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With the improvement in the integration of solar power generation, photovoltaic (PV) power
forecasting plays a significant role in ensuring the operation security and stability of power
grids. At present, the widely used backpropagation (BP) and improved BP neural network
algorithm in short-term output prediction of PV power stations own the drawbacks of
neglection of meteorological factors and weather conditions in inputs. Meanwhile, the
existing traditional BP prediction model lacks a variety of numerical optimization
algorithms, such that the prediction error is large. Therefore, based on the PV power
plant in Lijiang, considering the related factors that influence PV output such as solar
irradiance, environmental temperature, atmospheric pressure, wind velocity, wind
direction, and historical generation data of the PV power station, three neural network
algorithms (i.e., BP, GA-BP, and PSO-BP) are utilized respectively in this work to construct
a short-term forecasting model of PV output. Simulation results show that GA-BP and
PSO-BP network forecasting models both obtain high prediction accuracy, which
indicates GA and PSO methods can effectively reduce the prediction errors in contrast
to the original BP model. In particular, PSO owns better applicability than GA, which can
further reduce the errors of the PV power prediction model.

Keywords: photovoltaic power short-term forecasting, BP neural network algorithm, GA-BP algorithm, PSO-BP
algorithm, solar energy

1 INTRODUCTION

Over the recent decades, global photovoltaic (PV)-installed capacity has been steadily and gradually
expanded (Yang et al., 2015; Yang et al., 2020a; Muniappan, 2021). It is worth noting that the PV unit
output is greatly affected by the operation environment, which is characterized by volatility,
intermittence, and periodicity (Yao et al., 2015; Zhang et al., 2015). As an uncontrolled energy
source, its fluctuation also brings new challenges to the stable and economic operation of power grids
(Wang Q et al., 2020; Padhy and Panda, 2021). For a PV power generation system, its geographical
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position, configuration, and the performance of the equipment
are critical inherent factors influencing the PV power output.
Moreover, PV power generation will also be influenced by
external conditions, such as illumination intensity, cloud
cover, temperature, and wind velocity. Due to the
characteristics of uncertainty, randomness, and periodicity
change with such meteorological factors, the output power of
the PV system is consequently random and varies intermittently,
which severely reduces the stability of the PV generator-set power
output. It is verified from relevant studies that when the PV power
penetration exceeds 10% of the total power, the maximum peak-
valley difference of the power grid will be significantly increased,
resulting in difficulties in peak load regulation, and affecting the
power quality and the stability of power grid operation.

Therefore, to predict the output power of the PV system in
24 h utilizing weather information, we formulated reasonable
dispatching and management scheme of the PV power plant and
duly adjusted the proportion of PV connected to the grid, which
can effectively reduce the impact to the power grid caused by the
disproportionality of PV connected to the grid, and then
achieving the security of grid-connected operation, smooth
running, and economic dispatch for better economic benefit
and social benefit.

Nowadays, the power forecasting approaches can be classified
into statistical prediction techniques, physical prediction
methods, and artificial intelligence prediction ways in view of
the principle of forecasting methods. In the literature (Kazem and
Yousif, 2017), the multi-layer perceptron (MLP), self-organizing
feature mapping (SOFM) network, feedforward network (FFN),
and support vector machine (SVM)model are compared in terms
of prediction performance and prediction accuracy, and SOFM
gets the lowest mean square error (MSE) value while the FFN
attains the highest prediction accuracy. The literature (Tang et al.,
2016) combines the entropy method and extreme learning
machine (ELM) to predict the PV output power. First, the
entropy method pre-process initial data which are the training
set of the network, and finally, the PV output power is predicted
by ELM, and experiments show that the combination of the
entropy method and ELM can efficiently accelerate the prediction
accuracy and the calculation speed. The solar zenith angle and
solar azimuth angle are added to the input data set of the neural
network to forecast PV power outputs. The results show that the
proposed artificial neural network (ANN) model attains high
accuracy in forecasting the PV power output under any weather
conditions (Huang et al., 2016; Li et al., 2021).

Until now, the technique of the backpropagation (BP) neural
network algorithm applied to solar power generation forecasting
has attained certain achievements (Kaushika et al., 2014; Shen
et al., 2019; Erdiwansyah et al., 2021). However, existing research
studies mostly adopt one single algorithm, the genetic algorithm
(GA) or particle swarm optimization (PSO), to improve the BP
prediction model, lacking the comparative study of these two
algorithms on the optimization effect for the BP prediction model
(Liu et al., 2015; Liu et al., 2016; Liu et al., 2021).

To overcome the above problems, this work comprehensively
considers the wind velocity, solar irradiance, wind direction,
atmospheric pressure, humidity, ambient temperature, and

other meteorological factors and the historical power
generation data of PV plants, and adopts three neural network
algorithms, i.e., BP, GA-BP, and PSO-BP, to construct a short-
term prediction model of PV power generation which can
forecast the power outputs of the PV system every 15 min
during the working time. The simulation test results verify
that the modified GA-BP and PSO-BP prediction models have
less error in contrast to the original BP forecasting model.
Especially, the PSO has better adaptability than GA in
optimizing the BP neural network.

The structure of this study is organized as follows: The
principle of the BP neural network and the power forecasting
model of traditional BP are introduced in Section 2. The main
optimization principle of how GA and PSO optimize the weights
and threshold values is elaborated in Section 3. In the meantime,
the PV output power short-term prediction models by GA-BP
and PSO-BP algorithms are constructed in Section 3. Simulation
tests of three algorithms and detailed statistical analysis on the
effectiveness of network optimization and forecasting model are
elaborated and analyzed in Section 4. Ultimately, three
conclusions are given in Section 5.

2 BP NEURAL NETWORK METHOD

2.1 Principle of the BP Algorithm
The BP neural network is a kind of multilayer feedforward neural
network with error backpropagation training, which displays
good performance in self-organizing learning and achieves an
arbitrary nonlinear map from inputs to outputs (Huang et al.,
2021; Zhao et al., 2021). Through the onward spread of input data
and the backward spread of the error value, the BP network
prediction model realizes the training process and then processes
large-scale data in parallel (Yan et al., 2020; Zhu et al., 2021). In
addition, it has certain robustness and fault tolerance, and the
typical construction of a common three-layer BP neural network
is represented in Figure 1.

FIGURE 1 | Basic structure of the BP neural network.
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As shown in Figure 1, the number of neuron nodes in the
input layer, hidden layer, and output layer are m, p and n,
respectively. Wij is the weight connected with the input layer
and the hidden layer;Wjk is the weight connected with the hidden
layer and the output layer; θj is the threshold of the hidden layer;
αk is the threshold of the output layer; (x1, x2, . . . , xm) and
(y1, y2, . . . , ym) are input and output vectors of the BP neural
network; Yh is the desired output; e is the difference value
between the desired output and the actual output.

The two stages of BP network learning are as follows: the
onward spread of input signals and the backward spread of error
(Wagner and Mccomb, 2019). In the first stage, the training
sample information is inputted in the input layer and then
processed by the hidden layer before being transferred to the
output layer. If there is an error between the actual output and the
predicted output, the second stage will be executed. The second
process is to transfer the error of the output signal from the
hidden layer to the input layer through the original path. Then,
based on the assigned error signal, each neuron of all layers
adjusts the connection weights and threshold values of each
network and finally makes the error signal gradually decrease.
These two processes are performed alternately and repeatedly
until the algorithm converges and the satisfactory error accuracy
is obtained.

The fundamental execution procedure of the BP algorithm is
elaborated as below:

a) Initialize all the weights and threshold values of the BP
network, i.e., set as a random figure within the range
of [−1,+1];

b) Specify a network training sample set, which contains the
input vector x and expected output result Yh;

c) Calculated the output values of the hidden layer and output
layer;

d) Adjust the connection weights and thresholds of the network.
The standard BP neural network algorithm adopts the
gradient descent learning approach to modify the weight
and threshold vector:

W(k + 1) � W(k) + αD(k), (1)

where the W(k + 1) and W(k) denote the network connection
weight/threshold value in the (k + 1) th and k th iteration; α
represents the training rate; D(k) is the negative gradient of
network error to weights and thresholds which indicates the
fastest descending direction of the gradient;

e) Repeat the steps b) to d) until attaining satisfactory error
accuracy.

2.2 Power Prediction Model of the BP
Network
In this work, the BP neural network algorithm is employed to
forecast the output power of a 10 MW PV station in Lijiang,
China. The three-layered construction is employed, and the input
layer is the atmospheric environment parameters consisting of

environment temperature, humidity, illumination intensity, wind
velocity, wind direction, atmospheric pressure, real irradiance,
and practical power outputs.

The initial node number of the hidden layer neuron p is
determined by empirical Eq. 2. And then, the trial-and-error
method is used to gradually adjust the number of the hidden layer
node to minimize the error of the neural network. Finally, the
number of the hidden layer node is set to be 10.

p � �����
m + n

√ + v, (2)

where the value of v ranges from 1 to 10.
The output layer has one neuron node. Therefore, the three-

layer neural network structure used for short-term power
prediction is 8-10-1.

The BP neural network algorithm can fit various complex
nonlinear relations between any inputs and outputs through
continuous training and learning and consequently has certain
robustness and generalization ability. However, the BP neural
network algorithm has inherent defects (Karakose et al., 2014).
The BP neural network algorithm is likely to trap in local
extremum during data training, resulting in data training
failure since it adopts the standard gradient descent algorithm.
Meanwhile, the BP algorithm has the drawback of data overfitting
phenomenon (Wang G et al., 2020). Generally speaking, the
prediction ability of the neural network is directly proportional to
the sample training ability. In fact, with the improvement of the
sample training ability, the prediction ability of the BP neural
network will reach an extreme limit and then decline, which is the
so-called overfitting phenomenon. To settle the aforementioned
shortcomings of the BP neural network algorithm, GA and PSO
are employed to optimize the network structure of BP.

3 GA-BP AND PSO-BP FORECASTING
MODELS

The main inspiration and the optimization process of GA-BP and
PSO-BP are elaborated in this section, respectively.

3.1 GA-BP Neural Network
GA is a multiple-agent searching global optimization algorithm
based on biological evolution and therefore can avoid falling into
local optimal solutions (Deshkar et al., 2015). GA adopts the
heuristic principle and manages the search agents according to
their fitness function values. Specifically, GA selects individuals
with high fitness for genetic operation (selection, chromosomal
chiasma, and mutation) and simulates the natural evolution
process of survival of the fittest, to search for the optimal
solution (Yang et al., 2021a).

The traditional divination model of the BP network has some
defects, such as easily falling into local optimum, low convergence
speed, and the data overfitting phenomenon. Because GA has a
strong macro exploration ability and good global optimization
performance (Rajan et al., 2017), it is used to optimize the
connection weight and threshold value between various layers
in the BP neural network model. Theoretically, GA can make up
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for the defects of the BP neural network algorithm and improve
the prediction approximation ability of the BP neural network
model. The optimization procedure of the BP neural network by
GA mainly includes population initialization, fitness function
establishment, selection, crossover, and mutation operation.

3.1.1 Population Initialization of GA
Common chromosome encoding methods of GA include binary
encoding, real encoding, character encoding, and string encoding
(Zhou et al., 2020; Yang et al., 2021b). There are eight
environment input variables, one output neuron nodes, and 10
neuron nodes in the hidden layer. Hence, the number of weight
Wij andWjk are 8 × 10 and 10 × 1, respectively. And, there are 10
threshold values in the hidden layer and one in the output layer.
The real number encoding is adopted for population individuals.
The information contained in a chromosome includes the
weights connecting the input layer and hidden layer and those
connecting the hidden layer and output layer, and the threshold
values of the hidden layer and output layer. As a result, the length
of the individual code is 8 × 10 + 10 + 10 × 1 + 1 � 101.

3.1.2 Fitness Function
Based on the connection weights and thresholds attained by the
individual code, the absolute value sum of the forecasting bias of
training data is regarded as single fitness, which can be calculated
as below:

F � k⎛⎝∑n

i�1abs(yi − zi)⎞⎠, (3)

where n means the output neurons’ number, yi denotes the
desired output of the ith neural node, zi represents the
predicted output of the ith neural node, and k is a coefficient.

3.1.3 Selection, Crossover, and Mutation
The GA selection operation is executed based on roulette,
i.e., selection on fitness proportion. The selected probability Cx

of the individual x is calculated as follows:

Cx � fx∑N
j�1fj

, (4)

fx � k/Fx, (5)

where Fx is the fitness of the individual x, N represents the
population size, and k is the coefficient.

In order to ensure the balance between population diversity
and convergence of GA, an adaptive crossover mutation operator
is adopted. When one individual fitness is less than the average
fitness, the proposed GA increases the probability of crossover
and mutation to promote individual updating and population
diversity; otherwise, GA decreases that to guarantee the high
fitness one’s proportion in population and improve the
convergence speed of GA.

The adaptive crossover operator can be expressed by the
following equation:

Cc �
⎧⎪⎪⎨⎪⎪⎩ K1

(Fmax − Favg)
Fmax − Fa

, Fa ≤Favg

K2, Fa >Favg

. (6)

The adaptive mutation operator can be expressed by

Cm �
⎧⎪⎪⎨⎪⎪⎩ K3

(Fmax − Favg)
Fmax − Fa

, Fb ≤Favg

K4, Fb >Favg

, (7)

where Fa is the fitness of the individual before the crossover; Fb is
the fitness of the individual before mutation; Fmax and Favg

denote maximum fitness and average fitness values of the current
population; and K1, K2, K3, and K4 are all random numbers
between 0 and 1.

3.1.4 Process of GA-BP
Above all, the summation of connection weights between various
layers and of thresholds of each layer is determined based on the
BP network construction. Second, the individuals in the
population are encoded. And then, the optimal individual is
obtained by selection, crossover, and mutation which are
regarded as the best original weights and thresholds. Lastly,
the BP network is applied to training data and prediction
simulation until the prediction error is acceptable or the
iterations terminate. The flow chart of the GA-BP algorithm is
represented in Figure 2

3.2 PSO-BP Neural Network
PSO is a swarm intelligence optimization algorithm derived from
the predation behavior of birds in nature (Kennedy and Eberhart,
1995; Yang et al., 2020b). During the birds foraging, each bird
usually follows the one closest to the food and searches its
surroundings to get food (Dhanalakshmi and Rajasekar, 2017;
Zhang X et al., 2021; Yang et al., 2021c). Similar to GA, PSO also
utilizes the fitness of individuals in the population to evaluate the
cost of individuals but without the operation of crossover and
mutation. Each particle in the population that contains
information of every weight and threshold in the BP neural
network is characterized by three indicators, i.e., particle
position, speed, and fitness. Moreover, the best initialization
weights and thresholds of the BP neural network can be
obtained by tracking the optimal positions of individuals and
populations. Thus, both the convergence speed and prediction
performance of the BP neural network can be improved.

3.2.1 Population Initialization of PSO
Based on the construction of the BP neural network, the
initialization population of the PSO algorithm is a 101
dimensional vector. Moreover, the fitness function still adopts
the training error summation in GA-BP calculated by Eq. 3. And
then, the optimal population particle obtained by iteration
searching represents the optimal initialization weights and
thresholds of the BP neural network. Afterward, the BP neural
network is applied to the training data and prediction simulation.
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3.2.2 Particle Updating of PSO
For each iteration of the PSO algorithm, every particle updates its
own velocity and position through individual historical
extremum and global extremum (Xi et al., 2016; Babu et al.,
2018; Zhang K et al., 2021). The update formulas are as follows.

velocity updating:

Vi(t + 1) � ωVi(t) + a1 · r1 · (Pg(t) −Xi(t)) + a2 · r2 · (Pz(t)
−Xi(t)).

(8)

position updating:

Xi(t + 1) � Xi(t) + Vi(t), (9)

where t is the current iteration;ω is the weight of inertia; a1 and a2
are the acceleration factors of the particles, which are non-
negative constants; Vi(t) represents the speed of the ith agent
in the tth iteration; and r1 and r2 are the mean random values
ranging from 0 to 1.

And, the inertia weight is alterable calculating as below:

ω � ωmax − ωmax − ωmin

tmax
· t, (10)

where tmax means maximum iterations; t is the current number of
iteration; ωmax represents the maximum weight of inertia, the
typical value of which is 0.9; and ωmin represents the minimum
weight of inertia, the typical value of which is 0.4. In general, ω is
close to 1 to strengthen the exploitation ability of PSO when the
maximum velocity of the particle is very small; otherwise, ω is
designed as 0.8 to emphasize the exploration phase.

3.2.3 Process of PSO-BP
Compared with GA, PSO does not encode the chromosome
during the initialization but initializes the speed and position of
the particle swarm on the basis of the total number of
connection weights between various layers and of thresholds
of each layer based on the construction of the BP
network. Moreover, PSO-BP adopts the same fitness function
with GA-BP. After the iterative search for the individual and
population best solution, the global best agent which includes
all weights and threshold values is regarded as the initial
parameters of the BP neural network for improving its
prediction effect. The flow chart of the PSO-BP algorithm is
demonstrated in Figure 3.

4 SIMULATION TEST

The experimental data in this work are derived from the
historical record data of the PV power plant in Lijiang,
Yunnan, China. In this work, meteorological environment
data and historical power generation data from January 1,
2017, to April 30, 2018, are extracted from the database,
including six meteorological indicators, i.e., solar irradiance,
wind speed, wind direction, temperature, atmospheric pressure,
and humidity. At an interval of 15 min, a total of 43,737 pieces
of data are reserved for the simulation test after screening and
sorting, among which 43,688 pieces of data are used to train the
neural network, and the latter 49 pieces of data are regarded as a
test set.

FIGURE 3 | Flowchart of the PSO-BP algorithm.

FIGURE 2 | Flowchart of the GA-BP algorithm.
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4.1 Simulation Data Pre-processing
On account of the particularity of the selected data and the large
fluctuation of PV power generation within a day, the output
power varies greatly at all times. In addition, the units of the
historical PV output power data and meteorological data and
their values are different. Therefore, it will affect the accuracy and
effect of prediction to directly input them into the power
prediction model. To guarantee the validity of experimental
results, the premnmx function is adopted to uniformize the
experimental data which will be evenly distributed between 0
and 1 after uniformization processing. Besides, the premnmx
function is formulated as the following equation.

Pu � 2(P − Pmin)
Pmax − Pmin

− 1, (11)

where Pu denotes the data after uniformization processing; P is
the initial data before uniformization processing; andPmax and
Pmin mean the maximum and minimum value in the input
information, respectively.

4.2 Prediction Error Indicator
For the sake of accurately reflecting the actual deviation of the
prediction error of the proposed model, two error indicators are
introduced. Concretely speaking, the root mean square error
(RMSE) (Chen et al., 2019) and mean absolute percentage
error (MAPE) (Zhang et al., 2016) are the error indexes of
local PV power station output forecasting. Particularly, the
specific reference formulas are:

RMSE �
�������������∑N

i�1(Ppi − Pri)2
N

√
, (12)

MAPE � 1
N

∑N

i�1

∣∣∣∣∣∣∣Ppi − Pri

Pri

∣∣∣∣∣∣∣ × 100%, (13)

where N is the summation of test data in the test set, Ppi means
the predicted PV output power at the ith time-tag, and Pri denotes
the measured PV output power at the ith time-tag.

4.3 Simulation Test on the Prediction Model
The power output data of the forecasting model are trained by BP,
GA-BP, and PSO-BP neural network algorithms, respectively.
And, the prediction results and measured results are compared
and analyzed. Moreover, after repeated imitation tests, the
training parameters of each algorithm are determined as
shown in Table 1. In particular, all simulation tests are
performed by Matlab 2019b through a personal computer with
IntelR CoreTMi5 CPU at 3.0 GHz and 16 GB of RAM.

In the simulation test, the neuron number for each layer of the
designed network (i.e., input, hidden, and output layer) is 8, 10,
and 1, respectively. The comparison curves between the predicted
power and measured power of the three neural network
algorithms are shown in Figure 4, and the error curves of the
three algorithms are depicted in Figures 5, 6. Besides, the
corresponding prediction error average of the three algorithms
is shown in Table 2.

Based on the above comparison power curves of the PV power
station between short-term prediction and the actual measured
value and the prediction error data, it can be inferred that PSO-
BP and GA-BP both can realize the short-term power forecasting
of the PV plant, but the original BP neural network algorithm has
a relatively large error with larger forecasting power than the

TABLE 1 | Parameter settings of each neural network algorithm.

Neural network
algorithm

Data size Population size Iteration number Number of
BP training
iterations

Learning rate Target error
training

BP 43,688 - - 100 0.01 0.001
GA-BP 43,688 30 30 100 0.01 0.001
PSO-BP 43,688 30 30 100 0.01 0.001

FIGURE 4 | Predicted power curves of three neural networks.

FIGURE 5 | MAPE of three PV power prediction models.
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actual value. Particularly, the PSO-BP network has more accurate
prediction performance than GA-BP due to smaller values in two
error indicators of the RMSE and MAPE. In other words, both of
GA and PSO can optimize the BP prediction model and
effectively reduce the prediction error of the BP prediction
model. In addition, the optimization effect of PSO is better
than that of GA, which indicates that PSO has better applicability.

5 CONCLUSION

In this work, given the lack of multiple numerical optimization
algorithms in the existing traditional BP prediction model, the
negligence of meteorological factors and weather conditions in
inputs and the large prediction error, GA and PSO are introduced
to improve the network construction of the BP algorithm and

further establish the PV power generation short-term prediction
model, thus improving the weights and thresholds of BP neural
networks. Thus, three PV output short-term forecasting models
of BP, GA-BP, and PSO-BP are established. Meanwhile, the
comparison between the predicted and measured power curves
and error analysis are studied. The following conclusions can be
stated:

• Both GA and PSO algorithms can efficiently enhance
the forecasting accuracy of the BP divination model and
optimize the prediction effect;

• Compared with GA, PSO has stronger applicability in
neural network structure optimization;

• The PSO-BP prediction model has a higher prediction
accuracy and can be used as an effective short-term
power prediction model for this aforementioned PV
power station in Lijiang.

The results show that this work is crucial for the power
management department to formulate the reasonable energy
management and dispatch scheme to undertake the stability
and safety of large grid-connected PV.
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