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For realizing high-accuracy short-term wind power prediction, a hybrid model considering
physical features of data is proposed in this paper, with consideration of chaotic analysis
and granular computing. First, considering the chaotic features of wind power time series
physically, data reconstruction in chaotic phase space is studied to provide a low-
dimensional input with more information in modeling. Second, considering that
meteorological scenarios of wind development are various, complicated, and
uncertain, typical chaotic time series prediction models and wind scenarios are
analyzed correspondingly via granular computing (GrC). Finally, through granular rule-
based modeling, a hybrid model combining reconstructed wind power data and different
models is constructed for short-term wind power prediction. Data from real wind farms is
taken for experiments, validating the feasibility and effectiveness of the proposed wind
power prediction model.
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INTRODUCTION

To mitigate the influence of global warming and energy crisis concerns, wind energy has been
developed as one of the most potential energies around the world (Brouwer et al., 2016). Especially in
areas with a large amount of wind sources (Li et al., 2017), e.g., Northwest of China, United States,
and Europe, large-scale wind farms are being developed to provide more clear power to electricity
industries. As more wind power is integrated into power systems with high concentration, the power
grid also faces some great challenges caused by wind power generation. For example, the
intermittency and variability of wind cause the uncertainty of wind power supply (Doostizadeh
et al., 2017), which also causes the difficulties in scheduling wind power and threatens the security of
the power grid. Therefore, an accurate wind power prediction system is eagerly required and
improved by system operators to mitigate the harmful effects.

Currently, wind power prediction methods are mainly grouped into two categories: physics-based
models and data-driven models (Yan et al., 2015). Physics-based models usually make use of
meteorological data and physical laws to estimate wind speed, then wind speed is transformed into
wind power, e.g. NWPs (Liu et al., 2012). Data-drivenmodels, also called statistical models, utilize big
data sets and artificial intelligence (AI) algorithms to train a mathematical model which could
express the relationship between inputs and prediction output, e.g., auto-regressive and moving
average models (ARMA), neural networks (NN), support vector machines (SVM), and so on (Liu
et al., 2016; Shao et al., 2018). Generally, these data-driven models can achieve relatively satisfactory
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performance on industrial data of wind farms in short-term
forecasting. To further improve short-term wind power
forecasting performance, hybrid models combining the
advantages of several models are also proposed in literature.
For example, in Ouyang et al. (2016), a hybrid model via
switching models was proposed to obtain the optimal wind
power prediction result, and the Markov chain was introduced
as the switching regime. Moreover, many hybrid models usually
utilize decomposed signals for prediction then combine these
sub-predictions at last. For example, a hybrid model based on
wind power time series decomposition was proposed for wind
direction forecasting (Tang et al., 2020; Tang et al., 2021).
Comparing these models, physical models usually explain the
trend of the wind process meaningfully, because they govern the
atmospheric behaviors in physics (Xiong et al., 2017). However,
their precision in short-term prediction is generally low. On the
other hand, those models involving data-driven algorithms may
face two problems: one involves the subjective selection of AI
algorithms; the other involves overfitting and under-fitting in
many models, so the reliability and persuadability of these
prediction models require more extra explanation.

Aiming at the mentioned problems above, this paper targets to
propose a high-accuracy wind power prediction model
combining the advantages of physical and data-driven models.
First, as we know, the wind process is formed by atmospheric
movement from the perspective of physics, namely, via the
chaotic analysis of time series data (Lange and Focken, 2006;
Lei et al., 2007). Based on chaotic analysis, the wind power time
series could be reconstructed in a new phase space which could
reflect both physical factors and statistical results of historical
data. Second, if we analyze the wind process from a physical
perspective, we would see that the pattern behind wind is variable,
diversified, complicated, and uncertain. This is the reason why
hybrid models with a switching regime and mode decomposition
could succeed. Therefore, a hybrid prediction model considering
wind patterns would also persuasively improve wind power
prediction performance. Based on the above factors, the
proposed method makes use of chaotic analysis and granular
computing in wind power prediction and aims at realizing two
contributions: 1) making use of chaotic analysis to reconstruct
data, and to realize high effectiveness and efficiency with the
reconstructed data in modeling; 2) considering the complexity
and uncertainty of wind patterns, a hybrid model based on
granular computing is proposed to reflect both physical and
statistical factors. By taking industrial data from a wind farm
as a studied case, the proposed approach is applied. Experiments
and evaluation are discussed to validate the feasibility of the
proposed wind power prediction model.

TIME SERIES RECONSTRUCTION

According to the above description, time series reconstruction is
to extract effective inputs for modeling. Considering the wind
speed time series is physically chaotic (Lei et al., 2007), it could be
reconstructed based on physical features in a new space where
large information is represented by refined features. Assuming a

time series as {x} = {x1, x2,/, xN},N is the length of the given data
set, and it could be reconstructed into a new phase space
according to the Takens embedding theory (Rand and Young,
1988). The reconstruction formula is expressed as below:

x(i) � (xi, xi+τ ,/xi+(m−1)τ) ∈ Rm, i � 1, 2/, N0 � N − (m − 1)τ
(1)

where {x} is the wind power time series in this paper; x is the
reconstructed data belonging to a space Rm; and τ and m are the
delay time and embedding dimension parameters in
reconstruction. In this way, the reconstructed data could
provide as much possible information with a limited number
of dimensionalities, namely, improving effectiveness and
efficiency in time series modeling (Tang et al., 2020). These
two parameters can be calculated by the mutual information
(MI) method (Fraser and Swinney, 1986) and false nearest
neighbors (FNN) method (Abarbanel and Kennel, 1993),
respectively. Through the selection of optimal delay time τ
and embedded dimension m, a one-dimension time series
could be reconstructed as Rm data by Eq. 1. In this way, the
most relevant features could be included in the new data for
modeling (Tang et al., 2020).

To judge if the reconstructed phase space is a chaotic system,
some criteria are required. The Lyapunov exponent (Packard
et al., 1980) was a useful metric to test a system’s characteristic, as
expressed in Eq. 2. If the value of Lyapunov exponent is positive,
the given system could be considered as a chaotic system.When it
equals 0, the system is considered as having bifurcation points or
periodic solutions. When its value is negative, the system has
stable and fixed solutions. To calculate the value of the Lyapunov
exponent, firstly, choosing a start point in the reconstructed space
and its nearest neighbor, their distance is defined as L0. After the
evolution of a given time T, two new points are obtained, and
their new distance is defined as L′0. Then, new data and new
distance pair (L1, L′1) are calculated as the same principle. When
the last point in the phase space is calculated, we could calculate
the Lyapunov exponent as below:

λ � 1
MT

∑
M

i�0
ln

L′
i

Li
(2)

whereM is the number of distance pairs. Through the calculation
of the Lyapunov exponent in Eq. 2, we could judge if the
reconstructed phase space and the original time series have
chaotic features according to the above criterion.

WIND POWER PREDICTION MODEL BY
GRANULAR COMPUTING

For chaotic time series, several prediction models are studied in
the literature, e.g., local prediction models, global prediction
methods, prediction methods based on the Lyapunov
exponent, Volterra prediction models, and so on (Zhang and
Liang, 2012). For wind power prediction, the meteorological
regimes behind the wind process are various, so these models
may just be suitable at specific time intervals. According to this
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idea, the hybrid model with a regime switching the optimal
models would achieve better performance. However,
considering the uncertainty of wind development, the accuracy
of meteorological regimes at a given period is complicated and
uncertain. Therefore, a hybrid model considering more
prediction models and uncertainty is a better choice to
improve performance. This is also the reason for proposing a
hybrid prediction model via granular computing.

Granular Computing for Dividing Scenarios
Granular computing (GrC) is actually a process of grouping
objects which have the same or similar information (Ouyang
et al., 2021) (e.g. shapes, sizes, or other features) and use
information granules (IGs) to analyze the abstract objects in
real world. Based on these ideas, we proposed to construct
information granules of different wind development processes
and utilized these granules to guide prediction.

Generally, IGs are constructed by two factors: prototype and
granule size. To partition an original data set into different
categories, the Fuzzy C-Means (FCM) is widely applied
(Chuang et al., 2006). Assuming the set {x} having N data
points with c clusters, the membership matrix of each data
point based on FCM could be calculated by the following
expression:

uik � 1

∑
c

j�1
(‖xk−vi‖‖xk−vj‖)

2/(m−1) (3)

where, xk∈{x}; uik is the membership to the ith cluster center, and
m is a fuzzification coefficient and usually m = 2. Then, cluster
centers could be selected as prototypes of granules, as below.

vi � ∑
N

k�1
um
ikxk/∑

N

k�1
um
ik, i � 1, 2,/, c (4)

After the decision of these prototypes, a blueprint of IGs could
be created. By concentrating on a prototype vi, a group of points
could form a granule IGiwhich could also be wind scenario in our
study. Besides the position information, the sizes of IGs are also
important in evaluating their description performance. Generally,
coverage and specificity are two important metrics (Ouyang et al.,
2019). Assuming a granule is constructed as a hypersphere
granule via Euclidean distance, the coverage and specificity
can be calculated as below:

cov(ρ) � 1
N

∑
xk :‖xk−vj‖2 ≤ ρ2
xk∈Ω

uik (5)

sp(ρ) � 1 − ρ (6)
where ρ is the size of granule, satisfying ρ ∈ [0, 1]. Ideally
speaking, these two metrics are expected to maximum. For
example, when dividing wind scenarios, a granule needs to
cover as many similar scenarios as possible; meanwhile, it
needs to reduce the overlap with other granules. However, it is
seen from (Eqs. 5–6) that they are in conflict, namely, higher
coverage will lead to lower specificity. To optimize the mentioned

objective, a function cov(ρ)sp(ρ) is proposed to be maximized.
Finally, an optimal value of ρ, say ρopt, is returned. After the
optimization of all granule sizes, the original data could be
described by several constructed information granules, namely,
scenarios.

Wind Power Prediction Modeling
According to the process of granular computing, data sets could
be divided into several granules based on similarity. For
reconstructed wind power data, to analyze the meteorological
scenarios to which each data point belongs, we could also
construct scenario granules based on reconstructed wind
power data {x}. While considering to utilize results of granular
computing to improve the performance of wind power
prediction, we propose to add the prediction errors into inputs
in granular computing, defined as below:

input � [x, e1, e2, e3] (7)
where x is the reconstructed chaotic data and e1, e2, and e3 are
prediction errors of three models (Local linear model, Lyapunov
model, Volterra model) forecasting wind power independently.
By using these inputs in granular computing, three information
granules IGi (i = 1,2,3) reflecting the relationship of wind
scenarios and prediction models could be constructed. Then,
three fuzzy rules for determining a given data point’s scenario
could be given as below:

Rulei: IF input belongs to IGi, THEN xt is in the i
th

wind scenario; (i � 1, 2, 3) (8)
While the granular computing is based on fuzzy analysis, the

uncertainty of the wind process is also considered. According to
the above rules, for the current data point xt, its belonging degree
to each wind scenarios could be calculated by Eq. 3. Considering
the uncertainty of xt belonging to wind scenarios, we propose to
utilize the weighted hybrid model as the final prediction model, as
below:

xt+1 � ∑
c

i�1
uitxt (9)

where the prediction model is regarded as a weighted model using
fuzzy memberships as weights; c = 3 in this paper because only
three chaotic time series models are considered.

EXPERIMENTS AND DISCUSSION

According to the above description, we could complete the
chaotic analysis and prediction modeling of wind power data.
In this paper, we take the industrial data from wind farms as
studied cases. The collected data is from a wind farm of
northwestern China, which has a sampling interval of 15 min.
The objective of this research is to predict the wind power output
from the studied wind farm that has a totally installed capacity of
603 MW. The data set has 34,080 data points, among of which
70% is taken as training set and the rest are for testing. Moreover,
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raw wind data often contains random noise and abnormal values;
therefore, suitable data pre-processing is required before
modeling, for example, wind power denoising and abnormality
cleaning.

Wind Power Data Reconstruction
According to the above description, the proposed prediction
model is based on chaotic analysis. Therefore, reconstruction
of wind power data and verification of the chaotic system is the
first step. As the processes are described in Section 2, we need to
select the optimal delay time and embedded dimension for phase
space reconstruction via the mutual information method and
FNN method. Results are shown in Figure 1.

Figure 1A depicts the curve representing values of mutual
information when the delay time τ increases. It is seen that the
relevance becomes weak when delay time becomes large.
Generally, the final delay time τ is decided when the value of
mutual information reaches the first local minimum value.
Therefore, the delay time of wind power is selected as τ = 9. It
means that the closet nine points, e.g. x(t), x (t-1), . . ., x (t-8) have
similar information, namely, dependent relation. In order to
provide more information with lower dimensionality in
modeling, two independent variables should be taken, such as
x(t) and x (t-9). Figure 1B depicts the curve representing the
number of false neighbor points when calculating the embedded
dimension. When the value of the threshold is selected as ath =
10%, the percentage of false neighbors is 0% with reconstruction
parameters m = 7. Combining with τ = 9, it implies that the
correlation will be ended at the 7*9 = 63 step, but the new phase
space can be considered for the reconstruction of the most
important seven points. Then, according to the calculation of
the Lyapunov exponent in Eq. 2, the solution of the Lyapunov
exponent is calculated as λ = 0.00059. It illustrates that wind
power data belongs to a chaotic system (λ > 0) according to the
above description of the Lyapunov exponent. Then, the
prediction models based on chaotic time series are feasible in
wind power prediction.

Wind Power Prediction
By taking 70% of the given data set as the training data, the
remaining data is used for validation and testing. First, by

applying the reconstruction parameters calculated above, the
phase space of wind power data is reconstructed based on Eq.
1. Since the reconstructed wind power time series is verified to be
chaotic, it is used to train and predict wind power based on three
given chaotic models in Section 3, namely, the local linear model,
Lyapunov prediction model, and Volterra prediction model,
labeled as S1, S2, and S3 respectively. Considering that each
model has its best prediction performance at different time,
we could consist of the reconstructed data and prediction
errors of three models as inputs; three wind scenarios are
analyzed by granular computing.

Figure 2 shows the division of three wind scenarios through
granular computing. For convenience of presentation, only two
elements [error3, x (t-6τ)] are used in plot. It is seen from Figure 2
that different scenarios for three chaotic time series models have
clear division. Then, based on this division, fuzzy rules could be
formed and the final hybrid model could be constructed by
granular computing (Eq. 9). The performance of wind power
prediction is expressed by four error metrics (Wu et al., 2014),
namely, mean absolute error (MAE), root mean squared error

FIGURE 1 | Calculation of the delay time (A), the minimum embedded dimension (B), and the Lyapunov exponent (C).

FIGURE 2 | Division of wind scenarios.

Frontiers in Energy Research | www.frontiersin.org February 2022 | Volume 9 | Article 8237864

Wang et al. Model of Wind Power Prediction

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


(RMSE), standard deviation of absolute error (SDofAE), and
correlation coefficients (CC), as presented in Table 1.

S1, S2, and S3 represent three prediction models, respectively,
and the proposed model is also compared. It is seen that the
difference between the former three models is not large, and that
S1 has the worst prediction performance and S3 has the best
prediction performance according to the values of error metrics.
In comparison, the performance of the proposed method is
presented and improved greatly.

Comparison and Discussion
Moreover, based on the error metrics, some improvement
coefficients were defined in (Wu et al., 2014), which are
validated to be useful for studying performance improvement,
as shown in Eq. 10.

IEM � EMref − EM

EMref
· 100% (10)

where, IEM is the improvement coefficient and EM represents a
given error metric (e.g. MAE, RMSE, etc.). When the value of IEM
is larger than 0, it means the given model improves the
performance w.r.t. the reference.

Table 2 shows the improvement coefficients of the proposed
method by taking S1, S2, and S3 as the reference models. The
coefficient of determination R2 is also proposed for analysis in
Table 2. R2 is actually the improvement coefficient of the mean
square error (MSE) defined in Eq. 11.

MSE � 1
N

∑
N

i�1
(xi − x̂i)2 (11)

It is seen that the proposed model has an improvement on
longitudinal errors by an average of 21.18% on MAE, 39% on
RMSE, and 21.14% on SDofAE, which means the proposed
method can improve the prediction performance greatly. On
the other hand, the value of ICC is improved by an average of
4.07% since the value of CC is good.

Moreover, to compare the performance of other data-drivenwind
power prediction models, such as neural networks (NN), support
vector machine (SVM), random forests (RF), boosting trees (BT), the

MSAR model, and the generic linear combined model of S1, S2, and
S3, Table 3 presents the improvement coefficients of the proposed
method compared with these six models, as presented below.

It is seen that the proposed method still improves the prediction
performance greatly, compared with traditional methods. By
comparing with traditional AI algorithms, the improvements on
errors have an average of 11.91%onMAE, 35.38% onRMSE, 10.62%
on SDofAE, and 5.76% on CC. By comparing with two advanced
hybrid models, the improvements are 4.4% on MAE, 12.93% on
RMSE, 7.92% on SDofAE, and 1.3% on CC. It is seen that hybrid
models have better performance than traditional AImodels. Since all
the values are positive, these results verify that the proposed model
has indeed improved the wind power prediction performance when
compared with both traditional models and hybrid models.

CONCLUSION

To improve the performance of short-termwindpower prediction, this
paper proposed a new hybridmodel based on granular computing and
chaotic data reconstruction. By reconstructing the wind power time
series into chaotic phase space, more information could be provided
with a low dimensionality for modeling. Then, considering the
uncertainty and diversity of wind development scenarios, three
chaotic models are constructed and their corresponding scenarios
are constructed as information granules by granular computing.
Finally, the proposed model is realized by granular computing and
chaotic time series prediction models. Experiments on wind power
prediction verify the superiority of the proposed model. Through the
improvement coefficient shown in Tables 2–3, it is validated that the
proposed method improves the accuracy of wind power prediction
than most traditional models. Therefore, it is concluded that the
proposed method is feasible and effective. It will be helpful for
directing wind power scheduling and planning in the future.
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