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With the steady progress of the intelligent development of power systems, as well

as the higher demand for power supply reliability. It is essential to achieve the

effective monitoring of substations 24 h a day. The vigorous development of deep

learning network brings strong theoretical and technical support to the unmanned

and intelligent construction of the substation. To identify the on/off state of the

isolation switch in the substation robot inspection image, this paper proposes a

method for identifying the isolation switch state of YOLOv4 (You Only Look Once

V4) network based on transfer learning. Firstly, for the insufficient number of

samples, transfer learning is introduced, and the network feature extraction

layer is pre-trained by using public data sets. Secondly, images of isolation

switch are obtained by a fixed camera and inspection robot in the substation,

and data set of isolation switch is constructed. Finally, the isolation switch data set is

used to train the YOLOv4 network. The test results show that compared with

YOLOv3 and YOLOv4, the network can improve the identification precision of the

isolation switch.
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1 Introduction

As the social demand for electricity increases year by year, the reliable operation of

power grid is faced with higher requirements (YAlhassan et al., 2020; Wang et al., 2021;

Liu et al., 2022a; IEA, 2022). Meanwhile, the construction of smart power grid further

promotes the intelligent construction of substation inspection. The isolation switch is an
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important part of power equipment in the substation. It will be

helpful to the stable operation of the substation to know the

working state of the isolation switch in real time (Hou et al., 2019;

Huang et al., 2020; Judge et al., 2022). At present, most

substations often use manual inspection, which is time-

consuming and laborious, unable to realize real-time

observation, and the observation process is easy to be affected

by the subjectivity of inspection personnel. In addition, manual

inspection is difficult due to the influence of ice disasters, rain

and fog in some remote areas. Therefore, the monitoring and

identification of typical power equipment in a substation has

become an essential link in the process of intelligent substation

construction. Accurate detection and identification of electrical

equipment through deep learning technology will contribute to

future research of unmanned substation monitoring and fault

diagnosis (Li et al., 2021a; Xiong et al., 2022).

With the continuous advance and maturation of deep

learning technology, it has been paid attention to by many

scholars in the construction of the smart substation. The

operation and maintenance of electrical equipment in the

smart substation are being transitioned from traditional

preventive maintenance based on time cycle to more targeted

state maintenance mode (Ma and Fan, 2020). Because of the

particularity and confidentiality of the power industry, the

different image resolution, complex scenes, multiple

interference sources and other reasons for unmanned aerial

vehicle and ground cameras, there is no good public data set

for power equipment images, so few research are used on

recognition of electrical equipment based on deep learning

model. In recent years, computer vision based on deep

learning and image processing and recognition has developed

by leaps and bounds and has been widely used in the inspection

system. In feature extraction, the current mainstream

convolutional neural network has been able to provide better

representation ability and alleviate gradient disappearance (Xu

et al., 2021; Du et al., 2022). Therefore, the state identification

technology of the deep learning network model lays a solid

foundation for the electrical equipment identification research

of substations.

At present, image recognition methods of electrical

equipment based on deep learning can be divided into: One is

the dual-order method, firstly, a deep convolution neural

network is constructed to extract the feature of the target, and

then the traditional image segmentation and location method is

used to complete the target detection, including scale-invariant

feature transform, SIFT), Fast Region-Convolution Neural

Network (RCNN), Faster-RCNN, etc. The other is the single-

order method, which integrates feature extraction, border

location and target classification into a network to build an

end-to-end training mode, to effectively reduce the repeated

calculation in the process of image feature extraction,

including You Only Look Once (YOLO) and Single

ShotMultiBox Detector (SSD) and so on (Tang et al., 2020;

Mansour et al., 2021). Based on YOLOv4, reference (Lyu

et al., 2021) improved the Mosaic data expansion algorithm,

and studied its parameter tuning method, so as to achieve the

recognition of major electrical equipment. In reference (Liu et al.,

2019), pretreatment infrared imaging data such as random

rotation angle, saturation and exposure were studied, and a

fault detection method of insulator infrared image based on

YOLOv3 algorithm was proposed. In reference (Wang et al.,

2017), the Hough transform was used to detect the edge of

transmission lines, and the thickness of the ice was calculated by

comparing the thickness difference before and after icing.

Reference (Zhang et al., 2021) studied equipment

identification and state detection tasks in the power room

through Faster R-CNN. In reference (Han et al., 2020; Liu

et al., 2022b), YOLOv4 and Convolution Neural Network

(CNN) were respectively used to locate and diagnose the fault

heating area of the equipment through infrared image data of

electrical equipment. Most of the above studies are mainly

devoted to the monitoring of the fault state of power

equipment, and there is little recognition of the working state

of power equipment.

Therefore, based on the picture of the isolation switch of a

220 kV substation in southwest China, this paper adopts

YOLOv4 deep-learning network model to achieve the

identification of the working state of the isolation switch.

Meanwhile, for the problem of insufficient sample setting, this

paper introduced transfer learning to preprocess the network

feature extraction layer, so that it can improve the identification

precision.

The content of this paper is as follows: The second section

introduces the YOLOv4 network model based on transfer

learning, including the framework of the network model,

activation function and loss function, etc. The third section

carries on the calculation example analysis, including the

experiment environment and the evaluation system, the

realization result and so on. The fourth section gives the

conclusion of this paper.

2 YOLOv4 network model based on
transfer learning

2.1 YOLOv4 network

YOLO series model is an object recognition and location

model based on a deep neural network. Because of its fast

running speed, YOLO model is mostly used in real-time

systems. YOLOv4 is a newer version of the YOLO series

models proposed by Alexey Bochkovskiy et al., in 2020 (Gao

et al., 2021; Tan et al., 2021). Compared with YOLOv3 model,

YOLOv4 developed an efficient and powerful small target

detection model by optimizing the trunk network, network

training, activation function and other aspects combined with
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the previous series of models, which has a great improvement in

speed and accuracy (Deng et al., 2022). The YOLOv4 network

model is shown in Figure 1 (Ramachandran et al., 2017; Li et al.,

2021b; Wang et al., 2022a; Sun and Xin, 2022; Xing and Chen,

2022).

2.1.1 Network structure of YOLOv4
The backbone network is CSPDarkNet53, which is used to

extract object features. The input image is processed by residual

blocks, which can make the model lighter and ensure detection

accuracy.

The receptive field of YOLOv4 can be enlarged by using

Spatial Pyramid Pooling (SPP), as a variety of characteristics will

be obtained by using three pools of different proportions. Path

Aggregation Network (PANet) can solve the multi-scale problem

in target detection. After the output of the PANet, the header

module converts the features into predicted results to obtain the

target and its type.

2.1.2 Activation function
Activation function is an important part of deep learning,

which has an important influence on target detection.

Activation functions are key to achieving high

performance in a wide range of tasks. In general,

activation functions can be divided into two main

categories. One is the saturation activation function; The

other is the non-saturated activation function. Saturation

activation functions mainly include sigmoid and tanh

function, and non-saturated functions include Leaky

ReLU, Mish and Swish function and so on. Compared

with the saturation function, the advantage of the non-

saturated function is that it can be used to solve the

problem of “gradient disappearance”, and the convergence

speed of the unsaturated function is faster.

The swish function has attracted much attention due to its

good performance on various challenging data sets under

popular deep learning libraries. The non-monotone nature of

the swish function distinguishes it from other common activation

functions. In addition, the smoothness of the swish function is

beneficial to model generation. The swish function is shown in

Eq. 1 below, and the curve of the swish function is given in

Figure 2B.

f(x) � x · δ(x) (1)

where δ(x) represents sigmoid function.

The YOLOv4 network model mainly uses mish activation

functions. Meanwhile, mish functions are favoured by

YOLOv4 because of their advantages of low cost, non-

monotonic, upper and lower limits to ensure continuity of

information and improve performance. The mish functions

are shown in Eq. 2 and Figure 2A.

Mish � x × tan h(ln(1 + ex)) (2)

2.1.3 Loss function
The loss function is an operational function to calculate the

difference between the predicted value f(x) and the true value y of

the model. It represents by L (y, f(x)). The size of the loss function

is related to the robustness of the model.

a) General loss function

The loss function often appears in the training process of

model. After the trained data enters the model, the predicted

value is output by forwarding propagation. Then, the difference

between the f(x) and the y calculated by loss function is the loss

value. Finally, the model updates the parameters by back

FIGURE 1
The YOLOv4 network structure.
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propagation to make the predicted values as close to the real

values as possible.

b) CIoU-loss

The loss function of YOLOv4 mainly cares about three

factors: overlapping area, centre point distance and aspect

ratio, as follows:

Lciou � 1 − IoU + ρ2(b, bgt)
c2

+ αv (3)

where v resprents the similarity of aspect ratio, c resprents the

diagonal distance in the figure below, α resprents the weight

parameter.

v � 4
π2
(arctanwgt

hgt
− arctan

w

h
)

2

(4)

α � v

(1 − IoU) + v
(5)

2.2 Transfer learning

The isolation switch image set is small due to the

confidentiality of the substation and other scenes in the field

of power system, as well as the differences in equipment in

different levels of the substation (Cui et al., 2022). Therefore,

because of the insufficient number of samples in the training

process, this paper introduces transfer learning, uses imagenet

and other public data sets to pre-train the network feature

extraction layer, and migrates it to power equipment

identification through model fine-tuning (Li et al., 2022).

As a special machine learning technology, transfer learning has

attracted extensive attention in many research fields with the

increasing demand for accuracy, data scale and efficiency of

target task (Shao et al., 2015; Ma and Fan, 2020). Inspired by

human knowledge transfer ability, the purpose of transfer learning is

to minimize the required training set size, as shown in Figure 3

(Zhong and Ban, 2022). Transfer learning has a strong adaptive

ability. It can process other complex tasks by using labelled data in

the existing related task domain, try to learn the source task in the

source domain, apply the knowledge obtained to the target domain,

and solve the task in the target domain.

Transfer learning mainly includes domain and task. Tasks

are the object of learning and are mainly composed of labels and

corresponding functions of labels. In particular, the transfer

learning process corresponds to the source domain and the

target domain. The transfer process is the transfer of

knowledge from source to target (Wang et al., 2022b).

FIGURE 2
Activation function curve. (A) Mish activation function; (B) Swish activation function.

FIGURE 3
Schematic diagram of transfer learning.
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Transfer learning only needs to use the trained model to

extract primary features and train the last few layers of neurons to

recognize the on-off state of the isolation switch. Transfer learning

can effectively reduce the training time and improve the precision

of identification. Firstly, imagenet and other public data sets are

used to pre-train the network feature extraction layer. Then, the

features of the source domain image are transferred to the isolation

switch image, the common features of the two kinds of images are

compared and analyzed, and the parameters of the source domain

model are transferred to the model. Finally, the model is trained

according to the isolation switch data set.

2.3 Improved YOLOv4 network framework

According to the above theoretical knowledge, the

YOLOv4 network model framework based on transfer

learning is shown in Figure 4.

3 Results and discussion

3.1 Experimental platform and computer
configuration

This paper adopts high-definition image data of a 220 kV

substation of China Southern Power Grid, including 1,331 high-

definition images of isolation switches. The pictures of the

unmanned inspection robot and some pictures of the isolation

switches are shown in Figure 5. The data set is divided into the

training set and test set in a ratio of 9:1 for network training and

testing. For the preprocessing of the data set, lableimg annotation

training set is used to generate. xml file containing the status, size

and location information of the isolation switch. All the training

environments in this paper are Intel(R) Core (TM) i5-10400F @

2.9 GHz, NVIDIA RTX 3080 Ti GPU, and PyTorch is used to

build the mathematical experiment platform.

3.2 Evaluation indicators

To objectively evaluate the advantages and disadvantages of

the recognition algorithm proposed in this paper, the most

representative precision (Pre), recall (Rec), Average precision

(AP) of each type of target, harmonic mean (F1) and mean

average precision (mAP) were selected as the evaluation indexes

of the method. Among them, Pre is used to measure the precision

of the model to find samples; Rec is used to measure the ability of

the algorithm to find a certain type of sample in the data set. The

calculation formula is as follows:

Pre � TP

TP + FP
(6)

Rre � TP

TP + FN
(7)

where, Tp: The number of samples correctly identified as positive,

FP: The number of samples incorrectly identified as positive, and

FN: The number of samples wrongly identified as negative.

AP value is defined as the area enclosed by Pre-Rec curve and

coordinate axis, which also measures Pre and Rec of the network

model in detecting a certain type of target. The calculation

formula of AP is shown in Eq. 8. The value of AP reflects the

detection effect of the network model.

AP � ∫recall

0
Precision (8)

FIGURE 4
Framework of the proposed method.
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In addition, mAP and F1 are widely accepted evaluation

indicators. The larger the mAP value is, the better the overall

detection effect of the model is. F1 represents the average

harmonic value of Pre and Rec. The closer F1 is to 1,

the better the optimization effect of the network

model is. The calculation formulas for mAP and F1 are as

follows.

F1 � 2PreRca

Pre + Rca
(9)

mAP � 1
n
∑n

1
AP (10)

where n is the number of categories.

3.3 Experimental results

To improve the identification accuracy of isolation

switches in substations, an improved YOLOv4 network

FIGURE 5
Pictures of unmanned inspection robot and isolation switch. (A) Partial isolation switch pictures. (B) Pictures of unmanned inspection robot.
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model is proposed, and the overall performance of the

network model is improved by using transfer learning.

After sample base training of the improved model, the final

realization of the isolation switch equipment identification

effect is shown in Figure 6. It can be seen that the improved

YOLOv4 network can accurately identify the on/off state of

the isolation switch.

In terms of the identification precision of the isolation

switch, the identification precision of the network model used

in this paper is shown in Figure 7. As can be seen from

Figure 7, the precision of the network model in identifying

the closed state is 89.62%, and the precision of the network

model in identifying the open state of the isolation switch is

90.79%, indicating a high overall identification accuracy.

Meanwhile, the Rec curve of this network model in the

identification process of isolation the switch is shown in

Figure 8.

The AP value of the network model used in this paper in

the isolation switch identification test is shown in Figure 9.

As shown in Figure 9, the AP value of this network model in

the recognition of the closing state of the isolation switch is

92.56%, and that in the recognition of the opening state of the

isolation switch is 86.80%.mAP and F1 are widely recognized

indicators to evaluate the quality of network models. During

the experiment in this paper, mAP values are shown in

Figure 10A. The mAP value is 89.67%. The overall

detection quality of the network model is excellent. In

terms of F1 value, in the process of network

model detection, the F1 value of the closed state is 0.9,

and the F1 value of the open state is 0.8. From the

perspective of F1 value, the network

model has better detection and recognition effect for

closed state.

In order to further verify the recognition effect of the

improved YOLOv4 network proposed in this paper, the test

results were compared with YOLOv4 and YOLOv3, as shown in

Table 1. The YOLOv4 network model was improved by transfer

learning in this paper. After minor changes, the overall

FIGURE 6
Isolation switch identification result diagram.
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FIGURE 7
Precision of improved YOLOv4 model. (A) close precision; (B) open precision.

FIGURE 8
Recall of improved YOLOv4 model. (A) close recall; (B) open recall.

FIGURE 9
AP of improved YOLOv4 model. (A) close AP; (B) open AP.
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recognition effect of the model in the isolation switch of the

substation was improved.

4 Conclusion

This paper presents method for detecting the open and

close state of isolation switch based on YOLOv4 network

model. Compared with the previous methods,

YOLOv4 network model has the advantages of faster speed

and higher precision. To minimize the number of samples in

the training process, transfer learning method is introduced to

pre-train the network feature extraction layer through the

open data set, thus improving the overall performance of the

model. The test results show that the mAP value reaches 89%,

and the F1 value of closed state and open state recognition

reaches 0.9 and 0.8 respectively. The overall performance of

the proposed method is better than that of previous

YOLOv3 and YOLOv4 network models.

Therefore, the method will promote the theoretical and

technical research of deep learning in substation inspection.

The team plans to further study the application and

performance improvement under the conditions of insufficient

training sets and rain and fog images in the future.

Data availability statement

The data analyzed in this study is subject to the following

licenses/restrictions: Data sets are confidential content of the

FIGURE 10
mAP and F1 of improved YOLOv4 model. (A) mAP; (B) F1 of close; (C) F1 of open.

TABLE 1 Comparison of identification effects of different network
models.

Method AP/% mAP/% F1

Close Open Close Open

YOLOv3 91.30 85.89 88.56 0.8 0.8

YOLOv4 92.50 86.10 89.20 0.9 0.8

Improved YOLOv4 92.54 86.80 89.67 0.9 0.8
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