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To solve the problems that a large number of random and uncontrolled electric vehicles
(EVs) connecting to the distribution network, resulting in a decrease in the performance
and stability of the grid and high user costs, in this study, a multi-objective comprehensive
charging/discharging scheduling strategy for EVs based on improved particle swarm
optimization (IPSO) is proposed. In the distribution network, the minimum root-mean-
square error and the minimum peak valley difference of system load are first designed as
objective functions; on the user side, the lowest charge and discharge cost of electric
vehicle users and the lowest battery loss cost are used as objective functions, then a multi-
objective optimization scheduling model for EVs is established, and finally, the optimization
through IPSO is performed. The simulation results show that the proposed method is
effective, which enhances the peak regulating capacity of the power grid, and it optimizes
the system load and reduces the user cost compared with the conventional methods.

Keywords: electric vehicle, multi-objective optimization, improved particle swarm algorithm, grid peak shaving,
charging/discharging scheduling

INTRODUCTION

The new energy source has made a great contribution to solving the increasingly serious energy
shortage and environmental degradation. It will gradually replace non-renewable energy sources that
cannot be recycled or reused (Teng et al., 2021). Electric vehicles (EVs) have gradually gained
popularity in recent years due to their energy-saving (Xiong et al., 2020; Huang et al., 2021; Zhang
et al., 2021) and environmentally friendly features. However, a large number of EVs connected to the
distribution network increase the load of the power grid, which may lead to problems such as the
increase of the peak-valley difference of the load, the local overload of the grid load, the increase of
the line loss, and the over-limit of the transformer capacity of the distribution network (Wang et al.,
2020). In addition, the electricity consumption of residents is increasing, and unreasonable charging
costs will limit the popularization of EVs. EVs with vehicle to grid (V2G) capability can feed
electricity back to the grid when their state of charge (SOC) is high. The maturity of the V2G
technology and autonomous vehicle communication technology enables EVs to participate in
optimal dispatch and reduce the load pressure on the distribution network. In addition, the
charging/discharging of EVs are similar and clustered. EVs in the same street or community have
similar charging behaviors, which increases the dispatch ability of EVs (Badawy and Sozer, 2017). The

Edited by:
Bin Zhou,

Hunan University, China

Reviewed by:
Ling Yang,

Guangdong University of Technology,
China

Hui Cai,
Changsha University of Science and

Technology, China

*Correspondence:
Baling Fang

5911866@qq.com

Specialty section:
This article was submitted to
Process and Energy Systems

Engineering,
a section of the journal

Frontiers in Energy Research

Received: 09 November 2021
Accepted: 24 November 2021
Published: 21 December 2021

Citation:
Fang B, Li B, Li X, Jia Y, Xu W and

Liao Y (2021) Multi-Objective
Comprehensive Charging/Discharging

Scheduling Strategy for Electric
Vehicles Based on the Improved

Particle Swarm
Optimization Algorithm.

Front. Energy Res. 9:811964.
doi: 10.3389/fenrg.2021.811964

Frontiers in Energy Research | www.frontiersin.org December 2021 | Volume 9 | Article 8119641

ORIGINAL RESEARCH
published: 21 December 2021

doi: 10.3389/fenrg.2021.811964

http://crossmark.crossref.org/dialog/?doi=10.3389/fenrg.2021.811964&domain=pdf&date_stamp=2021-12-21
https://www.frontiersin.org/articles/10.3389/fenrg.2021.811964/full
https://www.frontiersin.org/articles/10.3389/fenrg.2021.811964/full
https://www.frontiersin.org/articles/10.3389/fenrg.2021.811964/full
https://www.frontiersin.org/articles/10.3389/fenrg.2021.811964/full
https://www.frontiersin.org/articles/10.3389/fenrg.2021.811964/full
http://creativecommons.org/licenses/by/4.0/
mailto:5911866@qq.com
https://doi.org/10.3389/fenrg.2021.811964
https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#editorial-board
https://doi.org/10.3389/fenrg.2021.811964


dispatching strategy of EVs is mainly to study the load balancing
factors and distribution capacity on the distribution network side,
while the user side aims to improve user satisfaction, battery loss
costs, and the charging/discharging costs of EVs. The optimal
charging/discharging scheduling of EVs was used to eliminate the
influence of a large number of EVs connected to the grid, reduce
the fluctuation of the grid load, and reduce user costs.

At present, intelligent scheduling has become one of the
research hotspots. The economic cost is minimized, but the
power grid load fluctuation is not considered (Habib et al.,
2020). When a large number of EV users charge during the
valley period, an “avalanche effect” will occur (Gottwalt et al.,
2011). In the study by Jin et al. (2020), a probability mass function
(PMF)-based model is proposed to provide more accurate
forecasts of future EV behaviors. In addition, it developed an
EV aggregator (EVA) optimization schedule model that
combines a day-ahead optimization schedule and a real-time
optimization schedule to reduce EVA operation costs and
maximize the travel utility for users participating in this
service of EVs. So as to resolve the conflict of interest between
customers and system operators during the implementation of
the vehicle to the grid, it proposed to use an augmented epsilon
constrain-based technique to implement two-way and three-way
multi-objective optimization (Maigha and Crow 2018). Amamra
and Marco (2019) established an optimization strategy for V2G
scheduling, which solved the problems of EV’s plug in time,
adjustment price, EV’s expected leaving time, battery degradation
cost, and vehicle charging demand, but the article does not
optimize the load on the distribution grid. Hadian et al.
(2020) similarly used a multi-objective particle swarm
optimization (PSO) algorithm to control the charging/
discharging rate and time of EVs to achieve the peak shaving,
valley filling, and flattening goals of the grid load curve. The
power routing strategy for EVs was proposed in the study by
Esfahani and Mohammed (2019); the objective function involves
minimization of power loss and the power imbalance factor along
with improved system load ability as well as voltage profile. PSO
reoptimized the received sub-optimal solution (site and the size of
the station), which leads to an improvement in the algorithm
functionality and enhances quality of the solution; the author
shows the superior performance of the proposed method on the
genetic algorithm and PSO in terms of improvement in the
voltage profile and quality through simulation (Awasthi et al.,
2017). Ma et al, (2019) studied the load fluctuation of the
distribution network and the charge/discharge cost of EVs on
the basis of the peak-valley time-of-use (TOU) price, and finally, a
coordinated dispatch strategy and an optimized dispatch model
were proposed to reduce the peak-valley difference of the power
grid and improve the economic benefits of users.

The PSO algorithm requires fewer parameters and has low
requirements on the objective function, which is widely used.
Many literature studies use PSO to solve the scheduling problem
(Yousif et al., 2019), but when the problem dimension is high, the
algorithm is prone to precocity. Contrastively, in the study by
Kang et al. (2017), it established a multi-objective optimization
model and used the improved particle swarm optimization
(IPSO) algorithm to find out the solution with the minimum

electricity cost; the results verify that this method can better meet
the economic benefits and environmental protection
requirements of microgrid power generation than PSO, but it
does not consider the optimization of the grid side.

To summarize, this studymainly conducts the following research
on the basis of the above research work and combined with the
background of an odd–even license plate restriction policy:

1) The charging/discharging cost and battery loss cost of EVs are
constructed as objective functions on the user side of EVs, and
the two objective functions of load mean square deviation and
load peak-valley difference are established in terms of power
grid load.

2) The influence of the current odd–even license plate restriction
policy on EV scheduling is considered, and the charging power
and state of charge/charging quantity of EVs are constrained.

3) An IPSO algorithm is proposed, which can effectively avoid
the premature phenomenon of particles.

4) Finally, experiments have verified that the algorithm has
better EV scheduling performance, and it reduces the user
cost of EVs and plays the role of peak shaving and valley filling
for the system load.

The rest of this article is organized as follows: the first section
introduces the scheduling system, objective function, and model
constraints of V2G; the second section describes the dispatching
strategy scheme of EVs; the third section gives simulation results
to prove that the proposed IPSO algorithm has a better power
grid peak regulating ability and is beneficial to reducing user
costs; finally, the fourth part gives the conclusion.

VEHICLE TO GRID AND THE SCHEDULING
MODEL

Vehicle to Grid Dispatching System
The V2G dispatching system is divided into five parts: the
distribution network, information collection system, V2G

FIGURE 1 | Structure of V2G.
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dispatching center, intelligent charging module, and EVs. The
structure of the V2G scheduling system is shown in Figure 1.

Lithium Ion Battery Model
Battery aging is mainly caused by EV’s cyclic charge and
discharge, which is also related to the type of battery. In
this study, a linear model proportional only to the total
number of battery cycles is used to study lithium ion batteries.
The curve diagram of cycle times and life as shown in Figure 2 is
presented in the study by Neubauer and Wood (2014), and the
value is given by the battery manufacturer. The model is related
to the battery replacement cost, and the battery aging cost is
obtained.

Objective Function
Battery Aging Cost
The battery aging cost includes the charge and discharge power
and the cost caused by the fluctuation of charge and discharge
power. The battery aging cost caused by charging/discharging
power is expressed as

C1,i � ∑T
t�1

α(Δtpi,t)2, (1)

where c1,i is the battery aging cost caused by charging/discharging
power of EV i in 24 h; α is the model coefficient, set to a small
positive number, because the battery aging caused by charging
power is small; and pi,t is the charging power of the EV i in t
periods (pi,t > 0, EV charging; pi,t< 0, EV discharge).

The battery aging cost caused by charge and discharge power
fluctuation in adjacent periods is expressed as

C2,i � ∑T−1
t�1

β(Δtpi,t − Δtpi,t+1)2, (2)

where c2,i is the battery aging cost of EV i in 24 h due to the charge
and discharge power fluctuation; β is the model coefficient; and
xi,t+1 is the charging power of EV i in the period t+1. The greater
the fluctuation of charge and discharge power in adjacent periods,
the greater the battery aging. The change of charging/discharging
state (charging to discharge or discharge to charge) of EVs will
cause greater battery aging. Therefore, in the 24 h scheduling

process, the more frequently the charge and discharge status
changes, the greater the battery aging cost is.

The aging cost of the battery is expressed as

Cij � ∑N
i�1
(C1,i + C2,i), (3)

where N is the total number of EVs.

Charging Cost
The charging cost of EVs participating in the V2G program
depends on the charging consumption and discharge income.
When the discharge revenue of EVs is higher than the charging
consumption, the charging cost may be negative. The reducing
charging cost is the most important incentive factor for EV
owners to participate in the V2G program, but a high-
frequency discharge will cause irreversible loss of the battery,
which limits the enthusiasm of EV owners to feed the power grid.

The electricity price is designed as a linear function of the
instantaneous load of the grid:

St � k0 + k1zt, (4)

where st is the electricity price of period t, k0 and k1 are normal
numbers, and zt is the load of period t.

Under the real-time electricity price, EV charging cost is
expressed as

Cev � ∑24
t

∑N
i�1

PitSt. (5)

Mean Square Error of Power Grid Load
The smaller the load mean square error, the more stable the load
fluctuation. The charge and discharge power of each EV in 24
periods of a day is regarded as the control variable:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Pavr � ∑24

t�1
⎛⎝P0t +∑N

i�1
Pit

⎞⎠/24

Zmse � ∑24
t�1

⎛⎝P0t +∑N
i�1
Pit − Pavr

⎞⎠2

,

(6)

where Pot is the power of the original power grid at time t without
the load of EVs and Pavr is the average daily load after the
scheduling.

Peak and Valley Difference of Power Grid Load
Peak load is expressed as

PΔ
0t � P0t +∑N

i�1
Pit. (7)

The peak and valley difference of the load curve is expressed as

ΔP � max(PΔ
0t) −min(PΔ

0k), (8)

where max(PΔ
0t) represents the peak load before adjustment and

min(PΔ
0k) indicates the peak value of the adjusted load.

FIGURE 2 | Relationship between cycle number and life.
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Objective Function
The optimized objective function is expressed as

minf � min(Cij + Cev + Zmse + ΔP). (9)

From the perspective of comprehensive indicators, only
considering a single target does not truly reflect the actual cost
of users. The four costs represent the interests of the power grid
and vehicle owners. When setting the weight coefficient, the
importance of the four costs is the same, which is closer to
the actual use cost of users. If only the charging cost is considered,
the charging cost is the smallest near the load valley, but a too
long charging time increases the battery aging cost, and the
charge and discharge power under the constraint of charging
cost will produce a short-term peak, so the cost in this period is
not necessarily the smallest. Considering comprehensively, set the
same weight for the four objectives.

Constraints of the Model
SOC Constraints
Reasonable upper and lower limits of state of charge can delay
battery aging as

SOCitmin ≤ SOCit ≤ SOCitmax, (10)

where SOCit is the state of charge of EV i at time t, SOCitmin is the
lower limit of the state of charge of EV i at time t, and SOCitmax is
the upper limit of the state of charge of EV i at time t. Considering
the safety of the vehicle battery, SOCitmin is 0.2 and SOCitmax

is 0.9.

Charging/Discharging Power Constraints
When the EVs support V2G,

−Pitmax ≤xit ≤Pitmax ∀i ∈ Nv2g. (11)

When the EVs do not support V2G,

0≤xit ≤Pitmax ∀i ∈ Nchg, (12)

where Pitmax represents the constraint of the maximum charging
power of EV i at time t, Nv2g is the number of EVs supporting
V2G, and Nchg is the number of rechargeable EVs.

Battery Power Constraints

Eini
i + ∑t�tend

t�tsta
Δtxit ≥E

exp
i , (13)

Ebatt
i SOCitmin ≤Eini

i + ∑t�tend
t�tsta

Δtxit ≤Ebatt
i SOCitmax, (14)

where tsta is the charging start time of EV, tend is the departure
time of EV, Ein i

i is the initial battery level, Eexp
i is the expected

battery capacity, and Ebatt
i is the battery capacity of EV i.

Equation 13 ensures that the battery power can meet the
requirements when the EVs leave, and Eq. 14 ensures that the

power in the dispatching section is always within the allowable
range, neither excessive discharge nor overcharge.

Even–Odd License Plate Method
In order to alleviate urban traffic pressure and environmental
pollution, it is imperative to implement a restriction policy on odd
and even numbers. On the other hand, the traffic restriction policy
can improve the enthusiasm of EV owners to participate in power
grid dispatching and alleviate the burden of the distribution
network. However, not all EV owners are willing to participate
in the scheduling during the travel restriction period, so the
probability of participating in the scheduling is selected as 0.95
in this study. In addition, most unrestricted EVs are actually idle
almost 95% of the time in a day (Shen et al., 2021). This part of EVs
can participate in the scheduling under the condition of meeting
the model constraints. In this study, the probability of unrestricted
driving participating in the scheduling is 0.8.

SOLUTION OF THE SCHEDULING POLICY

It is difficult to solve themulti-variable, non-linear,multi-constrained,
and high-dimensional EV charging/discharging scheduling
optimization problem by using classical optimization algorithms
such as linear programming (Liu et al., 2020). Considering that
the standard PSO algorithm is prone to fall into local optimum, this
study adopts the IPSO algorithm for optimization.

Particle Swarm Optimization
PSO needs a certain amount of initial solution and then through
iteration to find the optimal solution. In the process of each iteration
and update, the particle needs to update two quantities, which are the
individual optimal position and the population optimal position.

Supposing that in a D-dimensional solution space, the
population is composed of N particles, where the position of
particle i can be expressed as follows

Xi � (xi1, xi2, . . . , xiD). (15)

The velocity of particle i can also be represented as follows:

Vi � (vi1, vi2, . . . , viD). (16)

The optimal position searched by particle i is called the
individual optimal position, denoted as

Pbest � (pi1, pi2, . . . , piD). (17)

The optimal position found by the whole particle swarm is
called the optimal position of the population, denoted as

Gbest � (gi1, gi2, . . . , giD). (18)

The whole particle swarm is described as {Xk
1, X

k
2, ..., X

k
N},

where k is the number of iterations. After finding the two
quantities of individual optimal position Pbest and population
optimal position Gbest, the particle updates its speed and position
according to the following equation:
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⎧⎪⎪⎨⎪⎪⎩
Vk+1

i � wVk
i + c1r1(Pk

best −Xk
i )

+c2r2(Gk
best −Xk

i )
Xk+1

i � Xk
i + Vk+1

i ,

(19)

where ω is the weight of inertia, which is generally 0.9; c1 and c2
are called learning factors or acceleration factors; and r1 and r2
are random numbers from 0 to 1 that follow a uniform
distribution.

The flow chart of the PSO algorithm is shown in Figure 3.

Improved Particle Swarm Optimization
Algorithm
If the particle velocity is too divergent, it will lead to slow
convergence in the later stage. In order to solve this problem,
a simplified PSO algorithm is proposed in the literature (Lin et al.,
2020). In this algorithm, the velocity term is omitted, and the
evolutionary direction of particles is controlled only by the
position term; Eq. 19 in the standard PSO algorithm can be
simplified as

Xk+1
i � ωXk

i + +c1 r1 (Pk
best −Xk

i ) + c2 r2 (Gk
best −Xk

i ). (20)

Levy Flight
Levy flight is a random search path between short-distance
walking and occasionally long-distance walking obeying Levy
distribution. After a lot of research, it is in line with the foraging
trajectory of many insects in nature, such as bees and fruit flies
(Yao et al., 2020). If the algorithm falls into the local optimum, the
particle position can be readjusted by Levy’s flight formula to
make it jump out of the local optimum. Levy’s flight position
update equation is expressed as

Xk+1
i � Xk

i + α ⊕ k−λ, (21)

where ⊕ is point-to-point multiplication and λ stands for step
control.

The step length of Levy flight conforms to Levy distribution
which is often simulated by the Mantegna algorithm, and the
calculation formula of step s is expressed as

s � μ∣∣∣∣∣v∣∣∣∣∣1β, (22)

whereμ ∼ N(0, σ2μ), v ∼ N(0, σ2v), and

σμ �
⎧⎪⎨⎪⎩Γ(1 + β)p sin(πβ2 )

Γ(1+β2 )pβp2β−1
2

⎫⎪⎬⎪⎭
1
β

, (23)

σv � 1, (24)

where β is usually 1.5.
If all particles gather near the optimal particle, the algorithm

will stagnate with the iteration. If it is the local optimum, the
obtained solution is not the global optimum. In order to make the
particles escape the local optimum and improve the population
diversity, Levy flight is carried out to update the position of the
particles. The adaptive adjustment strategy is written as

FIGURE 3 | Block diagram of the PSO process.
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fk
i is the fitness value of particle i in the kth iteration, and

fk
avg � 1

k ∑k
i�1 fk

i is the average fitness value of PSO. If f
k
i < fk

avg,
the average fitness is updated; If fk

i > fk
avg, Levy flight is carried

out according to Eq. 21.

Random Inertia Weight
In the PSO algorithm, a large value of inertia weight can be
conducive to more extensive search, and a small inertia weight
can improve the accurate local search ability of the algorithm.
Therefore, the value of the inertia weight is very important. Based
on this, a non-linear decreasing inertia weight with randomness is
proposed. The inertia weight is as follows:

w � 1
k + 1

prand()p(wmax − wmin), (25)

where k represents the current number of iterations; rand() is a
random number in the interval 0–1; and wmax and wmin

represent the maximum and minimum inertia weights,
respectively.

Simulated Annealing Algorithm
Aiming at the problem that PSO is easy to fall into local optimum,
the idea of simulated annealing (SA) is introduced in PSO to
improve PSO by using the characteristic that SA can accept
inferior solutions under a certain probability.

The operation steps of simulated annealing are as follows:

1) The solution optimized by PSO is used as the initial solution to
determine the initial annealing temperature;

2) Calculate the fitness function difference between the new
solution and the old solution: Δf � f(Y′) − f(Y), and
judge whether to accept the new solution according to the
Metropolis criterion: min{1, exp(−(Δf⁄T)})> rand();

3) Calculate the annealing temperature according to Eq. (26):

T � CT. (26)

4) If the convergence criterion is reached, the final accepted state
is output, otherwise turn to step 2.

Through the research of a PSO improvement strategy, when
the next position of the particle is better than the current position,
the particle moves to the next position. Instead, particles move
with the probability controlled by temperature instead of directly
moving to the next position. When the temperature drops slowly
enough, the algorithm will not easily jump out of the “promising”
search area. This way can enhance the local search ability of
the PSO.

CALCULATION EXAMPLE ANALYSIS

Simulation Parameter Setting
Taking a microgrid as an example for simulation analysis, the
scale of EVs in the planning area is 600, and 50 EVs do not
support V2G; the scheduling period ranges from 0 to 24 points.
The simulation stepΔt� 1 h.

The typical daily electricity load of the grid is shown in
Figure 4.

In this study, load scheduling is dispatched under the
condition of the TOU price. TOU price data obtained through
Eq. 4 are shown in Table 1.

In order to illustrate the effectiveness of IPSO in solving the
economic dispatching of the microgrid, the solution results will
be compared with those of standard PSO and adaptive particle
swarm optimization (APSO). The specific parameter settings are
as follows:

The maximum iteration times of each algorithm were set to
1,000 times. The population number was 100; wmax and wmin are
set to 0.9 and 0.4, respectively; and the learning factor c1 � c2 �
1.6 for PSO, APSO, and IPSO.

Analysis of Simulation Results.
The 1-day charging load demand of a single EV is obtained by
Monte Carlo simulation, and the total charging load demand
of 600 EV clusters is superimposed with the basic load to
form the 1-day total load demand. We took the objective

FIGURE 4 | Curve of the original daily load.

TABLE 1 | Time-of-use electricity price.

Time Price (¥) Time Price (¥)

1 0.65 13 0.75
2 0.54 14 0.83
3 0.35 15 0.83
4 0.65 16 0.74
5 0.48 17 0.84
6 0.56 18 0.93
7 0.57 19 0.65
8 0.70 20 0.78
9 0.72 21 0.82
10 0.75 22 0.63
11 0.64 23 0.60
12 0.66 24 0.69
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function f as the optimization objective for scheduling. The
convergence curve of the average results of the three
algorithms after running independently for 10 times is
shown in Figure 5.

The load curve optimized by the three methods and the
original load curve are shown in Figure 6.

The load curve optimization values of the three methods and
the objective function optimization values are shown in Table 2
and Table 3.

It can be seen from Figure 5 that the objective function
value of PSO in 280 generations is stable at 14,385.39 ¥, and
the algebra of APSO converging to this value is generation
163. When it is stable, the objective function value is
14,186.32, and the cost is reduced by 199.07 ¥/day. In
addition, according to the data in Table 2 and Table 3, the
load rate of APSO is 5.2% higher than that of PSO and the load
mean square deviation is 4.87% lower than that of PSO and
23.55% lower than the peak valley difference of PSO,
indicating that APSO is conducive to the safe and stable
operation of the power grid and reducing cost. It can be
seen from Figure 5 and Figure 6 that IPSO performs
better, and it can converge to the optimal value of APSO in
generation 80. Its final objective function value is 13,654.27 ¥,
the cost is 532.05 ¥/day lower than that of APSO, and the
effect of peak cutting and valley filling is more obvious.
Meanwhile, according to the data in Table 2 and Table 3,
the load rate is 4.43% higher than that of APSO, the load mean
square deviation is 8.08% lower than that of APSO, and the
peak valley difference is 16.44% better than that of APSO. It
shows that the IPSO algorithm has strong optimization ability
for multi-constraint, strong coupling, and high-dimensional
scheduling problems of the microgrid, and its convergence is
better than that of other algorithms, so it is more suitable for
the scheduling problems of the microgrid.

The numerical example shows that EVs can participate in the
peak shaving and valley filling of the power grid as a flexible
energy storage device on the premise of ensuring the regular
vehicle demand of vehicle owners. The scheduling model based
on IPSO can well enable family EVs to participate in the
interaction of the power grid, actively respond to the price
incentive on the power grid side, and achieve the purpose of
optimizing user costs and power energy. At the same time, the
example results also verify that the IPSO algorithm scheduling
not only saves the economic costs of users but also can indirectly
reduce the peak valley difference of the load curve, plays a better
role in peak shifting and valley filling, and can effectively
maintain the stability of the power grid.

FIGURE 5 | Convergence curve of the objective function value.

FIGURE 6 | Curve of the original and optimized daily load.

TABLE 2 | Load optimized value.

Method Peak (kW) Valley (kW) Load factor (%)

Original load 157.16 41.86 68.39
PSO 1,492.36 771.28 73.65
APSO 1,352.22 800.95 78.85
IHPSO 1,301.78 841.16 83.28

TABLE 3 | Optimized value of each objective function.

Method Objective
function value (¥)

Load mean square error
(kW)

Peak-valley difference (kW)

PSO 14,385.39 7,773.83 721.08
APSO 14,186.32 7,395.63 551.27
IHPSO 13,654.27 6,797.83 460.62
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CONCLUSION

Aiming at the problems of large load fluctuations and high user
costs caused by a large number of EVs connected to the grid, a
multi-objective comprehensive charging/discharging scheduling
strategy for EVs based on IPSO is proposed in this study. The
strategy uses a multi-objective control scheme to simulate a
typical power grid and carries on the optimization with the
IPSO algorithm. The following conclusion is obtained by
analyzing the results of the simulation:

1) The IPSO algorithm proposed in this study has a better
search ability than the standard PSO algorithm and
the APSO algorithm. This method avoids premature
convergence, and the optimization iteration task is
completed better.

2) This method has a good response on the price incentives on
the grid side and reduces the cost of EVs for users. Meanwhile,
the example also shows that the model has a good effect on the
load curve.

3) Taking the comprehensive optimization of load mean
square deviation, peak-valley difference, and user economic
cost as the overall objective function of the scheduling
model, the objective function of the scheduling model is
no longer single, which is beneficial to take into account

the needs of various aspects. In addition, the even–odd
license plate method is considered to improve the
comprehensive performance of the scheduling policy.
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