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The fault of power systems introduces a severe challenge in terms of fault recording
analysis, and the traditional Prony method cannot perform satisfactorily in the process of
signal recordings fitting caused by faults. Therefore, an improved adaptive Prony algorithm
is proposed in this article to study the characteristics of fault recordings. Specifically, the
search step size is taken as an adaptive variable, and the mean square relative fitting error
(MSRFE) is set as the criterion. Then, a large step is employed to rapidly determine an
approximate segmentation point in the initial stage of the searching process, and its
horizon is gradually reduced to establish an accurate subsegment point. Finally, the Prony
algorithm is deployed to analyze the subsegment fitting original signal. The proposed
approach has been simulated on an assumed fault signal, and the results validate the
accuracy and efficiency of the method.
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INTRODUCTION

An accurate assessment plays an indispensable role in the safety active control systems (Shen et al.,
2021a; Shen and Raksincharoensak, 2021a; Shen and Raksincharoensak, 2021b). Similarly, it is
significant to study an effective fault signal analysis method for safe and stable operation in power
systems (WangJin et al., 2019; Yang et al., 2019; Yang et al., 2021a; Zhang et al., 2021). Although the
technology of fault analysis has already been developed in the existing literature, there are still
obstacles to fault identification using the electrical parameters of recording signals. In practice, the
state of power systems is monitored using intelligent monitoring terminals in real time. In this way,
the fault recording accuracy of the system can be guaranteed, but producing redundant data increases
the difficulty of data storage. On the other hand, if only targeted data sampling is carried out for the
power grid in case of fault, despite data redundancy can be cut down, it may lead to a lack of
recording data and a decrease in recording accuracy. Therefore, the research on fault recording
algorithms of power systems has theoretical and practical significance.

For research of signal recordings, it can be analyzed based on steady state and transient (Sajadi
et al., 2019). However, the steady-state efficiency of fault identification is bounded. The main reason
is that renewable energy to access power systems is becoming increasingly complicated in recent
years, and fault analysis has to accord with the requirements of sensitivity, fast, and accurate at the
same time (Liao et al., 2018; Zhu et al., 2019; Liu et al., 2020a; Zhu et al., 2020; Wang et al., 2021).
These problems have been solved based on transient analysis, showing practical application (Saleh
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et al., 2015; Yu et al., 2020). In addition, the demand for data is
urgent with the rapid development of deep learning technology in
power systems (Yang et al., 2018; Yang et al., 2021b). In this
context, one of the most critical points is how to extract the
characteristic information of transient electrical signals such as
voltage, current, and frequency in the research of fault recording.
For one thing, the random noise can lightly bury the transient
with low energy and small amplitude due to the hybrid of
transient and steady state. For another, although the extracted
transient characteristics are directly applied in the fault research
because the extracted data are massive and irregular (Xu et al.,
2017; Shen et al., 2020a; Desai and Makwana, 2021), they still fail
to achieve the goal of identifying specific faults. Therefore, the
effective extraction of its feature information is crucial to the fault
identification problem, which is directly related to the
effectiveness and accuracy of fault identification and location.

Numerous works have studied methods to ensure the safety of
power grids (Shen et al., 2017; Liu et al., 2020b; Shen et al., 2020b;
Li et al., 2021a; Shen et al., 2021b; Hosseini et al., 2021). In the
study of Li et al. (2021a), a combined high voltage direct current
measurement method is present to improve the extraction
accuracy of the measured signal. Besides, some traditional
methods such as Hilbert–Huang transform, wavelet transform,
and Fourier transform are used in signal processing (Borghetti
et al., 2008; Satpathi et al., 2018; Li et al., 2021b). However, the
previous methods only separate fault recordings and cannot
realize the direct extraction of fault feature information. Its
characteristics are obtained directly through the Prony
algorithm. In Tawfik and Morcos. (2005), a fault location
method integrating the Prony method and artificial neural
networks is presented, and the modified scheme provided
good accuracy. Yet, when the amplitude of the high-frequency
component of the signal is small, the estimation is prone to errors
in practice. In Ando. (2020), the difference algorithm is
introduced to improve the characteristics of high-frequency
components of signals, but its inherent defect has not been
tackled. Later, a segmented Prony method is proposed (Jansen
and Garoosi, 2000), which divides the signal into different
subsegments to ensure good continuity and minor variation in
each subsegment, improving the impact on signal characteristics.
Nevertheless, the segmented method rarely focused on how to
segment to obtain the best analysis results. Based on this, an
adaptive Prony method is presented, taking MSRFE as the
criterion to realize the adaptive segmentation of the fault
signal (Bracale et al., 2007). However, the algorithm searches
the subsegment boundary point by enumeration search with a
fixed step, resulting in low efficiency. These methods also have the
inadequacies of fault signal recognition accuracy for certain
signals overall.

In this article, when a power system fault materializes, an
improved adaptive Prony method is proposed to describe the
accurate variation of electrical parameters. The point of the
subsegment is searched by variable step-size strategy, and
MSRFE is considered the criterion. The proposed approach
has been simulated on an assumed fault signal, and results
show that the improved Prony algorithm has higher accuracy
and efficiency than the traditional method.

PRONY METHOD MODEL

The Prony method is formulated as a linear combination of
exponential functions to describe the mathematical model of
equal distance sampling data and linearized approximate
solution. The amplitude, phase, frequency, and attenuation
factor of the corresponding signal can be obtained directly by
this method. The general solution procedure of the Prony
algorithm is as follows.

The continuous signal x(t) is equidistantly sampled according
to the sampling frequency. There are N sampling data obtained
and stated as x(0), x(1), . . . , x(N − 1), and xn can be stated in
Eqs 1, 2.

xn � ∑p
i�1
biz

n
i , n � 0, 1, . . . , N − 1 (1)

{ bi � Aie
jθi

zi � e(ai+j2πfi)Ts
i � 1, 2,/, p, (2)

where Ai, θi, αi, and fi denote the amplitude, initial phase angle,
attenuation factor, and frequency of the ith complex exponential
function, respectively; N and p are the number of sampling
points and the order, respectively; and Ts is the sampling period.

Then, obtain αi and zi by constructing the difference equation
and its characteristic equation. The singular value decomposition
and the least square method should be used to solve αi, thereby
improving the calculation accuracy (Liu et al., 2008).

Finally, the required parameter can be obtained from previous
equations, respectively, as shown in Eq.3.⎧⎪⎪⎪⎨⎪⎪⎪⎩

Ai � |bi|,
θi � arctan(Im(bi)/Re(bi)),
αi � ln(zi)/Ts,
fi � arctan(Im(zi)/Re(zi))/2πTs,

(3)

IMPROVED PRONY ALGORITHM
STRATEGY

The traditional Prony method has some practical limitations,
which may lead to inaccurate fitting results of some specific
signals under certain conditions, such as mutation signals when a
fault occurs in power systems. Specifically, on the one hand, the
search step size of the traditional Prony algorithm is performed
with a fixed step. On the other hand, the accuracy of the fitting
depends on the selected order. The order is selected artificially by
using the traditional method. Although there will be an order to
make the fitting accurate, it will take more time for an operation.
At the same time, it will also bring extra components. Thus, the
method proposed in this article is an improvement in these
aspects. The steps involving the parameters of the analysis
algorithm are explained as follows.

Step 1: Initialize the original data and parameters, including
the signal information, search step k, minimum length of
subsegment Lmin, sampling frequency, a maximum value of
MSRFE Em, and some remaining parameters.
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Step 2: Compare the number of sampling points and
the sequence number at the end of the subsegment. When
the number of sampling points is greater than the end
sequence of the subsegment, the Prony algorithm is
directly applied in the subsegment. Otherwise, proceed to
step 3.

Step 3: Using the Prony algorithm for subsegments and
calculating MSRFE ef. According to MSRFE obtained from
the subsegment, whether its value is lower than the maximum
value assumed. If MSRFE is lower than its maximum value,
proceed to step 4. Otherwise, proceed to step 5.

Step 4: Judge whether the step is equal to 0. If its value is 0,
reset the step to 1. Otherwise, judge whether the step was
changed, if not changed, then make it set the maximum
search step Km.

Step 5: Check the step was changed, and update the
corresponding parameters, where I45 means rounding.

Step 6: Until the condition of step 2 is met, output the
characteristic parameter of signal information.

The detailed procedure is shown in Figure 1, and the
expression of MSRFE is shown in Eq. 4.

MSREF � 1
n0

∑ne
n�ns,xn ≠ 0

[x1(n) − x(n)]2
x(n)2 , (4)

where x(n) is the real value, x1(n) is the estimated value, n0 is the
total number of non-zero values in the subsegment, and ns and ne
are the start sequence number and end sequence number,
respectively.

To better evaluate the accuracy of fitting and real value, the
root-mean-square error (RMSE) is introduced in this article,
which is defined as Eq. 5.

RMSE �

																	
1
L
∑N
n�1

[x1(n) − x(n)]2
√√

, (5)

where L is the length of the signal.

CASE STUDY

Instance and Setup
In this article, two types of original voltage signals mimic
recordings. The signals under the normal operation and fault
are simulated by a smooth and a signal of mutational processes,
respectively. The mathematical expression of the smooth voltage
signal is shown in Eq. 6, and its parameters are shown in Table 1.

x(t) � x1(t) + x2(t) + x3(t) + x4(t)
� 110e−2.0t cos(2π × 50t + π/3)
+220e−2.0t cos(2π × 50t + π/6)
+220e−1.0t cos(2π × 80t + π/6)
+330e−0.5t cos(2π × 60t + π/6), (6)

Process Simulation Verification
The total number of sampling points, the sampling period, and
the sampling frequency are set 1,000, 0.025 s, and 4 kHz in the

FIGURE 1 | Flowchart of the proposed, improved adaptive Prony method.
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simulation, and the start sequence point and the end sequence
point are defined as 1 and 20, respectively. The minimum length
of the subsegment is 20, and the maximum search step is 20.
Figure 2A is plotted to depict the fitting under the normal
condition provided by known parameters. We can observe
that the simulation results show an excellent agreement is
consistent, the order is 230, and the RMSE is so tiny that it
can be ignored.

Comparative Simulation Verification
In this case, based on the assumption of the smooth signal,
x1(1: 200) � 0, x2(100: 500) � 0, x3(200: 500) � 0, and
x4(400: 700) � 0 is set in the program to simulate the signal
with sudden operation change, and the meaning of x1 from 0 to
0.05 s, x2 from 0.025 to 0.125 s, x3 from 0.05 to 0.125 s, and x4

from 0.1 to 0.175 s all failing to react. The traditional Prony
method is used for the fault recording, and the comparison
between fitting and the original signal is given in Figure 2B.
We can see that the trend of the two signals is deviated.

Furthermore, Figure 2C shows the maximum RMSE of both
is around 4.5%, and the traditional method is intractable for
fitting the signal. The reason for such a difference may be that the
traditional method makes decisions by considering the original
signal is always continuous and smooth without mutation, and it
results in mutagenicity when a fault occurs. It is bound to skip
some vital parts while fitting by this method, resulting in some
information being ignored. Moreover, the order is often set in
advance in the fitting process, and it takes a longer time to
manually and continuously adjust the order to fit the original
signal.

The previously assumed fault recording signal is analyzed by
using the proposed method in this article, and the corresponding
result is shown in Figure 2D. We can see that the performance of
the proposed method is satisfying, overlapping with the original
signal. The reason is that the search step, as a variable, will be
segmented when encountering sudden change points in the
search stage, avoiding some information being ignored at the
critical moment of analysis. On the other hand, the time of fitting

TABLE 1 | Specific parameters of the smooth signal.

Component Frequency (Hz) Amplitude (V) Initial phase angle Attenuation factor

1 50 110 60 -2.0
2 50 220 30 -2.0
3 80 220 30 -1.0
4 60 330 30 -0.5

FIGURE 2 | Simulation results: (A) Smooth signal simulation based on the traditional Prony method. (B) Mutation signal simulation based on the traditional Prony
method. (C) RMSE of the original and fitting signals based on the traditional Prony method. (D)Mutation signal simulation based on the proposed method in this article.
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is decreased shorter than the traditional Prony method because
the order of this method does not need to rule in advance.
Meanwhile, to further illustrate the effectiveness of the
proposed method, fitting dates are further analyzed. The signal
is divided into eight subsegments in total, taking the first two
segments of the total date as an example for analysis, as given in
Table 2.

Table 2 indicates that the signal with a component frequency of
50 Hz and an amplitude of 110 V is not present in subsegment 1, so
the corresponding data are missing, and the information of other
components is accurately extracted. Similarly, the subsegment
signal is not affected by components 1 and 2, so there is only
relevant information of components 3 and 4 in the subsegment.
More specifically, some data obtained through an attenuation
process, such as amplitude and initial phase angle, do not get in
line with Table 1. By taking the first line of subsegment 2 as an
example, the sequence point of subsegment 2 ranges from 100
to 199. After 0.025 s, the accuracy of amplitude becomes
330 × e−0.5p0.025 � 325.91, and the initial phase angle transforms
from 30 to arg[30 + (2pπ × 60 × 0.025 × 180)/π] � −150.0.

CONCLUSION

The traditional Prony algorithm is improved in this article. First,
the basic model of the Prony algorithm is constructed. On this
basis, the mean square relative fitting error is set as the criterion,
and the variable step method is used to search the subsegment
boundary points. Finally, a fault recording signal processing with
an improved adaptive Prony algorithm is proposed. The
conclusions based on simulation analysis are as follows.

The improved adaptive Prony algorithm proposed in this
article can not only fit the signal under normal conditions but
also obtain higher accuracy after the signal characteristics change
under abnormal conditions.

In the fault recording signal fitting, the proposed method does
not need to set the order in advance. Compared with the
traditional Prony algorithm, it can greatly reduce the fitting
time and improve the calculation efficiency.
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