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INTRODUCTION

In the context of the carbon peak and carbon neutral goals, the energy and power industries are
undergoing unprecedented changes (Yang et al., 2015). It is particularly noteworthy that carbon
neutrality will accelerate the zero-carbonization process of electricity growth, and there is an urgent
need to reduce dependence on fossil energy (Yang et al., 2020a). Besides, a proton exchange
membrane fuel cell (PEMFC) can convert chemical energy into electrical energy efficiently, without
pollution, and is widely used in the fields of mobile equipment such as military, ships, and
automotive equipment. However, parameter extraction of the PEMFC is a multivariable,
multimode non-linear function optimization problem. Therefore, establishing an accurate and
reliable PEMFC model is key to parameter extraction (Zhang et al., 2021). So far, the PEMFC
parameter extraction strategy based on meta-heuristic algorithms and artificial neural network
(ANN) has attracted widespread attention. However, the practical application of parameter
extraction will face many challenges (Huang et al., 2021). Even in the peer-reviewed
literature, the parameter extraction strategy is not fully considered, and the potential risks it
brings are worth considering. This article clarifies the aforementioned problems and puts
forward some opinions on different parameter identification methods. The remaining sections
of this article are organized as follows: Proton Exchange Membrane Fuel Cell Modeling indicates
parameter extraction using only meta-heuristic algorithms; the parameter extraction based on
neural network is investigated in detail in Parameter Extraction Using Only Meta-Heuristic
Algorithms; and Parameter Extraction Based on Neural Network presents the discussion and
conclusion of this article.

PROTON EXCHANGE MEMBRANE FUEL CELL MODELING

As illustrated in Figure 1, the polarization curve characteristics of the PEMFC can help analyze the
performance of fuel cells. In addition, the semiempirical model of the PEMFC can describe the
working process according to the physical meaning represented by the parameters in the equation,
which helps understand and optimize the performance of fuel cells.

In order to accurately analyze the input and output characteristics of the PEMFC, according to the
PEMFC electrochemical model, the output voltage can be expressed as follows:

Vcell � Enernst − Vact − VΩ − Vconc. (1)

Moreover, ENernst represents the potential obtained by the PEMFC in open thermodynamic
equilibrium; it can be described as follows:
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ENernst � ΔG

2F
+ ΔS

2F
(T − Tref ) + RT

2F
[ln(PH2) + 1

2
ln(PO2)]. (2)

Vact denotes the activation overvoltage, and it is determined as
follows:

VAct � [ε1 + ε2T + ε3T ln(CO2) + ε4T ln(iFC)], (3)

where εi denotes the semiempirical coefficients and iFC is the
cathode current.

In addition, the ohmic voltage drop (VΩ) is determined as
follows:

VΩ � iFC(Rm + Rc), (4)

where Rm indicates the equivalent impedance of a proton
membrane and Rc denotes the impedance.

Meanwhile, Vconc indicates the concentration voltage loss. It
can be denoted as follows:

Vconc � −bln(1 − J

Jmax
). (5)

In summary, it presents seven unknown parameters of the
PEMFC, namely, ε1, ε2, ε3, ε4, λ, Rc , and b. Table 1 shows the
lower/upper bound of the unknown parameters for PEMFC
models.

Besides, the evaluation standards play an important role in
parameter extraction. Therefore, it is necessary to introduce
several evaluation standards by appropriately selecting various
evaluation standards to correctly verify whether the method can
obtain satisfactory results. Among them, root-mean-square error

(RMSE) is very sensitive to the size error of a series of
measurements.

Here, RMSE is used as the objective function, which can be
written as follows:

RMSE(z) �



















1
N

∑N
k�1

(f(VL, IL, Z))2√√
, (6)

where N represents the numbers of I–V data; IL is defined as
output current, and VL denote output voltage; and z represents
the solution vector.

PARAMETER EXTRACTION USING ONLY
META-HEURISTIC ALGORITHMS

As a stochastic method inspired by natural phenomena, meta-
heuristic algorithms have the characteristics of high flexibility
(Yang et al., 2020b), no need to establish precise mathematical
models, and can solve the optimization problems of highly non-
linear systems. Thus far, meta-heuristic algorithms have made
some progress in improving search capability and efficiency
(Yang et al., 2019), which has attracted widespread attention.
Since the electrical model of the PEMFC is a complex system with
the characteristics of multivariable, strong coupling, and non-
linearity, therefore, the PEMFC parameter extraction strategy
based on meta-heuristic algorithms has received extensive
attention and has become a very active research field in recent
years (Yang et al., 2020c). So far, meta-heuristic algorithms have
been roughly divided into four categories, which are based on
biology, physics, sociology, and mathematics. In addition, many
meta-heuristic algorithms have been applied to PEMFC
parameter extraction, for example, antlion optimization
algorithm (ALO) (Isa et al., 2019), particle swarm
optimization algorithm (PSO) (Ye et al., 2009), biogeography-
based optimization (BBO) (Gong and Cai, 2014), improved beetle
antennae search (IBAS) (Sun et al., 2020), hybrid artificial bee
colony algorithm (ABC) (Oliva et al., 2014), vortex search
algorithm (VSA) (Fathy et al., 2020), differential evolution
(DE) (Chakraborty et al., 2012), month flame optimizer
algorithm (MFO) (Messaoud et al., 2020), multi-verse
optimizer (MVO) (Zhao et al., 2016), gray wolf optimizer
(GWO) (Yang et al., 2017), genetic algorithm (GA) (Ohenoja
and Leiviskä, 2010), flower pollination algorithm (FPA) (Priya
and Rajasekar, 2019), and equilibrium optimizer (EO) (Seleem
et al., 2021).

In addition, it should be noted that meta-heuristic algorithms
still have some shortcomings in terms of convergence speed and
computational efficiency, and it is easy to fall into the local

FIGURE 1 | Polarization curve of the PEMFC.

TABLE 1 | Searching range of each unknown parameter for PEMFC models.

Model parameter ε1 ε2 ε3 ε4 λ Rc b

Lower bound Xl −1.1997 0.001 3.6 × 10−5 −0.00026 10 0.0001 0.0136
Upper bound Xu −0.8531 0.005 9.8 × 10−5 −0.0000954 23 0.0008 0.5
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optimum during the optimization process (Zhang et al., 2016).
Thus, in order to further improve the performance of the
parameter extraction of meta-heuristic algorithms, a series of
improved and mixed versions are proposed to improve the search
efficiency and robustness and avoid falling into local
optimization. In Niu et al. (2014); Zhang et al. (2015), the
migration operator can effectively improve global search
efficiency but lacks local deeply digging capabilities, which can
easily lead to premature convergence. Therefore, combining the
mutation theory and chaos strategy of the differential evolution
(DE) algorithm with the original mutation strategy of the
biogeography-based optimization (BBO) algorithm, the BBO
with mutation strategy algorithm (BBO-M) was proposed,
which effectively improves the global search efficiency,
enhances the convergence speed, and provides a new research
idea for PEMFC parameter extraction. Zhang and Wang (2013);
Niu et al. (2014); Liu et al. (2020) developed an improved genetic
algorithm (GA) based on adaptive RNA, called adaptive RNA
(ARNA-GA), which uses an adaptive strategy to crossover and
mutate according to the differences between different
individuals. Therefore, compared with GA, ARNA-GA avoids
premature convergence and improves the efficiency of global
search, which is worthy of reference. In addition, in order to
improve computational efficiency and global search capabilities,
Yao et al. (2015; Chen et al. (2018; Fathy et al. (2020) studied a
hybrid vortex search differential evolution (VSDE) algorithm, in
which the control parameters are jointly adjusted by the DE and
the vortex search algorithm (VSA). This makes VSDE highly
reliable and effective in PEMFC parameter extraction.
Specifically, the principle of the JAYA algorithm to improve
the convergence speed is iterated at the same time until the
optimal solution is achieved, avoiding low-quality solutions,
and only needs to specify the two parameters of population size
and algebra. At the same time, considering that the
Nelder–Mead (NM) simplex strategy has the characteristics
of simple structure and strong local development capabilities,
Yu et al. (2019); Zhou et al. (2020) proposed a simple two-stage
eagle strategy based on the JAYA algorithm and the
Nelder–Mead simplex algorithm (JAYA-NM). The results
show that the JAYA-NM algorithm exhibits satisfactory
convergence speed and accuracy in PEMFC parameter
extraction.

However, due to the inherent defect of randomness in meta-
heuristic algorithms, the quality of optimal solution varies with
the number of iterations and the number of populations (Xiong
et al., 2021). The weight parameters assigned to algorithms should
also be carefully chosen. For different experimental
environments, it is necessary to set the algorithm parameters
in a targeted manner in order to weigh the calculation amount of
the algorithm and the quality of the solution. In addition, all the
aforementioned methods can only be used for parameter
extraction when the experimental data are sufficient and the
influence of experimental data noise is not considered, which
limits the accurate extraction of PEMFC parameters and cannot
be accurately modeled. Therefore, it is a new and challenging task
to extract PEMFC parameters under insufficient experimental
data and noisy experiment environments.

PARAMETER EXTRACTION BASED ON
NEURAL NETWORK

Parameter extraction methods using neural network are mainly
aimed to make use of artificial neural network and its derivatives
to improve the performance of PEMFC parameter extraction
(Kalyan and Rao, 2021). The following outstanding advantages of
ANN have attracted great attention in recent years: 1) It can be
perfectly close to a complex non-linear relationship; 2) all
qualitative information is stored in each neuron in the
network, which has strong robustness and fault tolerance; 3)
parallel distributed processing methods can quickly perform
many operations; 4) can learn and adapt to uncertain systems;
and 5) can handle both quantitative and qualitative knowledge.

At present, there are many kinds of neural network research
methods, and the most fruitful research includes the BP
algorithm of multilayer network, Hopfield network model,
adaptive resonance theory, and self-organizing feature
mapping theory. Besides, the accuracy of PEMFC parameter
extraction results depends on the accuracy and reliability of raw
data (Liu et al., 2021). However, in the procession of PEMFC
parameter extraction via meta-heuristic algorithms, some data
problems affecting the accuracy of parameter extraction are
ineluctable, for example, the necessary raw data are not so
enough that the reliability of the extracted parameters is
reduced. In addition, the matter of noises in the original
voltage and current data is also a common and inevitable
problem. Thus, the introduction of neural network and its
derivatives into the parameter extraction method can not
only make the parameter extraction more adaptive for the
raw data but also provide a more reliable fitness function for
parameter extraction.

Thus far, Bayesian regularization neural network (BRNN)
(Yang et al., 2021a), extreme learning machine (ELM) (Yang
et al., 2021b), Levenberg–Marquardt backpropagation (LMBP)
algorithm (Yang et al., 2021c), Elman neural network (ENN),
deep belief network (DBN), support vector machine (SVM),
random forest (RF), feedforward backpropagation (FFBP)
(Wilberforce and Olabi, 2020), hidden semi-Mark model
(HSMM) (Wu et al., 2017), and several other methods based
on the neural network and its derivatives are applied to the
parameter extraction research of fuel cells. Yang et al. (2021a)
provide a novel idea for the research on parameter extraction of
the PEMFC with noisy data, in which, due to the influence of data
noise on the accuracy of extracted parameters, BRNN-based
meta-heuristic algorithms are proposed to filter out the noises
and prevent the “overfitting” phenomenon, improving the
performance of PEMFC parameter extraction. Literature Yang
et al. (2021b); Yang et al. (2021c) combines ELM and LMBP with
several prominent meta-heuristic algorithms. Due to insufficient
voltage and current data provided by the manufacturer, the
accuracy of parameter extraction will be reduced. Among
them, ELM training data compensates for the lack of data in
parameter extraction and improves the accuracy of parameter
extraction, but there is no standard for the number of original
voltage and current data, that is, howmuch data is needed to meet
the requirements under a certain application background
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application requirement. In work Wilberforce and Olabi (2020)
used artificial neural networks to compare the FFBP and data
processing grouping method (GMDH) to determine voltage and
current. The research result shows that GMDH neural network is
better than FFBP neural network. Wu et al. (2017) combine an
HSMM and empirical model, proposing an improved prediction
model to predict the remaining service life of fuel cells. The
experimental results show that compared with the existing fuel
cell prediction methods, the prediction model has higher
prediction accuracy and faster prediction speed. In addition, it
is noticeable that these strategies are all dedicated to improving
the accuracy (Erdiwansyah et al., 2021; Padhy and Panda, 2021;
Yang et al., 2021d), stability, and efficiency of PEMFC parameter
extraction in various adverse conditions but not further delving
into the degree of influence of these adverse effects on the
parameter extraction results and to what extent the affected
results can be regarded as acceptable results (Petrone et al.,
2013; Chatrattanawet et al., 2017; Muniappan, 2021).

However, the literature did not figure out the specific
impact of noise data on PEMFC parameter extraction and
the impact of environmental factors on the anti-interference
ability of parameter extraction (Chen et al., 2020; Guo et al.,
2020). For example, the noise range that the data can withstand
in order to ensure the accuracy of parameter extraction in a
certain application environment should be determined. In
addition, there is an urgent need to develop a meta-
heuristic algorithm based on neural network, which mainly
aimed to make use of an artificial neural network and its
derivatives to improve the PEMFC parameter extraction
accuracy.

DISCUSSION AND CONCLUSION

A reliable parameter extraction strategy is particularly important
for PEMFC system performance evaluation and optimization, but
it is still in the research and development stage. The efficiency and
engineering practicability of this technology are the main
challenges and are listed as follows:

Insufficient training data and excessive noise may lead to
overfitting of the parameter extraction results, and operating
cycles, thinning of the catalyst, and poisoning will lead to
shortened battery life and performance degradation. Therefore,
it can provide an effective and efficient tool to solve these problems
and can be applied to life prediction and fault diagnosis based on
the accurate extraction of experimental parameters. At the same
time, it is necessary to develop and apply some new hybridmethods
by combining the advantages of differentmeta-heuristic algorithms
and neural networks to further obtain better performance. The
hybrid method is a promising optimization method, which
provides a new method to improve PEMFC parameter
extraction accuracy. In addition, the proposed method is only
evaluated under simulation conditions. Therefore, the next step for
the researcher is to study its application to actual experimental data
to test its actual performance.
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