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The micro-grid based on renewable and fossil energies relieves environmental pollution
due to fuel pollutant emission and offsets renewable energies’ instabilities. A micro-grid
integrated with wind, solar, and natural gas is proposed. Primary energy saving rate,
annual total cost saving rate, and carbon dioxide emission reduction rate are employed to
evaluate the energetic, economic, and environmental performances of micro-grid, and grid
integration level and net interaction level between micro-grid and national grid are used to
show its system operational flexibility. The multi-objective robust optimization model
considering these indicators in non-dominated sorting genetic algorithm II is
constructed, in which the linear regression models fitted using points in the
neighborhood of each candidate solution are used to present sensitivity analysis for
the selection process of optimal solutions. The simulations in a case study demonstrate the
validation of the proposed optimization model. The results show that the primary energy
saving rate, annual total cost-saving rate, and CO2 reduction rate are decreased by 1.7,
19.8, and 1.2%, respectively, when integrating system flexibility into optimization
objectives.

Keywords: micro-grid, robust optimization, non-dominated sorting genetic algorithm II (NSGA-II), operation
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1 INTRODUCTION

Distributed energy or micro-grid is an advanced energy system, which is close to users. Natural gas
combined cooling, heating, and power system is its primary form, which has the characteristics of
energy-saving, environmental protection, and economy (Jin et al., 2016). Developing and
strengthening the comprehensive utilization of renewable energy has become a common
consensus globally with the depletion of fossil energy and environmental pollution, and other
issues, improving energy efficiency. The combination of microgrid and wind, solar, natural gas, and
other energy sources can meet the needs of industrial parks, public, commercial, and civil buildings
for heating, cooling, electricity, steam, and hot water. The above methods can also be applied to
different energy production, conversion, transmission, storage, and other links. The micro-grid can
meet the multiple energy needs of users by combining the renewable energy available at the user
terminal. Also, it can realize the cascade utilization of energy to a certain extent, which has a positive
significance to reduce the consumption of fossil energy and pollutant emissions, meets the
requirements of sustainable development, and has broad development prospects (Liang, 2018).
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Distributed micro-grid is a multi-module, multi-process, and
multi-level complex coupling system with complex structure and
various operation modes. The uncertainty of the renewable
energy side and user demand side has a significant impact.
Therefore, how to realize the optimal planning and operation
of the micro-grid according to the user’s energy demand is the
leading technical problem faced by the distributed energy supply
system.Many scholars have carried out a series of related research
at present. For example, in the aspect of system configuration
planning, Ren et al. (2019) constructed the optimization model of
solar energy, natural gas, a geothermal micro-grid system based
on a genetic algorithm, and Cao et al. (2020) proposed a multi-
stage planning method of the multi-energy complementary
system considering construction sequence. In terms of
operational optimization. Ma et al. (2017) based on the
general model of an energy hub, collaborative optimization of
a micro-grid’s day-ahead scheduling strategy. Ding et al. (2018)
formulated the optimal economical operation strategy for a park’s
energy Internet. The research results have a certain guiding
significance for the safe and economic operation of the multi-
energy complementary systems. In addition, the results of system
configuration and operation optimization are closely related to
the optimization objectives. Financial costs (Ding et al., 2018) or
benefits (Chen et al., 2019), energy consumption (Faeze et al.,
2015) or utilization rate (Chen et al., 2019), and carbon dioxide
(Liang, 2018) are often used in the form of a single objective or
multi-objective. Multi-objective optimization usually needs to
make optimal decisions by balancing multiple conflicting
objectives, making it more challenging to solve.

With the high proportion of renewable energy penetration and
the gradual advancement of power market reform, the
uncertainty factors of distributed multi-energy complementary
systems are increasing. There are many uncertain parameters in
the optimization model, which significantly aggravates the
uncertainty of the optimization results. Scholars have proposed

various methods to deal with uncertain factors, among which
stochastic optimization and robust optimization have been widely
concerned. Generally, stochastic optimization is based on the
probability that random variables obey specific uncertainty
distribution. With the help of Monte Carlo simulation
(Davood and Hassan, 2019) and other methods, a large
number of discrete scenarios are generated, and the increase of
calculation scales results from a more extended optimization
solution time. However, the designs can be reduced by the
clustering method (Dong et al., 2019). It also faces the
challenge of representativeness. Robust optimization does not
need accurate probability distribution but only needs to construct
the boundary information of the uncertainty set to find a solution
with good performance for the uncertainty factors, which makes
the model have certain robustness and dramatically improves the
solution speeds (He et al., 2020).

At present, the robust optimization of distributed multi-
energy complementary systems or micro-grids is generally
divided into three categories according to the uncertainty
factors considered (Zhu et al., 2017): (1) considering the
“source-load” uncertainty, (2) considering the fault
uncertainty, and (3) considering the uncertainty of market
factors. Static robust optimization based on single-stage is
widely used because of its simple model and solution process.
The robust optimization considering wind and light uncertainties
proposed in references (Qin et al., 2016) and (Peng et al., 2014) all
adopt a particular method to deal with the equality balance
constraint problem, simplifying the solution process. Still the
corresponding optimal solution is only the approximate optimal
solution. The two-stage robust optimization can contain equality
constraints, and the stag decision-making can reduce the
conservatism of the model solution. It is a typical multi-stage
robust optimization model, which has been widely used in multi-
energy complementarity (Jiang et al., 2012), unit commitment
(Lin et al., 2018), operation scheduling (Ding et al., 2017), and

FIGURE 1 | Energy flows of a micro-grid integrated with natural gas and renewable energies.
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other aspects. The multi-stage robust optimization solution
process is more complex and computational efficiency is low.
Complete optimization does not contain the available probability
information about uncertain factors, so it has some limitations. In
recent years, distributed robust optimization considering the
worst probability distribution of uncertain factors has been
paid more and more attention, that is, multiple discrete
scenarios (He et al., 2020), Wasserstein distance (Wang Y
et al., 2020), moment information (Zhao et al., 2020), and
other measures are used to consider the uncertainty of
probability distribution of uncertain variables, which makes
robust optimization have the advantages of stochastic
optimization, but also brings complex problems of model solving.

In addition, the uncertain data has great influences on
optimization solutions. In multi-objective optimization, the
Pareto-optimal solutions are nondominated to each other. If a
global optimal solution is sensitive to variable perturbation, the
implemental solution may result in a different set of objective
values (Deb and Gupta, 2006). Therefore, finding a global robust
solution is the key factor in multi-objective optimization. The
solving algorithm will be of importance to obtain the robust
solutions, which are classified to the derivative-based approaches
and derivative-free approaches. The steepest descent method and
quasi-Newton method are the derivative-based optimization. But
the derivative information is not easily obtained. On the contrary,
the derivative free optimization is repeated evaluation of objective
function without derivatives.

To sum up, most of the current research on robust
optimization of micro-grids focuses on the source load,
equipment failure, market parameters, and other uncertain
factors to carry out operation scheduling optimization.
Referring to the idea of robust optimization, this paper
proposes a robust optimization model based on
nondominated sorting genetic algorithm II (NSGA II) for
the uncertain parameters in the optimization model to
improve the robustness of the optimal solution. The
integrated optimization of system configuration and
operation strategy is carried out for a micro-grid based on
natural gas and renewable energies by a case study. The system
configuration and operation strategy considers system
economy, energy efficiency, emissions, and other
optimization goals and flexibility are discussed.

2 MICRO-GRID BASED ON NATURAL GAS
AND RENEWABLE ENERGIES

2.1 Energy Flows of Micro-grid
Figure 1 shows the energy flows of the micro-grid. The power
technologies include a gas turbine, wind turbine, and solar
photovoltaic (PV) panels. The national grid is also a
supplementary method to supply electricity when the micro-
grid does not satisfy the electric demand of users. The waste heat
from the gas turbine and the absorption heat pump with the
combustion of natural gas both supply the heat and cooling
needs. In addition, the storage components such as battery and
heat water tank and the ground source heat pump being a transfer

component between electricity and heat are integrated into the
micro-grid, which improves the operational flexibility of the
micro-grid to adopt the dynamic loads.

The electric demands of users are mainly satisfied by the gas
turbine, wind turbine, and PV panels. When the generated electricity
is less than the user’s demand, the national grid supplies the shortage.
On the contrary, the surplus electricity of themicro-grid is sold back to
the national grid. The battery is employed to store the extra electricity
or supplement the electricity deficiency.

The cooling and heat loads are supplied by the absorption heat
pump driven by high-temperature exhaust gas. The ground
source heat pump consumes power to produce chilled water
or heat water for cooling and heating, respectively, which is an
efficient method to balance the power to heat ratio. If the exhaust
heat is not enough to satisfy the heat demand, the absorption heat
pump consumes natural gas to produce. On the contrary, surplus
heat is stored in the heat tank when the waste heat is more than
the demand. The heat tank can supplement the heat deficiency.

From the energy flows of the micro-grid, the national grid, heat
tank, and battery are effective assistances for improving the operation
reliability of the micro-grid. Their integrations play essential roles in
increasing the operational flexibility of the micro-grid.

2.2 Thermodynamic Models of Components
The thermodynamic models of components are constructed, and the
main equations are listed in Table 1. The symbols are explained as
follows:P represents the power of ingredients (kW), E andQ represent
electricity and heat (kW), respectively, F represents fuel consumption
(kW), t represents time (hour),A represents the area (m2), COP is the
coefficient of performance, T represents temperature (°C), G
represents solar radiation, α is the temperature coefficient (%/°C), S
represents storage,N is the number, f is the power derating factor of
PV, v represents the ratio of gas turbine’s consumption in total fuel
consumption, η represents efficiency (%), ε is the control factor (1 or
0), the subscripts GT,WT, PV, grid, GSHP, AHP, B, and TS represent
gas turbine, wind turbine, solar PV panels, national grid, ground
source heat pump, absorption heat pump, battery, and thermal storage
of heat tank, respectively, and the superscript nom represents the
nominal value.

In these components, the gas turbine is the key component,
whose part load efficiency with the dynamic loads has influences
on the fuel consumptions and the ratio of power and heat. Herein,
its part load efficiency is ignored due to less capacity, and
moreover, the gas turbine is limited to operate in the larger
load factor by operation control (the constraints can be seen in
Section 3.2). Thus, its part load efficiency is not considered. The
power efficiency of PV panel is influenced by ambient
temperature, which is expressed in the temperature coefficient
in Equation (3). When the waste heat from the gas turbine is not
enough for the absorption heat pump, the additional natural gas
(1 − ])Fng,t is consumed to supplement heat.

2.3 Problem Definition
The performance of the micro-grid is influenced by the types and
capacities of the selected components, including energy converter
and energy storage units. The challenge of designing the micro-
grid is to select the appropriate unit from different candidate
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components, determine components’ capacities, and attain a
synergic operation of all selected components.

According to the energy flows of the micro-grid in Figure 1,
the problem can be expressed to:

1) determine the optimal device types from the candidate
devices, and (2) determine the optimal capacity size of
serial devices,

in the given conditions such as the users’ loads of electricity,
heating, and cooling, the energy purchase price including
electrical power and natural gas, and the technical and
economic parameters for potential candidate energy converter
and storage components. Thus, the capacities of components in
Figure 1 are selected to be decision variables. In addition,
considering the flexible operation of ground source heat pump
and absorption heat pump, the ratio of ground source heat pump,
γ is defined to:

γ � QGSHP,t/Qt (9)

where QGSHP,t and Qt represent the generated heat from the
ground source heat pump and total heat demand at the time t
(kW), respectively. Considering the simplification of
computation, γ is set to a constant number. When it is larger,
the electric demand is more significant, and the heat demand of
the absorption heat pump is lower.

Thus, the decision variables in the optimization problem can
be expressed as:

X � [Pnom
GT , Pnom

WT , P
nom
PV , Pnom

grid, P
nom
GSHP, P

nom
AHP, S

nom
B , SnomTS , γ]T (10)

The operational performance of the micro-grid is closely
related to its operating strategy. Herein, the following rules are
set to determine the run of the micro-grid:

1) The generated electricity from renewable technologies is first
consumed, and the stored power in the battery is also finished.

2) The gas turbine does not output excess electricity to reduce the
battery’s capacity or the interaction between the micro-grid
and the national grid.

3) The gas turbine does not run when its load factor is less than
its start-up coefficient, which avoids too low generation
efficiency.

4) When the waste heat from the gas turbine is more
considerable than the heat demand, the surplus heat is
stored in the heat tank. If there is still excess heat after
storage, the remained waste heat is exhausted to the
atmosphere.

5) When the waste heat from the gas turbine is less than the heat
demand, the heat shortage is supplemented by an absorption
heat pump or heat tank.

6) The cooling and heating loads are provided by the absorption
heat pump and ground source heat pump.

3 MODEL FORMULATION AND SOLVING
METHODOLOGY

3.1 Multi-Objective Functions
1) Energetic performance.

In comparison to the conventional separation production
system, the energetic performance of the micro-grid is
evaluated in the primary energy saving rate (PESR), and it is
calculated as:

PESR �
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝1 − ∑n

t�1F
MG
t∑n

t�1FR
t

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ × 100% (11)

In which n represents the annual operation hours, the
superscript MG and R represent the micro-grid and reference
system, respectively. The fuel consumption is calculated as:

Ft � Fc,t + Fng,t � Egrid.t/ηRe + Fng,t (12)

Fc and Fng are the fuel consumption of the national gird and the
natural gas consumption in the micro-grid. Egrid.t is the
purchased electricity from the national grid, and ηRe is the
power generation efficiency of the central power plant.
2) Economic performance.

Similarly, the economic benefit of the micro-grid is
assessed in the annual cost saving rate (ACSR) of the
micro-grid in comparison to the reference system, and it is
expressed as:

ATCSR � (1 − ATCMG

ATCR
) × 100% (13)

TABLE 1 | Energy principles of components

Equipment Electricity/heat/cold balance

Gas turbine EGT ,t � PGT ,tΔt � ]ηeGTFng,t (1)

QGT ,t � ]ηhGTFng,t (2)

Photovoltaic array PPV � fPnom
PV

Gp

Gstc
[1 + α(TPV ,p − TPV ,stc)] (3)

Wind turbine PWT ,t � P′WT ,tAWTNWTηWT−inv (4)
Absorption heat pump QAHP,t � COPAHP[QGT ,t + (1 − ])ηhFng,t] (5)
Ground source heat pump QGSHP,t � COPGSHPPGSHP,t (6)
Battery SB,t+1 � ηB,sSB,t + εηB,iPB,i,t − (1 − ε)PB,o,t/ηB,o (7)

Water storage tank STS,t+1 � ηTS,sSTS,t + εηTS,iQTS,i,t − (1 − ε)QTS,o,t/ηTS,o (8)
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where ATC is the annual total cost, and it is calculated as:

ATC � Ccap + Com + Cng + Cgrid − Csgrid

� ∑l
m�1

Pnom
m Cm

i(1 + i)β
(1 + i)β − 1

+ λ∑l
m�1

Pnom
m Cm + Cpng∑n

t�1
Fng,t

+∑n
t�1
Cpe,tEgrid,t −∑n

t�1
Cse,tEexc,t

(14)

where Ccap, Com, Cng, Cgrid, and Csgrid are the cost of investment,
operation, natural gas, electricity purchased from the national
grid, and the earning of selling electricity to the national grid,
respectively. Pm is the installation capacity of the mth elements,
Cm is the unit investment cost, l is the number of ingredients, i is
the interest rate, β is the service life of components (the service life
of the battery is set to 9 years, and other components have
20 years for service (Andreas et al., 2018)), and λ is the
coefficient of operation cost to investment cost and it is set to
0.02 (Guo et al., 2013). Cpng, Cpe, and Cse are the unit cost of
natural gas, purchased electricity, and selling electricity,
respectively.

3.2 Environmental Performance
Global warming due to greenhouse gases is a critical
environmental issue, and the environmental performance of
the micro-grid because of the integration of renewable
energies is assessed in carbon dioxide emission reduction rate
(CDERR) as

CDERR �
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝1 − ∑n

t�1CDEMG
t∑n

t�1CDER
t

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ × 100% (15)

in which the lifecycle carbon dioxide emission (CDE) from the
renewable energy technologies is not considered, and the CDE
during the operation is calculated as:

CDEt � Egrid,tλCO2 ,c + Fng,tλCO2 ,ng (16)

in which λCO2 ,c and λCO2 ,ng are the unit emission factors of
electricity of the national grid and natural gas, respectively.
They are set to 0.968 kg/kWh electricity and 0.220 kg/kWh
heat (Wang et al., 2010), respectively.

3.3 Flexibility Performance
The flexibility of the micro-grid can be assessed in its interaction
with the national grid. If the interaction is less, it is shown that the
micro-grid has higher operational flexibility (Perera et al., 2013).
Usually, the interaction can be evaluated in the grid integration
level and the net interaction level, and they are respectively
defined as (Wang J et al., 2020):

GIL � ∑n
t�1rEgrid,t∑n
t�1PL,t

× 100% r � { 1Egrid,t ≥ 0
0Egrid,t < 0 (17)

and

NIL � ∑n
t�1
∣∣∣∣Egrid,t

∣∣∣∣∑n
t�1PL,t

× 100% (18)

in which PL is the electricity load of users.
The multi-objective functions are adopted to evaluate the

performances of the micro-grid, and there are two cases to be
constructed as follows:
Case 1. Maximizing the energetic, economic, and environmental
performances as:

max {PESR(P), ATCSR(P), CDERR(P)} (19)

Case 2. Both maximizing the energetic, economic, and
environmental performances AND minimizing the interaction
between the micro-grid and the national grid as:

max {PESR(P), ATCSR(P), CDERR(P)} andmin {GIL(P),
NIL(P)}

(20)

3.4 Constraints
1) Power balances of electricity and heat

PGT,t + PPV,t + PWT4t + PB,t + Pgrid,t � PGSHP,t + PL,t (21)

QGT,t + QGSHP,t + QTS,t ≥QL,t (22)

where QL is the heat load of users, the negative values of PB,t and
QTS,t represent the charge states of battery and heat tank,
respectively, while the positive values represent the discharge,
and the negative Pgrid,t represents that the excess electricity is sent
back to the national grid. In contrast, the positive value represents
the purchased electricity from the national grid.
2) Capacities of components

0≤Pi,t ≤Pnom
i εi,t, ε ∈ (0, 1) (23)

When each component runs, ε � 1 and its output is not larger
than its capacity. If the component does not run, ε is equal to 0.
3) Constraints of the heat tank

STS,t ≤ SnomTS (24)

0≤QTS,i,t ≤Qmax
TS,i (25)

0≤QTS,o.t ≤Qmax
TS,o (26)

in which the stored heat is always less than its capacity, and the
power of charge and discharge is less than their maximum powers
(Qmax

TS,i and Qmax
TS,o), respectively.

4) Constraints of battery

Smin
B ≤ SB,t ≤ Smax

B (27)

0≤PB,i,t ≤Pmax
B,i (28)

0≤PB,o,t ≤Pmax
B,o (29)

in which the stored electricity is always less than its capacity, and
the power of charge and discharge is less than their maximum
powers (Pmax

B,i and Pmax
B,o ), respectively.

5) Operation and climbing of components.
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The generation efficiency of the gas turbine is declined with
the decreasing power, and the following constraint is set to avoid
too low power factor:

ϑGTP
nom
GT ≤PGT,t ≤Pnom

GT (30)

in which ϑGT is the off coefficient of the gas turbine. The climbing
constraints of the gas turbine and the heat pump are expressed as:

Pi,t−1 − rdowni Δt≤Pi,t ≤Pi,t−1 + rupi Δt (31)

Qi,t−1 − rdowni Δt≤Qi,t ≤Qi,t−1 + rupi Δt (32)

in which rdowni and rupi are the up and bottom limitations of
climbing, respectively.

3.5 Robust Solving Algorithm
A robust Pareto Frontier is defined as one that has to demonstrate
its insensitivity to the perturbations in the optimization variables

in their neighborhoods. The robust optimization problem on
Equation (8) can be defined as:

min /max
P

O(P),

subject to

����Oeff(P) − O(P)����
‖O(P)‖ ≤ β

P ∈ S

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(33)

where O represents the objective function, β is the threshold
vector to adjust robustness, and it can be directly controlled to the
desired robustness by the user, Oeff is the anxious function value
that could be the mean practical function value or the worst
function value in the neighborhood. For example, the solutions P
with sensitivity larger than the threshold of β are considered
unfeasible. The ‖ · ‖ operator can be any suitable norm measure.

FIGURE 2 | Robust NSGA II optimization.
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In this study, the NSGA II was employed to solve this problem,
and the procedures are displayed in Figure 2. The NSGA II has
apparent advantages in multi-objective optimization, which
combines the parent scheme with its offspring schemes and
competes together to produce the next generation population,
reducing the computational complexity. The elite strategy
prevents the excellent solutions from being discarded in the
evolution. The mutation operation is an essential guarantee for
jumping out of the local optimum and facing global optimization.
The Pareto solution set obtained by the calculation keeps the
diversity of populations.

The detailed procedures are shown as follows:

Step 1. Initialization. Some parameters are initialized, including
system parameters such as technical and economic parameters,
and NSGA-II parameters such as population size, number of
iterations, and probabilities of crossover and mutation.

Step 2. Randomization of the population P. Based on the input
parameters and the ranges of decision variables, the initial P is
obtained.

Step 3. Calculate the fitness functions of each individual in the
population. This value can be calculated according to the
objective functions.

Step 4. Perform the robustness calculations with the worst
function values through sensitivity analysis of population P as
follows:

The N solutions in the neighborhood (P,ΔP) are generated in
the feasible range, and the following three steps are performed:

1) The first-order linear regression model of each Oj is fitted
using the points in the neighborhood, and cj denotes the
resulting coefficients’ vector.

2) The following liner program is solved using an optimization
algorithm (the simplex method is adopted in this study):

max cTj yj

subject to yj ≥P − ΔP/2
yj ≤P + ΔP/2

⎫⎪⎬⎪⎭ (34)

3) The optimal solution yp
j is obtained and the value of the

effective function is calculated as:

Oeff
j (P) � max(Oj(yp

j), maxOj(P)) (35)

After the practical function values are obtained, the paired
comparisons (μ(·) � ‖Oeff(P)−O(P)‖

‖O(P)‖ ) between each current solution
and its specific challenges in the selection phase are implemented.
Then, the new population is selected according to the following
rules:

· If both points have μ(·)> β, the solution with the lowest μ(·)
is included in the new population;
· If only one point has μ(·)≤ β, only this point is included;

FIGURE 3 | Daily solar radiation.

FIGURE 4 | Daily atmosphere temperature and wind speed.

FIGURE 5 | Daily loads of cooling, heating, power, and domestic
hot water.
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· If both points have μ(·)≤ β, the Pareto-dominated solution is
included. If they are mutually non-dominated, both of them
are included.

Step 5. Determine the rank value and crowding distance of each
individual in the population according to the fitness function.
Then, a new population is obtained from the population
according to rank value and crowding distance.

Step 6. If the stop criterion is not satisfied, the new population P2
is obtained through crossover and mutation operations of P1.

Then, the fitness of individuals in the population (P1, P2) is, thus,
determined, and the sensitivity of solutions in the population (P1,
P2) is analyzed. The procedure ends until the stop criterion is
satisfied.

4 RESULTS AND DISCUSSIONS

A case study was performed to demonstrate the validation of the
proposed robust optimization model in the micro-grid in this
section, and the used software to implement the optimization
algorithm is MATLAB software.

TABLE 2 | Investment costs (Yuan/kW or Yuan/kWh)

Component Cost Source Component Cost Source

Gas turbine 6998 Lin et al. (2011) Heat tank 375 Guo et al. (2013)
Absorption heat pump 1505 Li et al. (2019) Battery 5894 Guo et al. (2013)
Ground source heat pump 2495 Guo et al. (2013) PV panel 13,642 Guo et al. (2013)
Wind turbine 8000 Hong, (2014)

TABLE 3 | Technical parameters

Component Symbol Value Component Symbol Value

Gas turbine ηeGT 0.30 Ground source heat pump COPh
GSHP 4.00

ηhGT 0.62 COPc
GSHP 5.89

ϑGT 0.25

rdownGT (kW/min) 6 rdownGSHP (kW/min) 4

rupGT (kW/min) 5 rupGSHP (kW/min) 4

PV panels ηe,PV 0.16 Absorption heat pump COPh
AHP 0.90

α (%/°C) −0.50 COPc
AHP 1.40

f 0.90 ηdcz 0.80
Wind turbine Vci (m/s) 3 Heat tank ηTS,s 0.90

Vr (m/s) 12 ηTS,i 0.90

Vco (m/s) 25 ηTS,o 0.90

ηW−inv 0.90 Battery ηB,s 0.96

Battery ηB,o 0.95 ηB,i 0.95

TABLE 4 | The optimization model for the micro-grid

Item Cost Source Component

Decision variables Pnom
GT 0≤Pnom

GT ≤ 400 Gas turbine
Pnom
WT 0≤Pnom

WT ≤ 200 Wind turbine
Pnom
PV 0≤Pnom

PV ≤ 200 PV panel
Snom
B 0≤Snom

B ≤1000 Battery
Snom
TS 0≤Snom

TS ≤1000 Thermal storage
γ 0≤ γ≤1 Ratio of GSHP to all demands

Objectives PESR Equation (11) Energetic performance
ATCSR Equation (13) Economic performance
CDERR Equation (15) Environmental performance
GIL Equation (17) Flexibility performance
NIL Equation (19) Flexibility performance

Constraints Equation (21)∼Equation (32)
Solving algorithm Populuation 100 NSGA II with robust optimization

Iteration number 300
Crossover probability 0.9
Mutation probability 0.2
Distribution index 20
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FIGURE 6 | Optimal configurations of power technologies of two cases.

TABLE 5 | Distributions of optimal solutions of two cases

Cases Case 1 Case 2

Decision variables Unit Average Standard deviation Average Standard deviation

Pnom
GT kW 5 195 36

Pnom
WT kW 62 142 65

Pnom
PV kW 76 83 79

Pnom
grid kW 31 340 58

Pnom
GSHP kW 229 560 279

Pnom
AHP kW 267 1,226 296

Snom
B kWh 33 347 356

Snom
TS kWh 274 681 214

γ - 0.13 0.31 0.15

PESR % 7.5 33.9 7.4
ATCSR % 5.4 1.5 19.8
CDERR % 5.4 49.1 5.1
GIL % 0.6 8.0 2.3
NIL % 4.4 11.8 5.6

FIGURE 7 | Comparisons of Pareto frontiers of optimal systems considering different objectives.
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A typical commercial area with hotel and office buildings in
North China was selected as a case, and the micro-gird was
designed using the proposed optimization. The typical hourly
ambient temperature, wind velocity, and solar radiation are
shown in Figure 3 and Figure 4, respectively.

The hourly loads of electricity, cooling, heating, and domestic
hot water are displayed in Figure 5. Other initial parameters are
set as follows:

1) The available installation area of solar PV panels is 2000 m2

(Liu et al., 2012).
2) The economic parameters of components are summarized in

Table 2 (Lin et al., 2011; Guo et al., 2013; Hong, 2014; Li et al., 2019).
3) The technical parameters of components are listed in

Table 3 (Lin et al., 2011; Perera et al., 2013; Dou, 2018;
Alamgir et al., 2019; Li et al., 2019; Ren et al., 2019).

4) The optimization model and parameters of NSGA-II are set
in Table 4.

5) The hourly electricity prices are 1.51 (11:00–13:00, 16:
00–17:00), 1.38 (10:00–11:00, 13:00–15:00, 18:00–21:00), 0.86
(7:00–10:00, 15:00–16:00, 17:00–18:00, 21:00–23:00) and 0.37
(23:00–7:00) Yuan/kWh (Peng et al., 2020).

6) The price of natural gas is 2.9 Yuan/Nm3 (Peng et al., 2020),
and the low heating value is 42 MJ/Nm3.

7) The reference system is set to the following configurations
and operation: electricity is supplied by the national electric grid
(the power generation efficiency is set to 0.35 and the
transmission efficiency is 0.92), the ground source heat pump
satisfies the hot and chilled water for heating and cooling loads,
respectively, and the boiler provides the heat required for
domestic hot water (the heat efficiency is set to 0.80).

4.1 Results
To discuss the optimization results under different optimization
objective functions, three indicators of PESR, ATCSR, and
CDERR (without considering the operational flexibility in case
(1) and five indicators of PESR, ATCSR, CDERR, GIL, and NIL
(considering the operational flexibility in case (2) for
optimization goals. Through the multi-objective robust
optimization algorithm and using 100 Pareto solutions in the
optimization, the system power generation equipment (gas
turbine, wind power, and photovoltaic) is shown in Figure 6.
It is observed that when the system operation flexibility is not
considered, the gas turbine capacity is concentrated between
168 kW and 192 kW. When the system operation flexibility is
considered, the gas turbine capacity range is expanded from
132 kW to 256 kW. The distributions of the mean and
standard deviation corresponding to the 100 groups of optimal
solutions are shown in Table 5. When considering the operating
flexibility of the system, except for the minor standard deviation
of the heat storage device, the standard deviations of other
variables all increase, indicating that the Pareto optimal
solution distribution is more discrete. When the GI and NI
decreased by 0.2 and 2.3%, respectively, the PESR, ATCSR,
and CDERR were reduced by 1.6, 19.8, and 1.2%, respectively,
and the economic performance decreased significantly.

The configuration of equipment capacity is optimized based
on local resource conditions and user load. Therefore, the degree
of wind and photovoltaic power generation equipment is closely
related to weather conditions such as wind speed and irradiation.
The annual utilization hours are 1406 and 1221, respectively. The
annual utilization hours of gas turbines are different in 100 sets of
optimal solutions. When operating flexibility is not considered,
the average utilization hours are 4174, and when working

FIGURE 8 | Impacts of iteration generation on computation time and uniformity of solutions.

TABLE 6 | Typical system configurations and performances in different
optimization objectives

Optimization objectives Case 1 Case 2

Decision variables Unit Value Value

Pnom
GT kW 175 244

Pnom
WT kW 114 82

Pnom
PV kW 1 18

Pnom
grid kW 342 273

Pnom
GSHP kW 457 450

Pnom
AHP kW 1348 1355

Snom
B kWh 0 201

Snom
TS kWh 463 931

γ - 0.25 0.24

PESR % 30.0 30.0
ATCSR % 25.9 12.2
CDERR % 46.4 46.4
GIL % 7.5 7.3
NIL % 9.0 7.3
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flexibility is considered, it is reduced to 3863. The decrease of
annual utilization hours is mainly due to the increase in the
configuration capabilities of the gas turbine when operating
flexibility is considered.

The performances in the optimal cases are shown in Figure 7.
When flexibility is not considered in case 1, the PESR ranges from
20.8 to 45.3% Figure 7A. The increasing PESR means the
decrease in fuel consumption, and the CDERR is also
increased from 39.6 to 57.4%. Also, the ratio of renewable
energy is increased, resulting in worse economic performance
due to the larger investment cost of PV and wind turbines. The

ATCSR is declined from 27.1 to 6.3%. At case 1, the GIL and NIR
in Figure 7B are [7.2%, 9.2%] and [7.2%, 20.4%], respectively.
The NIL increases with the increasing PESR, and its increase is
relatively large, whereas the increase of GIL is slight.

When the flexibility is considered in the optimization of case 2,
the performance distributions are not in a Pareto Frontier. There
are specific relationships between PESR, ATCSR, and CDERR,
and their change ranges are [19.3%, 35.3%], [-40.7%, 27.0%], and
[39.0%, 57.5%]. Compared to case 1, the economic performance
declined dramatically, reducing to -40.7%, which is worse than
the reference system. In case 2, the change ranges of GIL are

FIGURE 9 | Comparisons of operational modes of power components in a typical summer day considering different objectives.

FIGURE 10 | Comparisons of operational modes of thermal components in a typical summer day considering different objectives.
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[4.7%, 13.6%] and that of Nil are [4.7%, 24.0%]. Obviously, their
lowest values decrease 2.5%, and their largest values increase,
resulting from the conflict between five optimization objectives.
Comprehensively, the average values of GIL and NIL are declined
by 0.2 and 2.3%, respectively. This point demonstrates that the
optimization considering operational flexibility obtains the
obvious benefits, and the proposed robust optimization is feasible.
Case 1was optimized without the robust optimization to evaluate
the benefit of the proposed optimization model, and the Pareto
frontier is shown in Figure 7. The results show that the more
extensive ranges of Pareto solution in the robust optimization are
obtained, and the PESR, ATCSR, and CDERR are increased by
6.5, 4.3, and 4.7%, respectively. The validation of the proposed
method is also indicated.

In addition, the performance of solving algorithms is assessed
in the convergence, uniformity, and breadth of solutions.
Considering no real Pareto Frontier, the uniformity of keys is
selected and used to determine the algorithm. The program was
performed in the personal computer of 3.40-GHz I7-6700 CPU
and 8-GB, and the computation time of each step and the
standard deviation are shown in Figure 8. It is seen that the
distributions of solutions will be uniform when the iteration
number reaches 45, and the computation time decreases with the
increasing iteration. When the iteration increases from 15 to 300,
the consumed time is declined by 11.3%. But the total time is
increased. The suitable maximum iteration is set to about 45,
which considers both the computation cost and solution
distributions.

4.2 Discussion
Two optimal solutions with similar PESR are selected from
the 100 solutions of the Pareto Frontier to compare the
operation strategies of two cases considering different
optimization objectives, and their configurations and
performances are displayed in Table 6. Their PESR are
similar, and the arrangements in other aspects are as same
as the analysis in Section 4.2. When the GIL and NIL of
operational flexibility are both considered, the ATCSR of the
micro-grid is reduced.

Figure 9 displays the electricity balances of the cases inTable 6
on a typical summer day. It is observed that the electric demands
are not different because of the different cooling ratios of the
ground source heat pump in the two cases. Analyzed their total
supplies of power technologies, the gas turbine supplies more
than 51.1% of total electricity demand. The wind turbine plays an
essential role in providing electricity, and its ratio reaches 25.5%
when considering operation flexibility. The national grid is an
important supplementary source of the micro-grid, and its ratios
in two cases are 11.1 and 16.3%, respectively. Because of the
consideration of flexibility of micro-grid, the national grid
decreases the supply by 5.2%. In addition, it is seen that the
capacities of PV panels are both low in two cases in Table 6, and
their supply ratios are only 1.6 and 0.1%. Compared to selling
electricity from the micro-grid to the national grid (4:00–6:00),
there is excess electricity to be sold back to the national grid
because of the larger capacity of the wind turbine in case 1 in

Figure 9A without considering flexibility, indicating that it has
more extensive dependence on the national grid.

The cooling and domestic hot water loads are converted to
thermal demand, and the heat balances in two cases of Table 6 are
shown in Figure 10. The generated power determines the exhaust
waste heat from the gas turbine, and their heat ratios reach 46.7% in
case 1 without operational flexibility Figure 10A and 55.3% in case
2 in Figure 10B with flexibility. The second unit to supply more
heat is the absorption heat pump, and their ratios reach 30.6 and
19.8%, respectively. The ground source heat pump delivers about
20.0% of total heat demand. Because the capacity of the heater tank
is more prominent in case 2 when considering flexibility, its ratio is
4.9%, which is more significant than in case 1.

5 CONCLUSION

This paper constructed a robust optimization model of micro-
grid of natural gas and renewable energies. The multi-aspect
performances, including energy, economic, environmental, and
operation flexibility of the micro-grid, were considered. The
optimal configurations and implementations were discussed in
the different optimization objectives by a case study. The
following main conclusions are obtained:

1) When the PESR, ATCSR, and CDERR are considered for
optimization, Pareto solutions’ performances are related. The
CDERR is increased with the increasing PESR, whereas the
ATCSR is declined with the increase of PESR.

2) When the operational flexibility of the micro-grid is
considered in the optimization, the micro-grid decreases its
dependence on the national grid, and the flexibility is
improved. But the Pareto solutions are discrete.

3) In the specific case study in this paper, the micro-gird
optimized in energetic, economic, and environmental
performances averagely reduces the fuel consumption by
35.5%, economic cost of 21.3%, and carbon dioxide
emission of 50.3%. When the operational flexibility using
the indicators of GIL and NIL is as the optimization
objective, the gird integration level is averagely decreased
by 0.2%, and the net interaction level is averagely declined
by 2.3%. But the improvement of flexibility of the micro-grid
results in the decreases of PESR, ATCSR, and CDERR. They
are reduced by 1.6, 19.8, and 1.2%, respectively.
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