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A novel echo state network (ESN), referred to as a fuzzy-weighted echo state network
(FWESN), is proposed by using the structural information of data sets to improve the
performance of the classical ESN. The information is incorporated into the classical ESN via
the concept of Takagi–Sugeno (TS) models/rules. We employ the fuzzy c-mean clustering
method to extract the information based on the given data set. The antecedent part of the
TS model is determined by the information. Then, we obtain new fuzzy rules by replacing
the affine models in the consequent part of each TS rule with a classical ESN.
Consequently, the output of the proposed FWESN is calculated through inferring these
new fuzzy rules by a fuzzy-weighted mechanism. The corresponding reservoir is consisted
of the sub-reservoirs of the new fuzzy rules. Furthermore, we prove that the FWESN has an
echo state property by setting the largest spectrum radium of all the internal weight
matrices in the sub-reservoirs less than one. Finally, a nonlinear dynamic system and five
nonlinear time series are employed to validate the FWESN.
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1 INTRODUCTION

1.1 Summary of the Echo State Network
The recurrent network model describes the change process of the states of research object with
time and space. Since the complexity of the problem increases and the computing power
enhances, various recurrent networks have been successfully applied to different application
fields, such as echo state networks in time series prediction (Jaeger and Haas, 2004), Boolean
networks in games (Le et al., 2021; Le et al., 2020), and optimal control (Chen et al., 2019; Toyoda
and Wu, 2021; Wu et al., 2021).

Echo state networks (ESNs) are a special case of recurrent neural networks (RNNs) proposed
by Jaeger and Haas (2004). Unlike the traditional RNN, the recurrent layer of ESN uses a large
number of neurons, and the connection weights between neurons are randomly generated and
sparse. In an ESN, the recurrent layer is called a reservoir. The input signals drive the reservoir,
and the trainable output neurons combine the output of the reservoir to generate task-special
temporal patterns. This new RNN paradigm is referred to as reservoir computing. Similar to
ESNs, liquid state machines (Maass et al., 2002), temporal recurrent neural networks (Steil,
2006), and decorrectation–backpropagation learning (LukošAevicius and Jaeger, 2009), and
convolution and deep echo state networks (Ma et al., 2021; Wang et al., 2021) are all the instances
of reservoir computing. The difference between ESNs and them is that the former employs
analog neurons. The problem of traditional RNN is the lack of an effective supervised training
algorithm. This problem is largely overcome by ESNs since only output weights are trained.
ESNs have been successfully applied in a wide range of temporal tasks (Jaeger and Haas, 2004;
Holzmann and Hauser, 2010; Song and Feng, 2010; Babinec and Pospichal, 2012; Xu et al., 2019;
Yang and Zhao, 2020), especially in the prediction of nonlinear chaotic time series (Jaeger and
Haas, 2004; Wang et al., 2021).
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1.2 Summary of the Related Work and
Motivation
The random and sparse connection weights between neurons in
the reservoir bring much convenience for ESN applications.
However, just simply creating at random is unsatisfactory for
a specific modeling task (LukošAevicius and Jaeger, 2009).
Recently, one of main streams for ESN research has been
focused on developing a suitable reservoir to improve its
performance (Jaeger, 2007; Holzmann and Hauser, 2010; Song
and Feng, 2010; Babinec and Pospichal, 2012; Sheng et al., 2012).
The fact shows that a specific architectural variant of the standard
ESN leads to better results than that of a naive random creation.
For examples, a new ESN with arbitrary infinite impulse response
filter neurons is proposed for the task of learning multiple
attractors or signal with different time scales. Then, the
trainable delays in the synapse connection of output neurons
are added to improve the memory capacity of ESNs (Holzmann
and Hauser, 2010). Inspired by the simulation results of some
nonlinear time series prediction, a complex ESN is proposed, in
which the connection process of its reservoir is determined by five
growth factors (Song and Feng, 2010). A complex prediction
system is created by combining the local expert ESN with
different memory length for solving the troubles of ESN with
fixed memory length in applications (Babinec and Pospichal,
2012). A hierarchical architecture of ESN is presented for
multi-scale time series. Its core ingredient of each layer is
an ESN. This architecture as a whole is trained by a stochastic
error gradient descent (Jaeger, 2007). An improved ESN is
proposed to predict the noisy nonlinear time series, in which
the uncertainties from internal states and outputs are
meanwhile considered in accordance with the industrial
practice (Sheng et al., 2012).

Note that uncertain information, noises, and structure
information often exist in the systems (Liu and Xue, 2012;
Shen et al., 2020; Shen and Raksincharoensak, 2021a,b). Thus,
an extensive work has been carried out on designing a specific
reservoir for a given modeling task as mentioned previously.
However, the structure information for the input/output data is
ignored when the reservoir is designed or revised. In fact, for
many temporal tasks and pattern recognition problems, the data
sets appear in homogenous groups, and this structural
information can be exploited to facilitate the training process,
so that the prediction accuracy can be further improved (Wang
et al., 2007; Liu and Xue, 2012). Thus, it becomes a necessary
requirement to consider the effects of data structure information
on the ESN and then to design a suitable reservoir for a specific
modeling task.

1.3 Main Idea and Contributions
This study aims at constructing a new type of ESN, referred to as a
fuzzy-weighted echo state network (FWESN). The FWESN is able
to incorporate the structural information of data sets into the
classical ESN via the TS model. Actually, the FWESN can be
regarded as a certain ESN, in which the output is calculated by a
fuzzy-weighted mechanism, and the corresponding reservoir
consists of sub-reservoirs corresponding to TS rules. Similar to
the ESN, the echo state property for the FWESN is obtained when

all weighted matrices of sub-reservoirs satisfy that their
spectrums are less than one.

The contribution of this article lies in the following aspects:
first, the structural information of the data set is incorporated
into the classical ESN to enhance its performance in
applications.

Second, the structure of FWESN is parallel, which is
distinguished from the hierarchical architecture of ESN. The
FWESN is trained efficiently by a linear regression problem,
which is the same as the training algorithms of the ESN and TS
model. Thus, the FWESN avoids the problem of vanishing
gradients, as the hierarchical ESN, deep feedforward neural
networks, and fully trained recurrent neural networks based
on gradient-descent methods.

The remaining article is structured as follows: preliminaries
are given in Section 2. The architecture, echo state property, and
training algorithm of FWESN are discussed in Section 3.
Experiments are performed by comparing FWESN with the
ESN and TS model in Section 4. Finally, conclusions are
drawn in Section 5.

2 PRELIMINARIES

In this section, we give a brief introduction to typical ESNs and TS
models. A more thorough treatments concerning them can be
referred to Takagi and Sugeno (1985), Jaeger and Haas (2004),
and Holzmann and Hauser (2010).

2.1 Echo State Networks
An ESN can be represented by state update and output equations.
We formulate the ESN as shown in Figure 1.

The activation of internal units in a reservoir is updated
according to the following equations:.

x n( ) � f Winu n( ) +Wx n − 1( ) +Wbacky n − 1( )( ). (1)

Here, x(n) � (x1(n), . . . , xN(n))T is a state vector of the
reservoir, u(n) � (u1(n), . . . , uNin(n))T ∈ RNin is an input
vector, y(n − 1) � (y1(n − 1), . . . , yNout(n − 1))T ∈ RNout is an
output vector, and Win ∈ RN×Nin , W ∈ RN×N, and
Wback ∈ RN×Nout are the input, internal, connection weight,
and feedback matrices, respectively. R is the real number. f(·) �
(f1, . . . , fN)T stands for an activation function vector. For
example, fi (·) � tanh (·), i � 1, 2, . . ., N. The full connection

FIGURE 1 | Architecture of the echo state network.
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of internal units in the reservoir is shown in Figure 2. The output
y(n) can be expressed as

y n( ) � WoutS n( ), (2)

where

S n( ) � uT n( ), xT n( ), yT n − 1( )[ ]T ∈ RNin+N+Nout ,

and

Wout ∈ RNout× Nin+N+Nout( )

is the output weight matrix.
There are several notions of stability relevant to ESNs, where

the echo state property is the most basic stability property (Jaeger
and Haas, 2004).

Let (u(n))n∈J ∈ UJ represent input sequences, where U is
compact. �u±∞, �u+∞, �u−∞, and �uh denote left-right-infinite
J ∈ Z, right-infinite J � k, k + 1, . . . for some k ∈ Z, left-
infinite, and finite h input sequences, respectively. Z is the
integer. The network state update operator G is defined as
follows (Jaeger and Haas, 2004):

x n + h( ) � G x n( ), y n( ), �uh( ) (3)

to denote the network state that results from an iterated
application of Eq. 1. If the input sequence �uh �
(u(n + 1), . . . , u(n + h)) is fed into the network, the network
is in state x(n) and has output y(n) at time n. In the network
without output feedback, Eq. 3 is simplified to

x n + h( ) � G x n( ), �uh( ).
Definition 1: Assume that the inputs are drawn from a

compact input space U , network states lie in a compact set A,
and the network has no output feedback connections. Let N be
the natural numbers. Then, the network has echo states, if the
network state x(n) is uniquely determined by any left-infinite
input sequences �u∞. More precisely, this means that for every
input sequence . . . , u(n − 1), u(n) ∈ U−N, for all state
sequences . . ., x (n − 1), x(n) and ~x(n − 1), ~x(n) ∈ A−N

where x(i) � G (x (i − 1), u(i)) and ~x(i) � G(~x(i − 1), u(i)),
and it holds that x(n) � ~x(n).

The condition of Def. 1 is hard to check in practice.
Fortunately, a sufficient condition is given in Jaeger and Haas
(2004), which is easily checked.

Proposition 1: Assume a sigmoid network with unit output
functions fi � tanh. Let the weight matrixW satisfy σmax � ∧ < 1,
where σmax is the largest singular value of W. Then,
d(G(x, u)), G(~x, u)<∧ d(x, ~x) for all inputs u, for all states
x, ~x ∈ [−1, 1]N, where d is an Euclidean distance on RN. This
implies the echo states for all inputs u, for all states
x, ~x ∈ [−1, 1]N.

2.2 Takagi–Sugeno Models
Among various fuzzy modeling themes, the TS model (Takagi
and Sugeno, 1985) has been one of the most popular modeling
frameworks. A general TS model employs an affine model in the
consequent part for every fuzzy rule. We formulate the TS model
as shown in Figure 3.

A TS model can be represented with r fuzzy rules and each
fuzzy rule has the following form:

If u1 n( ) is Mi
1 and . . . and uNin n( ) is Mi

Nin

then y n( ) � hi u n( )( ), i � 1, 2, . . . , r
, (4)

where u(n) � [u1(n), . . . , uNin]T ∈ RNin is the input vector of the
antecedent part of the fuzzy rule at time n. r is the number of the
rule. Mi

j are fuzzy sets.

y n( ) � hi u n( )( ) � aiu n( )
is the output from the ith fuzzy rule, where ai � (ai1, . . . , aiNin

) is
the vector of consequent parameters of the ith fuzzy rule.

Given an input u(n), the final output of the fuzzy system is
inferred as follows:

y n( ) � ∑r
i�1

βi u n( )( )hi u n( )( ), (5)

where βi(u(n)) � ∏Nin
j�1M

i
j(uj(n))/∑r

i�1∏Nin
j�1M

i
j(uj(n)),

Mi
j(uj(n)) is the membership grade of uj(n) in Mi

j and i � 1,
2, . . ., r, j � 1, 2, . . ., Nin.

3 FUZZY-WEIGHTED ECHO STATE
NETWORKS

In this section, we propose a new framework based on the ESN
and TS model, which is referred to as a fuzzy-weighted echo state
network (FWESN). We further prove that an FWESN has the

FIGURE 2 | Full connection of internal units in a reservoir.

FIGURE 3 | Architecture of the TS model.
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echo state property. Finally, we discuss the training algorithm of
FWESN.

3.1 Architecture of Fuzzy-Weighted Echo
State Networks
FWESNs are designed by taking advantage of TS models to
improve ESN (1). The basic idea is to replace the affine model
of each fuzzy rule (4) with ESN (1). FWESN is formulated as
shown in Figure 4.

The FWESN can be represented by the fuzzy rules as follows:

If u1 n( ) is Mi
1 and . . . and uNin is M

i
Nin

,
then y n( ) � Wout

i Si n( ), i � 1, 2, . . . , r
, (6)

where y(n) is the output for the ith fuzzy rule (6). y(n) is
determined by the following state update equations:

xi n( ) � fi Win
i u n( ) +Wix

i n − 1( ) +Wback
i y n − 1( )( ). (7)

Here, Si(n) � (uT(n), (xi(n))T, yT(n − 1))T, xi(n) ∈ RNi is
the state vector of the reservoir, Win

i ∈ RNi×Nin , Wi ∈ RNi×Ni ,
Wback

i ∈ RNi×Nout , and Wout
i ∈ RNout×(Nin+Ni+Nout) are internal

input, internal connection weight, and output weight
matrices for the ith fuzzy rule (6), respectively. fi(·) ∈ RNi

is the neuron activation function vector, applied element-wise
for the ith fuzzy rule (6). Then, the corresponding output of
FWESN is inferred by the fuzzy-weighted mechanism. From
Eqs. 5, 6, it follows that

y n( ) � ∑r
i�1

βi u n( )( )Wout
i Si n( ). (8)

Let

Win � Win
1 ,W

in
2 , . . . ,W

in
r( )T ∈ R

∑r

i�1Ni( )×Nin ,

Wback � Wback
1 ,Wback

2 , . . . ,Wback
r( )T ∈ R

∑r

i�1Ni( )×Nout ,

F � f1, f2 . . . , fr( )T ∈ R
∑r

i�1Ni ,

W � diag W1,W2, . . . ,Wr( ) ∈ R
∑r

i�1Ni( )× ∑r

i�1Ni( ),
X n( ) � x1 n( )( )T, x2 n( )( )T, . . . , xr n( )( )T[ ] ∈ R

∑r

i�1Ni .

By Eq. 6, a new reservoir can be reformulated, where the state
update equations are written as

X n( ) � F Winu n( ) +WX n − 1( ) +Wbacky n − 1( )( ). (9)

Additionally, the same shorthand is used for the FWESN and
ESN. Thus, from Eqs. 3, 9, it follows that

X n + h( ) � G X n( ), y n( ), �uh( ), (10)

which denotes the network state resulting from an iterated
applications. For an FWESN without feedback, Eq. 10 is
simplified as

X n + h( ) � G x n( ), �uh( ). (11)

For clarity, we use (β, Win, W, Wback, Wout) to denote an
FWESN, where β � (β1, β2, . . . , βr)T. We use (Win, W, Wback) to
denote an untrained ESN.

3.2 Discussion on Several Special Cases for
Fuzzy-Weighted Echo State Networks
Case 1: From the architecture of FWESN, the classical ESN can be
regarded as a special case of FWESN. That is, let r � 1 and

M1
j uj n( )( ) � 1, uj � uj n( ),

0, else,
{ j � 1, 2, . . . , Nin (12)

in Eq. 6. Then, the final output of FWESN (8) is rewritten as

y n( ) � β1 u n( )( )Wout
1 S1 n( ) � Wout

1 S1 n( ).
The corresponding update Eq.7 is expressed as

x1 n( ) � f1 Win
1 u n( ) +W1x n − 1( ) +Wback

1 y n − 1( )( ),
which is the same as ESN (1).

Case 2: The TS model (4) can be regarded as a special case of
FWESN (6). That is, let fi � (1,0,. . .,0)T in Eq. 6. It follows that

xi n( ) � fi � 1, 0, . . . , 0( )T

and

Si n( ) � uT n( ), 1, 0, . . . , 0, yT n − 1( )( )T.
Let

Wout
i � ai1, . . . , a

i
Nin

, ai0, 0, . . . , 0, 0, . . . , 0( ).
Then, we have the output of the ith fuzzy rule (6) as follows:

y n( ) � Wout
i Si n( ) � ai0 + ai1u1 n( ) +/ + aiNin

uNin n( ).
It is obvious that the fuzzy rule (6) has the same form as that of

the fuzzy rule (4) based on the aforementioned conditions. Thus,
the FWESN degrades into the TS model (4).

3.3 Echo State Property of Fuzzy-Weighted
Echo State Networks
In this section, we will prove that the FWESN has the echo state
property for the case of the network without output feedback.

FIGURE 4 | Architecture of FWESN.
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Similar to Proposition 1, we give a sufficient condition for the
echo state property of the FWESN.

Proposition 2: Let U and X be two compact sets. ‖ · ‖2 is the
operator norm on the space of matrices corresponding to 2-
norms for vectors. Assume a sigmoid network (β,Win,W,Wback,
Wout) with unit output functions fi

j � tanh, i � 1, 2, . . .,Nin, j � 1,
2, . . ., Nout. Let σ(Wi) < 1 for i � 1, 2, . . ., r, where W � diag (W1,
W2, . . ., Wr). Then,

‖G X, u( ), G ~X, u( )‖2 < σ W( )‖X − ~X‖2,∀u ∈ U , X, ~X ∈ X .

This implies the echo states for all inputs u ∈ U and states
X, ~X ∈ X .

Proof: ConsideringW � diag (W1,W2, . . .,Wr) and σ(Wi) < 1,
we have

σ W( ) � λmax WTW( )( )1/2
� λmax diag WT

1W1, . . . ,W
T
rWr( )( )[ ]1/2

� max1≤i≤r σ WT
i Wi( )1/2( )< 1

. (13)

Here, λmax (·) is the largest absolute value of an eigenvector of
matrix. For two different statesX(n) and ~X(n), byEqs. 9, 10, we have
‖X n( ) − ~X n( )‖2 � ‖G X n − 1( ), u n( )( ) − G ~X n − 1( ), u n( )( )‖2

� ‖F Winu n( ) +WX n − 1( )( )
−F Winu n( ) −W ~X n − 1( )( )‖2

.

(14)

For fi
j � tanh, it follows that

‖X n( ) − ~X n( )‖2 ≤ ‖Winu n( ) +WX n − 1( ) −Winu n( ) −W ~X n − 1( )‖2
≤ ‖W‖2‖X n − 1( ) − ~X n − 1( )‖2
� δ W( )‖X n − 1( ) − ~X n − 1( )‖2,

where

‖W‖2 � supX≠0
‖WX‖2
‖X‖2 � δ W( ).

That is, the Lipschitz condition obviously results in echo states for
the FWESN.

Remark 1: From the proof of Proposition 2, we select that the
updated Eq. 1 is a special form based on the conditions σ(Wi) < 1
for i � 1, 2, . . ., r.

3.4 Training Algorithm of Fuzzy-Weighted
Echo State Networks
We state the training algorithm of FWESN based on the given
training input/output pairs (u(n), z(n)) (n � 0, 1, 2, . . ., k). First,
we employ a subtractive clustering approach (Bezdek, 1981) to
determine the membership gradeMi

j(uj(n)) for the ith fuzzy rule
(6), where i � 1, 2, . . ., r. Second, we randomly generate the
untrained networks (Win

i ,Wi,Wback
i ), which satisfy the echo state

property. Third, we update the network states xi(n) by Eq. 7 and
collect the concatenated input/reservoir/previous-output states
(u(n), xi(n), y (n − 1)), i � 1, 2, . . ., r. Fourth, we calculate
Wout

i (i � 1, 2, . . . , r) using the output y(n) of FWESN (8) to
approximate z(n) (n � 0, 1, 2, . . ., k) by the mean square error.
That is, the trained FWESN is obtained.

The procedure of the proposed training algorithm is described
by four steps as follows:

Step 1 Calculate βi (u(n)) (i � 1, 2, . . ., r) in Eq. 8 by the fuzzy
c-mean clustering approach.

Step 2 Procure the untrained network (Win
i ,W

i,Wback
i ) for i �

1, 2, . . ., r.

1) Suppose the dimension of the state vector is N for r reservoirs
corresponding to r fuzzy rules (5).

2) Initiate i � 1.
3) Randomly generate an input weight matrix Win, an output

backpropogation weight matrix Wback, and a matrix
W0 ∈ RN×N. Normalize W0 to a matrix W1 by letting
W1 � 1

ρW0, where ρ is the spectral radius of W0. Scale W1 to
W2 � γW1 (γ < 1).

4) Let W2 � Wi,Win
Q � Win

i ,W
back
Q � Wback

i ; i � i + 1.
5) If i > r, end. Else go to Step 3.

Step 3 Sample network training dynamics for each fuzzy
rule (4).

1) Let i � 1. Initial the state of the untrained network
(Win

i ,W
i,Wback

i ) arbitrarily, typically xi (0) � 0 and y (0) � 0.
2) Drive the network (Win

i ,W
i,Wback

i ) for time n � 1, 2, . . . , T ,
by presenting the teacher input u(n), by presenting the teacher
output y (n − 1), and by computing xi(n) � fi(Win

i u(n) +
Wix(n − 1) +Wback

i y(n − 1)) for time n � 1, 2, . . . , T .
3) For each time equal or larger than an initial washout time T 1,

collect xi(n), u(n), and y(n) for T 1 ≤ n≤ T . One has obtained
Si(n) � (xT

i , u
T(n), yT(n − 1))T, T 1 ≤ n≤ T .

4) i � i + 1, if i > r, end; else go to Step 2.

Step 4 Calculate the output weights.

1) Let

Y � y T 1( ), y T 1 + 1( ), . . . , y T( )( )T ∈ RNout× T −T 1+1( ),

Wout � Wout
1 ,Wout

2 , . . . ,Wout
r( ) ∈ RNout× r Nin+N+Nout( )[ ].

Collect βi (u(n))Si(n) as a state matrix S for
n � T 1, T 1 + 1, . . . , T , where S ∈ R[r(Nin+N+Nout)]×(T −T 1+1).
From Eq. 8, we have y � ∑r

i�1W
out
i [βiu(n)Si(n)].

2) By the least square method, the output weight Wout is
calculated by Wout � (SST)YST.

Remark 2: By Step 2, we obtain untrained networks
(Win

i ,W
i,Wback

i ) for i � 1, 2, . . ., r. Note that we limit the spectral
radius of the internal weight matrix Wi(i � 1, 2, . . ., r) less than one,
which guarantees that the network has the echo state property.

4 EXPERIMENTS

We have performed some experiments to validate the FWESN in
this study. We have shown that the FWESN has better
performance than the ESN owing to the incorporation of
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structural information of data sets. The following terms are used
in the experiments:

Data sets: A nonlinear dynamic system (Juang, 2002) and five
nonlinear time series, i.e., Mackey-Class, Lorenz, ESTSP08(A),
ESTSP08(B), and ESTSP08(C), are used in the experiments. Here,
the nonlinear dynamic system is

yp k + 1( ) � g yp k( ), yp k − 1( ), yp k − 2( ), u k( ), u k − 1( )( ),
(15)

where

u k( ) �

sin πk/25( ), k< 250,
1.0, 250≤ k≤ 500,
−1.0, 500≤ k< 750,

0.3 sin
πk

25
( ) + 0.1 sin

πk

32
( ) + 0.6 sin

πk

10
( ), 750≤ k< 1000,

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

g x1, x2, x3, x4( ) � x1x2x3 x3 − 1( ) + x4

1 + x2
2 + x2

3

.

yp(k) and u(k) are the output and input, respectively. In the
experiment, (u(k), yp (k − 1)) and yp(k) are the inputs and outputs
of algorithms, respectively. The generate method of samples are
the same with that in Juang (2002).

Algorithms: Three algorithms, i.e., FWESN, ESN, and TS
model, are used in the experiments. The neurons in the form of
hyperbolic tangent functions are used for the ESN and FWESN.

Parameters: r is the number of fuzzy rules. The main
parameters of the reservoir are the scale of the reservoir N, the
sparseness of the reservoir SD, the spectrum radium of the
internal weight matrices in the reservoir SR, the input-unit
scale IS, and shifting IT. In the experiments, FWESN and ESN
use the same scale N, where N � rNi for FWESN, where Ni

represents the scales of sub-reservoirs corresponding to Eq. 6,
where i � 1, 2, . . ., r. Moreover, N1 � N2 � . . . � Nr. Additionally,
SR, IS, IT, and SD in all sub-reservoirs of FWESN and the
reservoir of ESN are the same. Thus, from Eq. 13, it follows
that the spectra radius ofW in Eq. 9) is the same as that in Eq. 1.

Finally for the FWESN and TS model, both the parameters in the
antecedent part and the total number of fuzzy rules are the same.

Performance Indices: We choose the training and test errors
as the performance indices. All the errors refer to the mean square
errors in the experiment.

Experimental Results: The simulation results are summarized
in Table 1.

From Table 1, the FWESN achieves better performance than
the ESN and TS model under same conditions. The bold values in
Table 1 highlight the minimal test errors for each data set. For
example, by the FWESN and dynamic system Eq. 1, the training
and test errors are, respectively, 6.7 014e-6 and 0.001 3, which are
far less than the errors based on the ESN and TS model. Thus, the

TABLE 1 | Experiment results for FWESN, ESN, and TS model.

Data set Algorithm Training error Test error

Dynamic system (13) FWESN 6.7 014e-6 0.001 3
ESN 1.9 444e-4 0.217 3
TS model 0.036 7 0.186 3

Mackey-Class FWESN 3.7 599e-5 3.6 374e-5
ESN 0.001 5 0.000 6
TS model 0.035 7 0.032 8

Lorenz FWESN 0.017 9 0.021 4
ESN 0.189 6 0.226 7
TS model 0.194 4 0.264 5

ESTSP08 (A) FWESN 0.100 2 0.288 4
ESN 0.420 0 0.610 0
TS model 0.210 0 0.991 0

ESTSP08(B) FWESN 0.254 9 0.331 2
ESN 0.158 2 0.420 0
TS model 0.865 8 1.112 8

ESTSP08(C) FWESN 0.200 4 0.227 6
ESN 0.425 9 0.852 3
TS model 0.450 0 1.256 0

The bold values highlight the minimal test errors for each data set.

FIGURE 5 | Training and test errors for FWESN, ESN, and TS model.
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learning ability and generalization ability are obviously better
than the ESN and TS model. The similar results are obtained for
the five nonlinear time series from Figure 5. On the one hand, the
test errors of FWESN are less than those of ESN. The scale of
FWESN and ESN are the same. The comparison indicates that the
FWESN enhances the performance of ESN since we incorporate
the structural information of the data sets into the ESN via the
form of fuzzy weight. Additionally, the FWESN has better
prediction ability, especially for nonlinear time series, than the
TS model while their total number of fuzzy rules and the
antecedent part of each fuzzy rule are the same.

5 CONCLUSION

In this work, a novel framework with the advantages of the
ESN and TS model is proposed. As a generalization of both
ESN and TS model, the ESN and TS model are improved and
extended. Similar to the classical ESN, we prove that if the
largest spectrum radium of the internal unit weight matrix is
less than one, the FWESN has the echo state property. The
FWESN shows higher accuracy than the TS model and ESN.
For future work, we plan to continuously investigate the
underlying theory problem of FWESN, such as the tighter
stability conditions and approximation capability to a
dynamical system or static function. We attempt to more
different applications, for e.g., remaining useful life
predictions. Additionally, we will consider hardware, for
e.g., field-programmable gate array (FPGA) and

implementation of FWESN oriented to real-time
applications. Actually, with the development of computing
power and access to big data, the convolutional neural
networks are very popular owing to their obvious
advantages. Thus, one further research will focus on the
deep ESN based on the structural information of big data.
We believe that some better results will be obtained through
incorporating FWESN and deep-learning methods.
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