

where μp presents the estimation mean value and Σp presents

variance value. The kernel function of squared exponential

covariance is used for modeling GPR.

k(x, x′) � σ2f exp( − 1
2
(x − x′)M−1(x − x′)). (16)

Among these, the θ � {M, σ2n, σ
2
f} are Gaussian hyper-

parameters. The maximum likelihood estimation function is

selected to solve the hyper-parameters.

L � logP(y|x, θ)
� 1
2
log(det(k + σ2nIn) − 1

2
yT[k + σ2nIn]−1y − N

2
log 2π. (17)

Then, the Gaussian hyper-parameters are obtained, and the

mean and variance values of estimation data are achieved. At the

same time, the 95% confidence interval is calculated. For

evaluating the estimation results, the root mean square error

(RMSE), mean absolute error (MAE), and mean absolute percent

error (MAPE) are used as follows in Eq. 18–20:

RMSE �
�������������∑n

1
(yp − y)2/n√

, (18)
MAE � ∑n

1

∣∣∣∣yp − y
∣∣∣∣/n, (19)
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MAPE � 1
n
⎛⎝∑n

1

∣∣∣∣yp − y
∣∣∣∣∣∣∣∣y∣∣∣∣ ⎞⎠. (20)

3 Results and discussion

The syncretic health indicator is extracted by ICA and PCA

of LFP batteries under slight overcharge voltage cycling. The

proposed health indicator and SOH are introduced to the GPR

model for SOH estimation with a 95% confidence interval of

sodium-ion batteries; 50% of the data is set as the training data,

and the remaining 50% of the data is set as the test data.

Figure 8A represents the estimation result of SOH under

3.75 V slight overcharge voltage, and the error distribution is

shown in Figure 8B. Figure 8C represents the estimation result of

SOH under 3.80 V slight overcharge voltage, and the error

distribution is shown in Figure 8D. The dark area in Figures

6A and C is the 95% confidence interval for SOH estimation. We

can see that the estimated SOH is close to the real data, and the

width of 95% confidence interval is narrow, which indicates that

the SOH estimation has higher reliability. It can be seen in

Figures 8B and D that the relative estimation error of SOH is

within 3%.

To verify the robustness of the proposedmethod, the training

data are set as 1/3 and 1/4, respectively, under 3.75 V slight

overcharge voltage cycling. The rest of the data is set as the test

data. The results of SOH estimation and errors are shown in

Figure 9. The SOH estimation and error under 1/3 training data

are shown in Figures 9A and B. The SOH estimation and error

FIGURE 8
(A) SOH estimation under 3.75 V slight overcharge cycling, (B) error under 3.75 V slight overcharge voltage cycling, (C) SOH estimation under
3.80 V slight overcharge voltage cycling, and (D) error under 3.80 V slight overcharge voltage cycling.
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under 1/4 training data are shown in Figures 9C and D. The

evaluation index of the result is shown in Figure 9E.

We can see that when the training samples are reduced, the

proposed method can obtain good SOH estimation, and the error

of the estimation results is within 3%. When the training data

increases, the evaluation indicators (i.e., RMSE, MAPE, and MAE)

of SOH estimation results tend to decrease slightly. Although the

model can obtain more information when the training period

increases, the accuracy of SOH estimation is improved. In

summary, the proposed method not only has good accuracy

with a 95% confidence interval but also has strong robustness.

To further show the superiority of the GPR method, the

proposed method is compared with the existing BPNN with

particle swarm optimization (BPNN-PSO) and ELM methods.

As shown in Figure 10, the 50% cycle data are introduced as the

training data, and the rest of the data is set as test data for SOH

estimation under different methods. It is obvious to see that

although BPNN-PSO and ELM can achieve SOH estimation, the

accuracy of those methods is low and cannot characterize the

confidence interval of SOH estimation. To better demonstrate

the superiority of the GPR method, Figure 10E shows the SOH

estimation performance under different estimation methods,

FIGURE 9
(A) SOH estimation under 1/3 training data, (B) error under 1/3 training data, (C) SOH estimation under 1/4 training data, and (D) SOH estimation
under 1/4 training data. (E) Evaluation index for results.
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respectively. We can find that the estimation performances of the

proposed methods are all below 1%. In summary, the GPR

method-based ICA can achieve reliable and accurate SOH

estimation under a small sample of slight overcharge voltage

cycling for the LFP battery Liu F. et al., 2021.

4 Conclusion

In this study, the LFP batteries are investigated under slight

overcharge voltage cycling (i.e., an upper cut-off voltage of 3.65,

3.75, and 3.80 V). An online and accurate SOH estimationmodel is

established based on ICA and GPR. The aging mechanism under

slight overcharge cycling is discussed based on ICA and DVA. The

health indicators are extracted, and correlations are analyzed based

on IC curves (i.e., peak B and peak C). Then, the fusion health

indicator is obtained based on PCA. Finally, the GPR method is

established for SOH estimation under a small sample of slight

overcharge voltage cycling. The main conclusions are as follows:

1) The study investigated LFP batteries under slight overcharge

voltage cycling (i.e., 3.75 and 3.80 V). The life of the battery is

FIGURE 10
(A) SOH estimation under 3.75 V slight overcharge cycling, (B) error under 3.75 V slight overcharge voltage cycling, (C) SOH estimation under
3.80 V slight overcharge voltage cycling, and (D) error under 3.80 V slight overcharge voltage cycling. (E) Evaluation index for results.
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shortened by about 75% compared with the normal voltage

(i.e., 3.65 V).

2) The study is explained by the aging mechanism for LFP

batteries under slight overcharge cycling based on ICA and

DVA, showing that loss of lithium ion is the main reason for

battery degeneration, accompanied by loss of active material.

3) The eight potential indirect health indicators (i.e., parameters

from peak B and peak C) are extracted, and a syncretic health

indicator is obtained. In comparison with the existing methods,

the proposed method exhibits good robustness and higher

accuracy for SOH estimation, with the error being limited to 3%.

In the future, more experiments on LFP batteries under

different environmental conditions will be investigated to

further verify the proposed method.
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