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The thermal conductivity (TC) of graphene with Sierpinski carpet fractal (SCF) and regular
carpet (RC) defects is numerically studied by the non-equilibrium molecular dynamics
(NEMD) method. The influences of porosity, fractal levels, and types of defects on the TC of
graphene are clarified, and the underlying mechanisms of phonon behaviors are
uncovered. The numerical results indicate that the defects in graphene induce the
atoms that have the heat transfer blockage effect, and thus, the TC of defective
graphene decreases with increasing porosity. With the increase in fractal levels, more
atoms have the heat transfer blockage effect, which induces the TC of graphene with SCF
defects to sharply decrease. Moreover, compared with the graphene with RC defects,
more atoms participate in the heat transfer blockage under the graphene with SCF defects,
which leads to the lower TC of graphene with SCF defects.
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INTRODUCTION

Owing to the quantum effect at the nanoscale, graphene has high carrier mobility, excellent thermal
conductivity (TC), and ultra-high strength, which has a potentially huge application value in
semiconductors (Novoselov et al., 2004; Balandin et al., 2008; Ghosh et al., 2008; Lee et al., 2008; Wei
et al., 2011; Aldrigo et al., 2013; Wang et al., 2018; Han et al., 2019b). The TC of graphene is a key
parameter for thermal management in nanoelectronic devices (Balandin et al., 2008; Ghosh et al.,
2008; Anno et al., 2017), which has attracted increasing interest in both academia and industry.
Therefore, it is of great significance to study the tuning of the thermal property of graphene to meet
the thermal management we need.

The TC of graphene can be changed by constructing the structures of graphene (Yarifard et al.,
2017); introducing defects into graphene is an available method to adjust the graphene structure
(Hao et al., 2011). As a good way to study the thermal mechanisms of graphene and the impacts of
influence factors (Chen et al., 2015; Chen and Deng, 2017), the effects of defects on the TC of one-
dimensional material were numerically investigated by molecular dynamics (MD) simulation (Cui
et al., 2016; Bazrafshan and Rajabpour, 2017; Hu et al., 2017; Han et al., 2019a; Han et al., 2019b). The
numerical results indicate that increasing the ratio of defects can decrease the TC of defective
graphene (Han et al., 2019a). The silicon nanowires with surface defects have higher TC and average
phonon participation than the silicon nanowires with inner defects (Li et al., 2021). Considering the
structure of self-similarity in nature, nanofabrication technologies are adopted to construct self-
similar structures (Zhang et al., 2014; Deng et al., 2017; Zhang et al., 2020). As one of the self-similar
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set, the Sierpinski carpet fractal (SCF) structure is introduced to
construct the defective graphene (Kang et al., 2018; Han et al.,
2019a; Han et al., 2020). The SCF defects in graphene can
significantly increase the boundary scattering of phonon and
thus significantly reduce the TC (Zhang et al., 2014; Wei et al.,
2015; Shao et al., 2018). When the fractal level increases from 0 to
3, the TC of the SCF graphene monolayer decreases from 164.4 to
19.6 W/mK (Kang et al., 2018).

In summary, many investigations have been conducted to study
the regular and vacancy defects of graphene. However, the phonon
behaviors in defective graphene, including the phonon density of
states and the participation ratio were not well analyzed in previous
studies, which was not sufficient to clarify the mechanisms
underlying the thermal transport of defective graphene. In this
article, to study the controlled method of the TC of graphene, the
effect of fractal structure on the TC of graphene is clarified.
Additionally, the phonon behaviors, including the phonon
participation ratio and phonon density of states are analyzed to
reveal the mechanisms underlying the phonon transport of the
graphene with SCF and regular carpet (RC) defects.

MATHEMATICAL MODEL

Removing or replacing some carbon atoms on a graphene
monolayer is a common method to construct defective
graphene. As shown in Figures 1A,B, the SCF graphene
(fractal level, k � 0, 1, 2, 3) and the RC graphene with a size
of 27 nm × 27 nm are constructed in the simulation.

To investigate the influence of defect structure on the TC of
graphene, the porosity (p) of the graphene with SCF and RC
defects under the same porosity is defined as

p � Sdefect
Stotal

, (1)

where Sdefect is the area of defects and Stotal is the total volume of
graphene monolayer. The corresponding porosities under
different fractal levels are 8.42, 15.9, 22.69, and 27.04%,
respectively.

The non-equilibrium molecular dynamics (NEMD) method is
adopted to investigate the TC of graphene monolayer with SCF
and RC defects. As shown in Figure 1C, the heat flux is imposed
in the direction from the hot bath to the cold bath. Each layer of
graphene monolayer has a thickness of 2 nm with 1,000 atoms,
which can guarantee the reliability of the numerical results.

The initial temperature of the system is 500 K, and the time
step is 0.5 fs The simulations first are performed in NVT for
1×106 steps and then in NVE for 4×108 steps. The increasing
energy in the hot bath and decreasing energy in the cold bath are
set as 2.5 to establish the temperature gradient. Therefore, the TC
of graphene is calculated as

κ � Q

S∇T
, (2)

where Q is the increasing heat flux from heat bath or decreasing
heat flux from the cold bath,∇T is the temperature gradient, and S
is the cross-sectional area.

RESULTS AND DISCUSSIONS

Thermal Conductivity of Defective
Graphene
The TC of material in the macroscale is a physical parameter that
has no change with the material structure. However, the TC of
graphene is relevant to the structure of the atomic system as a
low-dimensional material. Therefore, the TC of graphene with
SCF and RC defects under different porosity calculated by Eq. 1 is
plotted in Figure 2. The TC of graphene with SCF defects has a

FIGURE 1 | Schematic of heat transfer in defective graphene: (A) SCF defects; (B) RC defects; and (C) thermal boundary condition.
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sharp decrease with increasing porosity. When the porosity
increases from 8 to 27%, the TC of graphene with SCF defects
decreases from 627.4 W/mK to 93.65W/mK, and the TC of
graphene with RC defects decreases from 513.8 W/mK to
159.4W/mK. This result indicates that the decreasing effect of
porosity on the TC of graphene with SCF defects is stronger than
that of graphene with RC defects.

PDOS of Defective Graphene
The physical mechanisms of heat transfer in defective graphene
can be expounded by the phonon behaviors, which are analyzed
by the phonon density of states (PDOS). The concentration of
phonons in the low-frequency region demonstrates that graphene
has a high thermal resistance. In order to explain the influence of
the SCF and RC defects on the TC of graphene, PDOS of two
defective graphene is analyzed, which can be calculated by taking
the Fourier transform of the velocity autocorrelation function
(Mortazavi et al., 2016)

g(ω) � lim
Δω→0

(Δn
Δω

), (3)

whereΔn is themodulus of the lattice vibration in the intervalΔω,
which can be calculated as

Δn � Vc

(2π)3 ∫ dsdq, (4)

where dq is the vertical distance between the two equal frequency
planes and ds is the area element.

The total modulus and total degrees of freedom are equal, and
a simple crystal has N atoms

∫ωm

0

g(ω)dω � 3N, (5)

where ωm is the maximum frequency. Combing the above
equations, the PDOS can be obtained by

g(ω) � ∑3p
α�1

Vc

(2π)3 ∫
sα

ds∣∣∣∣∇qωα(q)∣∣∣∣. (6)

Figure 3A shows the PDOS of graphene with SCF defects (k � 2,
3, 4), and Figure 3B shows the comparison between the PDOS of
graphene with SCF and RC defects (RC defects and SCF defects
with k � 4 have the same porosity). As shown in Figure 3A, the
corresponding frequency peaks of PDOS concentrate in the low-
frequency region with increasing k. The frequency peaks of PDOS
for SCF graphene with k � 2, 3, and 4 are respectively about 30, 26.7,
and 20HTz. The concentration of frequency peaks in the low-
frequency region demonstrates that the influence of boundary
scattering of phonons on the heat transfer is enlarged during the
heat transfer, which leads to the decrease in TC. Furthermore, as
shown in Figure 3B, the concentration of frequency peaks in the
low-frequency region for graphene with SCF defect is more obvious
than that for graphene with RC defects. This result indicates that
the heat transfer blockage effect of SCF defects is stronger than that
of RC defects. It explains why the TC of graphene with SCF defects
is lower than that with RC defects under the same porosity.

Phonon Participation Ratio
In order to get a better insight into the suppression of TC, the
phono participation ratio (P) is used to reveal the influence of
defects on TC. The value of P represents the number of atoms
participating in the motion. If only one atom among N atoms in
the system participates in the heat transfer, p � 1/N. If all the
atoms participate in the heat transfer, p � 1. P can be calculated as
(Yang et al., 2013; Shao et al., 2018; Han et al., 2019b):

P � N∑N
i�1
⎛⎝∑3

α�1
up
iα,λuiα,λ

⎞⎠2

, (7)

FIGURE 2 | TC of two defective graphene.

FIGURE 3 | PDOS of graphene with two defective defects: (A) effect of the fractal level and (B) Comparison between SCF and RC defects.
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where N is the total number of atoms and uiα,k is the eigenvector
component of mode λ in the α direction of the ith atom.

Figure 4A illustrates the P of graphene with SCF defects (k � 2,
3, 4), and Figure 4B illustrates the comparison between the P of
graphene with SCF and RC defects (graphene with RC defects and
SCF defects k � 4 have the same porosity). As shown in Figure 4A,
P has more peaks with decreasing k, which indicates the number of
atoms that have the heat transfer blockage effect increases and
these atoms have no participation in the heat transfer. Additionally,
Figure 4B shows that more atoms that have the heat transfer
blockage effect occur in the graphene with SCF defects than that in
the graphene with RC defects. Therefore, the heat transfer blockage
effect of the graphene with SCF defects on TC is stronger than that
of the graphene with RC defects.

CONCLUSION

In this study, the heat transfer of graphene with SCF and RC
defects is numerically investigated by the NEMD method. The
phonon behaviors are analyzed to reveal the underlying
mechanisms of the heat transfer of graphene with different
defects. The main conclusions are as follows:

1) The defects of graphene induce the atoms that have the heat
transfer blockage effect, which leads to the decrease in TC.
Additionally, the TC of defective graphene decreases with
increasing porosity.

2) As the increase of fractal levels, the frequency peaks
concentrate in the low-frequency region, and the number
of atoms that have the heat transfer blockage effect
significantly increases, which leads to the TC of graphene

with SCF defects sharply decreasing with increasing fractal
levels.

3) Under the same porosity, the TC and frequency peaks of
graphene with SCF defects are lower than that of graphene
with RC defects; this is attributed to the fact that more atoms
have the heat transfer blockage effect under the graphene with
SCF defects.
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