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Hydroelectric energy storage, that is, pumped storage hydropower (PSH) is considered as
the essential solution for grid reliability with high penetration of renewable power, due to its
advantages of cost-effectiveness for grid energy storage as well as supporting ancillary
services. However, the operation modes of the main transformer unit in PSH are way more
complex than the conventional power transformer, which makes the condition monitoring
and fault detection of PSH becoming a technical challenge. In this article, an operation
status recognition model of main transformers in PSH based on artificial visualization of
mechanical vibration signals and deep learning is proposed. The vibration signals on a
series of 500 kV/360 MVA main transformers of PSH are monitored periodically by
contacting sensor arrays. These vibration signals are processed into nephograms by
using linear interpolation fitting and 1D to 2D data mapping. A deep learning method based
on the convolutional neural network (CNN) is used to classify nephograms obtained under
different operation modes, that is, no load, full load, DC bias, and short circuit. The
proposed status prediction algorithm was trained and tested through 150 sets of vibration
nephogram samples, which ensures the feasibility of the nephogram generation method
and the performance of the classifier. The testing results show that the overall status
prediction accuracy for the proposed algorithm achieves 89.7% when the network
structure is optimized. It is indicated that the mechanical vibration of the main
transformer has a pattern matching relationship with the operating state of PSH. In
practice, the operating status of PSH can be diagnosed remotely by embedded IoT
sensors; the health index of PSH can also be estimated by weighed analysis of the
changing trend of vibration data obtained in the life cycle.

Keywords: risk assessment, hydroelectric energy storage, state prediction, data visualization, convolutional neural
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INTRODUCTION

The carbon neutrality target by countries worldwide has raised the demand in combining the power
systemwith energy storage units, in order to buffer the system instability brought by high penetration
of the renewable energy system (Hunt et al., 2020; Feng et al., 2021). With the ability of quick
responding to changes in the amount of power running through the grid, pumped storage
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FIGURE 1 | PSH operational risk assessment technology diagram.

FIGURE 2 | Typical transmission path of transformer vibrations from different origins.

FIGURE 3 | Daily loading conditions for main transformers of PSH.
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hydropower (PSH) is considered as the primary choice for
ensuring grid reliability. PSH is also one of the most cost-
effective utility-scale option for grid energy storage (Hou
et al., 2018), with the advantages of providing clean and
affordable ways of storing and deploying electricity, as well as
supporting ancillary services such as network frequency
control and reserve generation (Zhao et al., 2021). The
United States has more than 20 GW of pumped storage
capacity in 2021, with an additional 31 GW in proposal.
The situation is even more impressive in China, since the
total capacity of pumped storage has reached over 50 GW,
accounting for more than 80% of energy storage nationwide.
The proper function of electricity generation for PSH relies
on the successful switching between pumping and turbine
modes (Liang et al., 2019). During mode shifting, the
excitation state of the main transformer in PSH might
change intensely in a few hours; thus, the system stability
of the main transformer is essential for the operation
reliability of PSH. As the core component of PSH, main
transformers are not only expensive but also difficult to
repair or replace (Zhang et al., 2021). In recent years, the
development of the AC/DC hybrid power grid and the
application of large power electronic equipment have
made it possible for the main transformer to withstand
various operating overvoltage, excitation inrush current,
and the resulting electric stress and thermal stress of
winding under DC bias and high frequency harmonic,
such that it is closely combined with regional rail
transportation network transformer which is affected by

high-frequency harmonics. At the same time, the
application of a large number of power electronic devices
makes the electromagnetic environment in the transformer
more complicated.

Similar to power transformer in operation, the iron core of
the main transformer is subjected to main magnetic flux, and
the windings are subjected to alternating magnetic flux
leakage, both of which lead to mechanical vibration (Cheng
and Yu, 2018). The vibration is transmitted to the transformer
shell through internal structural parts and insulating oil. When
the internal operation state of the transformer changes, the
vibration state of the tank surface changes accordingly
(Žarković and Stojković, 2017). Since the early 1990s, much
research work in identifying influence factors for transformer
vibration, extracting signature signals of vibration, and
establishing transformer vibration models have been carried
out. It is indicated that the mechanical vibration signals
obtained from the tank surface can be used as an effective
tool for system condition monitoring and fault diagnosis (Fan
et al., 2017; Kirkbas et al., 2020). However, most of the actual
vibration measurements are obtained from the tank surface of
single-phase model transformers; the specific vibration
monitoring method still lacks PSH in the case of main
transformers. In addition, the current vibration signal
measuring method heavily relies on the classification of 1D
vibration acceleration information obtained by mechanical
sensors, that is, the vibration information is generated from
few discrete measuring points (Tightiz et al., 2020; Xu et al.,
1997). The overall distribution of mechanical vibrations

FIGURE 4 | Tank vibration signal measuring system.
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FIGURE 5 | Typical sampling of vibration data. (A) Non-loading condition; (B) full-loading condition].

FIGURE 6 | Data mapping and visualization of transformer vibration.
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cannot be obtained, which makes it difficult to analyze the
precise operation state of main transformers in PSH.

Recently, the deep learning method, that is, artificial neural
network (ANN), has been increasingly used in the asset
management of power systems (Thada et al., 2021; Ghoneim
et al., 2016). Among all the ANN methods, convolutional neural
network (CNN) is widely accepted as one of the most effective
solutions to the fault diagnosis of graphical inspection
information, such as infrared images and video surveillance of
high-voltage electric equipment, due to the application of
gradient descent and error back-propagation in the network
training process (Idowu et al., 2016; Daelemans et al., 2003).
Regarding the potential application of CNN in combination with
vibration signals in operation status classification of main
transformers in PSH (Ghoneim et al., 2016), the most
important step is to transfer the 1D vibration signals into 2D
numpy arrays in image file types; only in this way, the precise
feature extraction of CNN can be carried out.

This study aims at encapsulating the operation status of main
transformers in PSH from visualized vibration data by using
advanced deep learning methods. Two-dimensional visualization
of transformer surficial vibration is carried out by using linear
interpolation and data mapping of vibration data generated on 21

measuring points evenly distributed on the tank surface of the
main transformer. The visualized vibration data are then trained
by a specified CNN network with two convolution layers, two
pooling layers, and 1 full connected layer. The feature extraction
andmode classification of PSH in four modes, that is, full load, no
load, DC bias, and short current, are carried out by integrating
rectified linear unit (ReLU) activation and batch normalization
function. The proposed method accelerates the early risk
detection since the sensors on the surface works periodically
without interrupting the normal operation of main transformers.

METHODOLOGY

Technical Framework for Operation Risk
Assessment of PSH
The technical framework for the operation risk assessment of PSH
based on condition monitoring of the main transformer is shown in
Figure 1. By incorporating intelligent risk assessment based on
pattern recognition from main transformer vibration in the process
of operation and maintenance, the individual and clustered
equipment operation status data in PSH can be comprehensively
collected. Consequently, health index analysis such as operation

FIGURE 7 | Basic structure of convolutional neural network.

TABLE 1 | Parameter table of pumped storage main transformer.

Main specification Main transformer parameters
of non-excitation voltage

regulation mode

Main transformer parameters
of on-load voltage
regulation mode

Model SSP - 360000/500 SSP - 360000/500
Phase Phase 3 Phase 3
Rated frequency 50 Hz 50 Hz
Rated capacity 360/360 MVA 360/360 MVA
Voltage combination 515 ± 2*1.25%/18 kV 515 ± 8*1.25%/18 kV
Rated current 404/11547 A 404/11547 A
Connection group label YN d11 YN d11
Cooling method ODWF OFWF
No-load current (%) 0.11% 0.15%
No-load loss/load loss 139.6 kW/839.1 kW 138.2 KW/872.6 KW
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status threshold value and trending, as well as health index warning
and lifetime estimation can be carried out. Based on the operation
risk assessment, the systematical alarm policies and device health
warning lists can be created to timely alert early deterioration in the
device and system. Eventually, the optimized PSH operation status
management strategy can be formed.

Mapping Relationship Between
Transformer Vibration and PSH Operation
Status
During operation, the vibration of the transformer tank mainly
comes from the vibration of the core, winding, voltage regulator,
and cooling system. The transmission path of inherent vibration
to the tank surface is shown in Figure 2. The tank vibration
caused by the core is in the order of 100 kHz, whereas vibration
caused by winding could be calculated by taking the vibration in
non-loading status as reference. The vibration caused by the
cooling system mainly ranges in the frequencies lower than
100 Hz, whereas the vibration caused by the voltage regulator
mainly ranges in the frequencies higher than 1 kHz (Ji et al.,
2020). By carrying out data clustering on the vibration signals
obtained on the tank surface, the origins of the vibration can be
easily distinguished; and the precise relationship between the
forms of vibration data and transformer component under
different working conditions can be easily found.

Vibration Data Visualization
The typical loading conditions of main transformer in PSH
are shown in Figure 3. The main transformer is in the pump
status once a day and in the generator state three times a day.
The operation status of the main transformer in PSH is way
more complex than that of the conventional power
transformer, that is, it could suffer offline, pump water,

phase modulation, generate power, and transient
conditions in a row. In the worst-case scenario, fault and
breakdown could occur during frequent switching of the
operation status. The various working conditions of PSH
greatly increase the complexity of vibration signals
obtained from the main transformer. The traditional
vibration signal monitoring methods try to distinguish the
operation mode of the transformer through the establishment
of the vibration mathematical model manually. However, all
the traditional methods cannot deal with transient non-
periodical vibration signals. Only 1D type of vibration data
can be collected through these methods, which makes it
difficult to consider both the vibration information in time
domains and frequency domains (Xi et al., 2020). The
advanced data processing technologies such as deep
learning is also impossible to be proposed on 1D series of
data as some key information such as correlating events with
time series for incident accidents could possibly be missing
during training.

In order to solve the aforementioned issues, a new data
visualization method to transfer the 1D series type of data to
the 2D matrix type of data is proposed, including vibration
data collection by sensor arrays, as well as data mapping by
perspective transformation. Since the typical magnetic circuit
structure for the PSH main transformer is in the type of three-
phase five-limb transformer, the closer the sensor is to the
areas over against the winding and core, the more precise the
mechanical state can be obtained. The setup for vibration
sensor arrays is shown in Figure 4. The arrays are made up
of 21 measuring points in total, where 9 measuring points are
set on the high-voltage side and low-voltage side, respectively,
and 3 additional measuring points are set on top of the tank.
The measuring points are located on top, middle, and bottom
sides of the surface areas over against A, B, and C phases of

FIGURE 8 | Layout of measuring points on main transformer.
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windings. The 16-channel acceleration sensor system
DH5902N is used in this study, with a capability of
frequency response ranging from 0.5 Hz to 7 kHz.

The vibration signal measurement system is composed of
four parts: data acquisition, data integration, data output, and
back-end processing. Firstly, the vibration signal of
transformer tank surface is collected by vibration
acceleration sensor, used in the process of acquisition of

the synchronous clock line to realize synchronous
measurement between multiple devices, each channel
signal processing chip between mutual independence, can
realize the multichannel vibration signals, and the exciting
current signal synchronous real-time collection and analysis.
Then the vibration tester completes the sensor signal
conversion analysis and output to the post-processing end.

The typical sampling of vibration data collected from the
transformer tank is shown in Figure 5. Under the same
operation condition, the waveform and amplitude of vibration
data are quite similar in different time periods. Once the
operation condition is changed, the shape of vibration curves
changes significantly, which indicates that the extremum on the
periodically changed vibration curves can be taken as the
signature feature for transformer mode recognition. For the
simplification of data processing, the extremum of each
measuring point is defined as the mean value of all the peak
vibration values measured in 10 min continually.

After the original vibration data are processed by feature
extraction and data numeralization, the data mapping and
data visualization of transformer vibration can be carried out.
The detailed steps for the perspective transformation of 1D series
data to 2D matrix data are shown in Figure 6.

Figure 6 shows the solution process of the vibration
nephogram based on the linear interpolation method.
Taking the position of the vibration measurement point as
the node, the surface of the tank is divided into regions, and
each region is interpolated to obtain the distribution of the
characteristic value of the overall vibration acceleration. In
Figure 6, area 11 is taken as an example, and it is divided into
m×n meshes, and the vibration acceleration values at the
nodes of the generated meshes are solved. The specific value
of m × n can be set according to the actual resolution
requirements. The red in the figure is the position of the
vibration measurement point, the blue is the position of the
point to be determined, Ui. j is the vibration acceleration
characteristic value at (i,j), fu is the x-direction interpolation
function, and su is the y-direction interpolation function.
Since the influence of the axial force of the winding vibration
is greater than the amplitude force, the y-axis is the main
interpolation direction, and x is the auxiliary interpolation
direction. The values of u0,0∼um,0、u0,n ∼ um,n are solved by
fu, ui,j (1 ≤ i ≤ m, 1 ≤ j ≤ n). The value su is solved, and fu and
su are shown in the following Formula 1:

fui,o � u0,0 + i

m
(um,0 − u0,0), 0≤ i≤m,

fui,n � u0,n + i

m
(um,n − u0,n), 0≤ i≤m, and

sui,j � ui,0 + i

n
(ui,n − ui,0), 1≤ j≤ n.

(1)

After the characteristic values of vibration acceleration on
each node in all regions of the whole tank surface are obtained,
the pseudo-color image processing is unified, that is, the
complete vibration cloud image of the tank surface can be
obtained.

FIGURE 9 | Typical vibration map. (A) Typical no-load vibration cloud
image of main transformer. (B) Typical full load vibration cloud image of main
transformer. (C) Typical DC bias magnetic vibration cloud image of main
transformer. (D) Typical vibration spectrum of main transformer short
circuit.
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PSH Operation Status Recognition Based
on Convolutional Neural Network
As a typical representative of deep learning, the convolutional
neural network was first proposed by biologists Huber and
Visser in 1962 in the study of cat visual system. It is a kind of
feedforward neural network. As a supervised learning
algorithm, CNN, like the traditional neural network, must
use labeled data to conduct model training, so as to predict
the samples to be recognized through the model.

As a multilayer neural network, the basic network structure of
CNN is shown in Figure 7. First, the one-dimensional or
multidimensional array is input from the input layer, and then
feature extraction and sampling processing are carried out
through the convolution layer C1 and sampling layer S1. The
operations of convolution layer C2 and sampling layer S2 are
consistent with those of C1 and S1. Finally, the full connection
layer expands it into a one-dimensional vector F3 and passes it to
the output layer through activation function (Zhao et al., 2020).

The convolution layer contains multiple convolution kernels,
and each of its constituent elements corresponds to a weight
coefficient and a deviation quantity. Feature extraction and

FIGURE 10 | Recognition accuracy under different.

FIGURE 11 | Loss value under different activation functions.

TABLE 2 | Recognition results under different number of convolution kernels.

Number
of convolution kernels

Recognition accuracy % Loss value

2 88.54 0.047032
3 89.26 0.046895
4 89.13 0.050409
5 89.68 0.053083
6 88.54 0.058542
7 89.21 0.056897
8 87.29 0.056255

TABLE 3 | Recognition results under different recognition models.

Algorithm Recognition accuracy %

CNN 89.7
BP 79.9
SVM 83.2

Frontiers in Energy Research | www.frontiersin.org January 2022 | Volume 9 | Article 8279428

Lu et al. Hydroelectric Energy Storage Risk Assessment

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


nephograms are carried out by the inner product. Let each input
sample be x, the number of convolution kernels be n, and the size
of all convolution kernels bem × 1. Generally, the output form of
the kth convolution kernel of the convolution layer is shown in
Formula 2:

aC,i,j � f⎛⎝∑m
k�1

W(k)
j · x(k)

i + bj⎞⎠ . (2)

In Formula 2, aC,i,j represents the ith element of the output of
the kth convolution kernel;W(k)

j represents the jth element of the
kth convolution kernel; bj represents the bias of the kth
convolution kernel; andf represents the activation function
adopted by the convolution layer.

The sampling layer, also known as the pooling layer, is a
sampling operation after feature extraction, as shown in S1 and S2
in Figure 7. After feature extraction at the convolutional layer, the
pooling layer replaces the value of the pixel with the statistical
value of the nephogram of the adjacent area of a single pixel
through the preset pooling function to complete the selection and
filtering of feature information. At the end of the sampling
process, the size of the feature graph will be reduced, but its
number remains constant. Assuming that the sampling width is q
× 1, generally, the output result of the sampling layer S matching
the kth convolution kernel is as follows:

aS,j,k �
∑jq

i�jq−q+1ac,i,j

q
. (3)

In Formula 3, aS,j,k represents the jth output of the kth

convolution check at the sampling layer and aC,i,k represent
the ith element of the output of the kth convolution kernel.

The model uses the back-propagation algorithm to optimize
the network structure and solve the network parameters, that is,
the excitation propagation and weight update are carried out
repeatedly and iteratively until the objective function converges to
a preset range. The solving process of network parameters is
divided into two steps. First, the cost function between the actual
output and the ideal output is calculated, and then the network is
trained with the criterion of minimizing the cost function
through the back-propagation algorithm of supervised
learning. The training loss function is shown in Formula 4:

loss � 1
2
∑t
n�1

∑c
k�1

(yn
k − xn

k)2 (4)

In Formula 4, xnj represents the jth actual output of the
network corresponding to the nth sample; yn

j represents the
k-dimension label corresponding to the ideal state of the nth
sample; t is the number of training samples; and c is the number
of categories.

FIGURE 12 | Establishment of digital twin for key equipment in PSH based on the proposed method.
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The calculation formula of the iteratively updated weight W
and bias parameter b is given as follows:

Wp � Wp − ηδp+1xp and (5)

bp � bp − ηδp+1 . (6)

In Formulas 5, 6: xp represents the output of layer p; d
p+1represents the error term of p+1 layer; and h stands for
learning rate.

FIELD TEST RESULTS AND DISCUSSIONS

Origin of Vibration Data and Construction of
Data Set
The data are from six main transformers of a pumped storage power
station, all of which have been running for more than 10 years. The
data comes from six main transformers of a pumped-storage power
station. These transformers have been in operation for more than
10 years, and they are all main-transformer three-phase five-column
structures. No. 1, 3, and 5 transformers are non-excitation voltage
regulating transformers, and No. 2, 5, and 6 transformers are on-load
voltage regulating transformers. The difference between them is that
the pressure regulation range and cooling method are different, and
other parameters are the same. Table 1 is the main technical
parameters of the two different main transformers.

DH5902N data acquisition and analysis system was used for
vibration signal measurement. The sensor was 1A111E IEPE
piezoelectric acceleration sensor with a axial sensitivity of 100mV/
g and sampling frequency of 20 kHz. The sensors are directly attached
to the surface of the main transformer tank surface for measurement,
and 9 side points are selected on the wide side of each transformer, as
shown in Figure 8. Each device operating condition corresponds to a
data label, and each data label contains time domain, frequency
domain, and time–frequency atlas. After visualization processing of
the time domain data of 9 electrical measurements, the generated
visualized spectra under four typical working conditions are shown in
Figure 9, including the visualized cloud images of no load, full load,
DC magnetic bias, and short circuit working conditions.

Effect of Network Parameters on the
Recognition Efficiency
In the structure of convolutional neural network, the accuracy
and convergence speed of the network will change with the
activation function selected at the convolutional layer.
Sigmoid, tanh, and leaky ReLU functions are three activation
functions commonly used in the convolution layer, and their
formulas are, respectively, given in the following equations.

Sigmoid function is

f(x) � (1 + e−x)−1 . (7)

Tanh function is

f(x) � ex − e−x

ex − e−x
. (8)

Leaky ReLU function is

f(x) � max(αx, x) . (9)

Considering the influence of different activation functions
on the experimental results, three different activation functions
were used in the convolution layer to conduct comparative
experiments, and the comparison results are shown in Figures
10, 11. It can be seen that when leaky ReLU function is selected as
the activation function in the convolution layer, the classification
recognition effect of this model is the best. When leaky ReLU
function is used as the activation function in the convolution
layer, the number of iterations of the model is the least and the
recognition accuracy is the highest, reaching 89.7%. It is
significantly higher than the recognition results under tanh
function and sigmoid function, and the loss value after
convergence is far smaller than those in the other two cases.

In the structure of the convolutional neural network, the number
of convolutional kernels will affect the recognition accuracy of the
model. Therefore, this study compares and analyzes the recognition
results under different convolution kernels through experiments. As
can be seen from Table 2, loss values under different numbers of
convolution kernels range from 0.11 to 0.13, which all meet the
requirements of convergence. As can be seen from the comparison
results of recognition accuracy, when the number of convolutional
kernels is 5, the accuracy is 89.78%. Therefore, whenfive convolution
kernels are selected at the convolution layer, the classification effect
of the algorithm is the best.

Comparison of Different Deep Learning
Models
In order to verify the application value of the algorithm in the
field of main transformer vibration pattern recognition, the
SVM algorithm and BP neural network algorithm are selected
to compare with the algorithm in this study among the existing
conventional algorithms, and the genetic algorithm is selected
to optimize its network parameters, as shown in Table 3. All
experiments in this article were conducted on computers
equipped with an I7-8700 processor, NVDIA TITAN X
graphics card, and 16G memory.

First, the unified and normalized training data set is used as the
input of the support vector machine to obtain the training model,
and then the test data set is substituted into the training model to
test the accuracy of the training model. Second, the unified and
normalized training data set is used as the input of the support
vector machine to obtain the training model, and then the test
data set is substituted into the training model to test the accuracy
of the trainingmodel. Among them, radial basis kernel function is
selected for support vector machine, crossover probability is 0.3,
mutation probability is 0.01, and genetic algorithm is used to
optimize the parameters of SVM, where the maximum
evolutionary algebra is 200, the number of individuals is 50,
the value of penalty factor C is (0.01, 200), the value of kernel
function parameter G is (0.001, 200), and the generation gap is
0.9. The final parameter selection result is C � 38.245, g � 0.0568.

Taking the same experimental data set as the input of BP
neural network and SVM algorithm, the recognition accuracy is
79.9 and 83.2%, respectively. The recognition rate of CNN neural
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network has certain advantages over these two traditional
algorithms. Experimental results show that the recognition
method based on convolutional neural network has better
recognition performance than the traditional algorithm, which
reflects a good advance.

Promotion of the Proposed Method on Risk
Assessment of PSH
The proposed PSH operation risk assessment method based on
vibration visualization and deep learning can be extended to the
digital operation maintenance of PSH. As shown in Figure 12 the
digital twin of the PSH system can be evaluated by building the
refined 3Dmodel of main transformers in the multi-physical field
coupling system with visualized monitoring data as reference. In
order to ensure the digital model to cover all the typical faults and
defects that could possibly occur during the lifetime of PSH, other
non-electrical signals such as infrared and ultraviolet detections
are also advised for condition monitoring of main transformers.
The refined model could be reproduced from a scaling modeling
data of the 3D scan of the actual equipment.

CONCLUSION

This article proposes a PSH main transformer operating-state
recognition model based on mechanical vibration signal
artificial visualization and deep learning. By means of linear
interpolation and data mapping for vibration data of 21
measuring points with uniform distribution of the main
transformer groove surface, two-dimensional visualization
of transformer surface vibration is realized. The vibration
information with transformer load information is

transformed into feature images and trained by the
designated CNN network, thus realizing the classification of
working state. This method has been applied to the status
monitoring of the main transformer of PSH, realizing the
status recognition of the four modes of the main
transformer. This method provides a new idea for operation
risk assessment of hydroelectric energy storage, that is,
transformer vibration signal is periodically detected by
embedded IOT sensor array. On the one hand, transformer
failure warning can be achieved in a short time. On the other
hand, the health index of transformer can be estimated
through the change trend of vibration data in the life cycle
obtained by long-term monitoring, and the formulation of the
optimal maintenance plan can be finally realized (Chen and
Guestrin, 2016, O’Shaughnessy et al., 2021, Duan et al., 2010,
Aydin et al., 2008).
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