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New energy power systems with high-permeability photovoltaic and wind power are high-
dimensional dynamic large-scale systems with nonlinear, uncertain and complex operating
characteristics. The uncertainty of new energies creates challenges in detailed analyses of
operating conditions and the efficient planning of distribution networks. Probabilistic power
flows (PPFs) are effective tools for uncertainty analyses of distribution networks, and they
can be applied in stochastic programming, risk assessment and other fields. We propose
different forms of PPFs, which are origin moments rather thanmeans and variances, based
on point estimation. We design a stochastic programming model suitable for new energy
planning in practice, and the PPF results can be used to improve energy stochastic
programming methods by considering the principle of maximum entropy (POME) and
quadratic fourth-order moment (QFM) estimation. The origin moments of PPFs are
transformed into central moments as inputs of QFM based on probability theory. QFM
can efficiently estimate the constraint probability levels of stochastic optimal planning
models, and the proposed method is verified based on an IEEE 33-node distribution
network.
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INTRODUCTION

In the context of smart grids and low-carbon power, the broad application of intermittent
renewable distributed generation (DG) has led to uncertainty in distribution network planning
(Injeti and Thunuguntla, 2020). Hydrogen production from renewable energy has become a hot
spot of new energy application because of its low energy consumption (Zhang et al., 2021). The
impact of new energy uncertainty on the operation optimization of distribution networks cannot
be ignored, and high requirements for planning and design have been proposed. The stochastic
optimal planning of distribution networks has become one of the key problems in the
development of smart grids. The impacts of various uncertain processes on distribution
network planning results can be formulated as part of a complex, nonlinear mixed-integer
programming problem. The traditional planning method is based on typical daily deterministic
scenarios, and the influence of uncertain factors is often not considered. The main methods that
include uncertain programming in power systems are robust programming and stochastic
programming.
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Robust power system planning commonly combines the
worst-case scenario approach and interval optimization theory
(Liu et al., 2016). Roldán et al. presented an adaptive robust
optimization theory in which correlated uncertainty and the
worst-case operating cost are fully considered (Roldán et al.,
2019). Considering the uncertainty of DG and the corresponding
demand, Chatthaworn and Chaitusaney presented a robust
model for transmission network expansion planning in which
all possible scenarios are analyzed (Chatthaworn and
Chaitusaney, 2015). Zhang et al. presented a sequential
quadratic interval programming model for reactive power
optimization based on the interval uncertainty of DG (Zhang
et al., 2019). To efficiently solve reactive power planning
problems, the applied planning model often approximated as a
linear model (Zhang et al., 2018). Zhang et al. presented a
scenario method for reactive power optimization, and the
uncertainty of DG was obtained from distribution functions
(Zhang et al., 2016). Compared with deterministic
programming, robust programming can ensure the security of
power grid systems under extreme conditions. However, the
fluctuations in DG uncertainty considerably influence robust
programming. When the fluctuations in uncertain factors are
small, the superiority of robust programming may not be
apparent. When the fluctuations in uncertain factors exceed
the corresponding threshold values, robust programming may
not yield sufficient planning results. In addition, for safety, robust
programming may be too extreme in many scenarios.

With respect to stochastic programming, probability
distributions are often used in uncertain programming
modeling. Gan et al. presented a wind farm planning method
based on a linearized bilevel model that was solved using a linear
solver (Gan et al., 2016). The mixed-integer linear stochastic
model has become a popular stochastic planning model for
distribution networks, and various scenarios should be
considered to capture DG uncertainty (Jooshaki et al., 2020).
Park et al. presented a two-stage stochastic mixed-integer
programming model that considers DG uncertainty (Park
et al., 2015). Haghighat and Zeng presented a two-stage
stochastic programming model in which correlations among
uncertainties are reflected by a Gaussian copula (Haghighat
and Zeng, 2018). In regard to new energy power systems, the
operation scenario of power systems is often determined
according to the DG outputs. Chen et al. suggested that the
operation scenario should be established according to the relevant
state variables (Chen et al., 2020). The uncertainty of DG is
considered in stochastic programming, so decision makers can
assess the relationship between risk and benefits, which can help
balance the economy and security of distribution networks.
However, the probability distribution of DG uncertainty in
stochastic programming models is limited by the amount of
historical data available, and this limitation can bias the
empirical distribution. In addition, nonlinear stochastic
programming methods often have poor solution efficiency.
Thus, establishing an efficient planning model is important
and is the research motivation of this paper.

Scholars conducted research in the stochastic planning and
inquiry field. The decision variables of the stochastic planning

scenario are related to DG levels, reactive power devices, PEV
charging stations, etc. The decision variables include the optimal
site, size, quantity or level. To decrease wind power (WP)
curtailment, a novel reactive power allocation scheme was
presented in (Niu et al., 2017) based on autonomous voltage
security regions. To solve the problem of reactive power
imbalance associated with DG, a robust reactive power
potential estimation method was presented in (Li et al., 20196)
based on two-stage robust optimization. To improve the
efficiency of stochastic programming under the premise of
fully considering refined scenarios, a new stochastic
programming theory was presented in (Fu et al., 2020) based
on statistical machine learning. To maximize the profit of PEV
charging stations, a bilevel optimization model was formulated in
(Zhao et al., 2020), and the optimal sites and station sizes were
calculated. It can be concluded that the consideration of
equivalence in programming models is a key to solving
stochastic programming problems.

In uncertainty analyses of power systems, probabilistic digital
information is important. Many works use probabilistic power
flow (PPF) calculations to evaluate the influence of uncertainty on
the power grid, and the final results include the mean and
variance (Tang et al., 2016; Ren et al., 2017; Lin et al., 2020).
In this paper, a novel concept is proposed for the stochastic
planning of power grids. In stochastic programming models, the
central moment is used instead of the mean and variance.

The innovation of this paper lies in: 1) PPF is applied to
uncertain programming for the first time, which verifies the
application value of PPF theory. Instead of the mean and
variance, we use central moments as the results of the PPF
calculation, and they are used to estimate the opportunity
constraint levels in stochastic programming problems. 2) The
principle of maximum entropy (POME) is applied twice to
uncertain planning of distributed renewable energy sources in
distribution networks. The first involves estimating the
probability characteristics of temperature, which can influence
photovoltaic (PV) power generation, and the second involves
estimating the probability level of constraint satisfaction in
stochastic programming. 3) We propose a novel uncertain
planning model with the mean value as the objective function
and confidence levels as constraints. The practical significance of
the planning model is clear and can be expanded for real
problems.

The remainder of this paper is organized as follows. First, a
statistical model for uncertainty planning of distributed
renewable energy sources is proposed based on statistical
machine learning in Stochastic Programming Model Section.
Second, uncertainty calculation method is given for expanding
PPF results into a stochastic programming model with the
proposed method in Uncertainty Calculation Method Section.
Specifically, we propose methods for weather uncertainty
calculation, PPF calculation and uncertainty constraint
calculation. Finally, three cases are simulated in MATLAB to
verify the effectiveness of the proposed statistical model and
solution method in Simulation Section. Specifically, we
successively verify the effectiveness of uncertainty constraints,
PPF and uncertainty programming.
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STOCHASTIC PROGRAMMING MODEL

Stochastic programming is an important part of uncertain
programming, and it regards random variables as uncertain
parameters. Combined with probability theory, the new energy
system can be planned based on stochastic programming. We
first introduce the stochastic programming problem and then
introduce the stochastic programming model used in this paper.

Problem Description
As shown in Figure 1, the uncertain components of new energy
distributions network are important to consider. The energy
sources of PV and WP are natural, but these sources are
highly unpredictable. When new renewable energy capacity is
added to the grid, the uncertainty of the distribution network will
increase, and the operation scenario become increasingly
complex, thus creating challenges related to the efficient
planning and use of new energies. In stochastic programming,
decision variables can only take certain values, thereby limiting
the potential operating scenarios.

Programming Model
We propose a PPF-based stochastic programming model for new
energies in distribution networks as follows:

fobj(numPV, pPV, numWP, pWP) � minE(ploss), (1)

subject to

0≤YPV ≤Y−
PV, (2)

0≤YWP ≤Y−
WP, (3)

2≤ numPV < numsys, (4)

2≤ numWP < numsys, (5)

Pr(Vi >V−)> α, (6)

where fobj (•) is the objective function of the planning scheme, ploss is
the total active power loss in distribution and can be changed to other
economic indicators based on the relevant decision-making
requirements, E (•) is the mean function, YPV is a decision variable
and represents the rated capacity of PV power, YPV

− is the upper limit
of the PV planning capacity, YWP is another decision variable that
represents the rated capacity of theWP, YWP

− is the upper limit of the
WP planning capacity, num is the number of buses with new energy
grid connections, numsys is the number of distribution network buses,
Vi is the ith bus voltage amplitude,V_ is the allowable lower limit of vi,
Pr (•) is a probability function, and α is the confidence probability.

The above formula cannot clearly explain how the decision
variables affect the objective and constraint functions. Therefore,
we will explain these relations through the following formula.

E(ploss) � PPF(numPV, pPV, numWP, pWP), (7)

where PPF(•) is the PPF estimation method, which is a point
estimation method (PEM) in this paper. Additionally, pPV is the
active PV power, and pWP is the active WP power.

The power generated by new energy must be a function of the
planned capacity, as shown below (Rohani and Nour, 2014).

pPV � YPVfPV( G

GSTC
)[1 + αp(TC − TC,STC)] (8)

Tc �
Ta + (Tc,NOCT − Ta,NOCT) G

GNOCT
[1 − ηmp,STC(1−αpTc,STC)

ταab
]

1 + (Tc,NOCT − Ta,NOCT) G
GT,NOCT

αpηmp,STC

ταab

(9)

pWP �
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 v< vci or v≥ vco
v3 − v3ci
v3r − v3ci

YWP vci ≤ v< vr

YWP vr ≤ v< vco

(10)

where fPV is the PV derating factor, G is the amount of current
solar radiation, STC is a subscript that represents standard
test conditions, αp is the temperature coefficient, TC is the
PV cell temperature, NOCT is a subscript that represents
the nominal operating cell temperature, Ta is the ambient
temperature, ηmp is the maximum power efficiency, τ is
the solar transmittance of a PV cell, αab is the solar
absorptance of a PV cell, v is the current wind speed, vr is the
nominal wind speed, vci is the cut-in wind speed, and vco is the
cut-out wind speed.

By substituting Equations 8–10 into Eq. 7 and treating the
capacities and locations of new energies as decision variables, we
can obtain

E(ploss) � PPF(numPV, YPV, numWP, YWP), (11)

Now, let us summarize the stochastic programming model for
new energies in distribution networks. Notably, (2), (3), (4), and
(5) are the upper and lower limits of decision variables, and these
constraints can be implemented by limiting the feasible region
when solving the stochastic programming model for new energies
in distribution networks.

Remark 1: The key to the solution is to efficiently and
accurately solve Eqs 6, 11. As in the estimation in Eq. 1 based
on Eqs 6, 11 can also be estimated based on a PPF. The solution
processes for (6) and (11) are discussed in detail in the next
section.

UNCERTAINTY CALCULATION METHOD

First, we introduce simulated weather data, which are the inputs
of Eqs 8–10. Second, the PPF method is introduced, and the
results are origin moments. Finally, the method used to solve Eq.
6 is introduced based on central moments and particle swarm

FIGURE 1 | Uncertainty in a new energy distribution network.
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optimization (PSO). The proposed methodology is briefly shown
in Figure 2.

Uncertainty Weather
The weather simulation is based on a copula function, marginal
probability distributions and logic, as shown in Figure 3. First, we
introduce the marginal probability distributions for different
weather types. Second, the copula function is introduced.

The marginal probability distribution of G can be expressed as
(Karaki et al., 1999):

pdf(G) � Γ(α + β)
Γ(α)Γ(β) ( G

Gmax
)α−1(1 − G

Gmax
)β−1

(12)

where pdf (•) is a probability density function (PDF), α and β are
shape parameters, Γ is the gamma function, and Gmax is the
maximum solar radiation.

The marginal probability distribution of v can be expressed as
(Karaki et al., 1999):

pdf(v) � k

c
(v
c
)k−1 exp[ − (v

c
)k] (13)

where k is a shape parameter and c is a scale parameter.
The marginal probability distribution of Ta can be expressed

using POME in (Shore and Johnson, 1980):

maxH(Ta) � −∫pdf(Ta) lnpdf(Ta)dTa, (14)

subject to

∫pdf(Ta)dTa � 1, (15)

∫gk(Ta)pdf(Ta)dTa � μk, k � 0, ..., m, (16)

pdf(Ta) � e
∑
k�0

m
λkgk(Ta)

, (17)

where H (•) is the entropy function, μk is the kth given
expectation, gk (•) is the kth known function, and λk is the kth
Lagrange parameter.

λk in Eq. 18 can be estimated using the program in
(Mohammad-Djafari et al., 1992).

∫gk(Ta) e
−∑
k�0

m
λkgk(Ta)

dTa � μk, k � 0, ..., m (18)

A Gaussian copula function is used to model the correlation
among G, v and Ta. We estimate rho for the matrix of linear
correlation parameters using real weather data.

rho � copulafit (cdf(G), cdf(v), cdf(Ta)), (19)

where rho is a coefficient estimated for a matrix of linear
correlation parameters based on a Gaussian copula, copulafit
(•) is a fitting function, and cdf (•) is a cumulative distribution
function (CDF).

The Monte Carlo (MC) method is used to generate random
weather simulation samples from the Gaussian copula
with rho.[cdf(Gs), cdf(vs), cdf(Ts

a)] � copularnd (rho), (20)

where s is a superscript that indicates that a variable is simulated
and copularnd (•) represents the generation of random vectors
using a MC approach. According to the simulated CDFs, we can
obtain the simulated weather samples.

Remark 2: We input the weather variables into the model so
that the research results can be applied to power grid planning
under different weather conditions. There are classical probability
functions for solar radiation and wind speed. With respect to the
simulation of temperature, POME is used to estimate the
unknown probability distribution.

FIGURE 2 | Schematic diagram of the proposed methodology.

FIGURE 3 | Flow chart of weather simulation.
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PPF Calculation
PEM uses samples to obtain estimates. We can determine the
statistical moments of the population using the PEM. The
statistical moments of power flow solutions can be obtained
from weighted samples at different positions. MATPOWER in
(Zimmerman et al., 2011) is used for deterministic power flow
(DPF) calculations. A two-point estimation (2PEM) approach is
applied, and two values are determined on both sides of the mean
value of each uncertain variable.

xi,k � Xmean,i + spi,k ×Xstandard,i, (21)

spi,k � ski/2 + (−1)(3−k) ×
����������
m + (ski/2)2
√

, (22)

where xi is the ith uncertain variable (i.e., pPV or pWP), i �
1,2,. . .,m, m is the number of uncertain variables, Xmean,i is the
mean of xi, Xstandard,i is the standard deviation of xi, k � 1 or 2
(where 2 reflects the values on both sides of Xmean,i), ski is the
sample skewness of xi, and spik is a location-specific
measurement.

We introduce the following data into the DPF calculation
using MATPOWER.

Pi,k � [Xmean,1,Xmean,2, ..., Xi,k, ..., Xmean,m], (23)

ui,k � dpf(Pi,k), (24)

where dpf (•) is the DPF calculated using MATPOWER and u is
the obtained voltage, power flow, or other variable.

Next, we give the origin moment formula for u:

Mj
origin(u) �∑m

i

∑2
k

wi,k × uj
i,k, (25)

wi,k � 1
m

× (−1)kspi,3−k
δi

, (26)

δi � 2 ×
����������
m + (ski/2)2
√

(27)

whereMorigin (•) is the function for the origin moment of order j
and wik represents the weights for a given location set.

From Eq. 25, we can obtain the following equations:

E(ploss) � M1
origin(ploss), (28)

Vom,j � Mj
origin(V), j � 1, 2, 3, 4, (29)

where ploss is one type of u, V is the PQ node voltage set related to
u, and Vom,j is the origin moment of order j.

At this point, we have obtained the objective function formula,
that is, (28), using the PPF calculation based on 2PEM. The next
problem to address is how to transform PPF results into
constrained probabilities. The quadratic fourth-order moment
(QFM) estimation method is introduced for this probability
transformation by converting 29) into (6). However, the
inputs of QFM are central moments. Hence, we convert the
origin moments to central moments. It is well known that

μj(V) � E{[V − E(V)]j}, (30)

where μj (•) is the function for a central moment of order j.
This equation can be used to obtain

μ1(V) � 0, (31)

μ2(V) � Vom,2 − V2
om,1, (32)

μ3(V) � Vom,3 − 3Vom,1Vom,2 + 2V3
om,1, (33)

μ4(V) � Vom,4 − 4Vom,3Vom,1 + 6Vom,2V
2
om,1 − 3V4

om,1. (34)

Remark 3: PEM can be used to quickly and accurately obtain
moment information for the output random variables, but Gram-
Charlier series fitting is needed to obtain the PDFs of the output
random variables. The proposed method combines PEM and
QFM in stochastic programming to encompass the advantages of
PEM (quick and accurate) and avoid the corresponding
disadvantages (series expansion).

Uncertainty Constraint
A method for solving 6) with the QRM and central moments is
introduced below. QRM is a theory for estimating failure
probability, and we estimate the qualified voltage probability
based on the principle that the sum of failure probability and
qualified probability is equal to one.

Pf � 1 − α, (35)

where Pf is the failure probability, which is an unqualified concept.
The limit state function for the voltage amplitude is

expressed as:

Zi � g(V) � Vi − V−, (36)

By expanding g (Vi) to a Taylor’s series at Vi*, we obtain the
following equation:

Zi � g(Vp
i ) + (Vi − Vp

i )T∇g(Vp
i )

+ 1
2
(Vi − Vp

i )T∇2g(V*
i )(Vi − Vp

i ) (37)

where∇g (•) is a gradient function and ∇2g (•) is a Hessian matrix
function. The moments of Z are

E(Zi) � g(Vom,1) + 1
2
∑n
i�1

z2g(Vom,1)
zV2

i

μ2(Vi), (38)

μ2(Zi) �∑n
i�1
[zg(Vom,1)

zVi
]2 μ2(Vi) +∑n

i�1

zg(Vom,1)
zVi

z2g(Vom,1)
zV2

i

μ3(Vi)

+ 1
4
∑n
i�1
[z2g(Vom,1)

zV2
i

]2[μ4(Vi) − 3μ22(Vi)]
+ 1
2
∑n
i�1
∑n
j�1
[z2g(Vom,1)

zVizVj
]2μ2(Vi)μ2(Vj),

(39)

μ3(Zi) �∑n
i�1
[zg(Vom,1)

zVi
]3 μ3(Vi)

+3
2
∑n
i�1
[zg(Vom,1)

zVi
]2z2g(Vom,1)

zV2
i

(μ4(Vi) − 3μ22(Vi)) + 3∑n
i�1

× ∑n
j�1

zg(Vom,1)
zVi

zg(Vom,1)
zVj

z2g(Vom,1)
zVizVj

μ2(Vi)μ2(Vj), (40)
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μ4(Zi) �∑n
i�1
[zg(Vom,1)

zVi
]4 (μ4(Vi) − 3μ2X2,i)

+3∑n
i�1
∑n
j�1
[zg(Vom,1)

zVi
]2[zg(Vom,1)

zVj
]2μ2(Vi)μ2(Vj), (41)

We change the moments of the voltage amplitude into the
moments of voltage amplitude constraints via (38)-(41).

The following formulas no longer limit the number of buses,
and a portion of Z is removed. We transform moments to other
digital features.

Zstandard �
�����
E(Z)√

, (42)

csZ � μ3(Z)
Z3

standard

, (43)

ckZ � μ4(Z)
Z4

standard

, (44)

where csz is the skewness coefficient and cks is the kurtosis
coefficient.

We transform Z to a standard normal vector Y, and the
moments of Y are calculated with

μj(Z) � σj(Z)E(Yj), (45)

where Y is a standard normal vector and σ(•) is the standard
deviation function.

From Eq. 42, we can obtain the moments of Y, as follows:

μ3(Z) � csZ, (46)

μ4(Z) � ckZ, (47)

After the second step in the POME approach with four moments,
we obtain

∫∞

−∞
yipdf(y)dy � μj(Y), (48)

pdf(y) � exp⎛⎝ −∑m
j�0

λjy
j⎞⎠ (49)

where (48) and (17) have the same form but different physical
meanings. By inserting (46), (47), and (49) into Eq. 48, λk can be
estimated.

Pf can be obtained using pdf(y):

Pf � P(z≤ 0) � ∫− E(Z)
Zstandard

−∞
pdf(y)dy, (50)

By inserting Eq. 50 into Eqs 6, 35 can be estimated. The voltage
constraints for each node in the distribution network can be
solved according to the above formula. Now, both 6) and 11) can
be adjusted for a set of specific solutions. PSO in (Fu et al., 2020) is
used to find the minimum to 11) while satisfying 6) by searching
the solutions of Eqs 2–5.

Remark 4: The voltage probability information is transformed
into voltage constraints via the QFM approach, which is a new
way to apply PPFs to obtain constraint solutions in stochastic
programming.

SIMULATION

Verification is performed in a step-by-step manner in this study,
and the specific examples are as follows. Case 1 verifies the
feasibility of estimating confidence levels using central
moments from the perspective of pure mathematics, and we
show that the QFM approach is suitable for solving the constraint
satisfaction probability problem. Case 2 verifies the correctness of
the proposed method for estimating different forms of PPF
results. Case 3 uses the power quality qualification as a
constraint to verify the effectiveness of the proposed method
in stochastic programming for distribution networks.

Case 1
The result of the stochastic programming constraint function is a
confidence level. The index accompanying the confidence level is
the failure probability, which is a common reliability index, and
the sum of the two is equal to 1. In using different methods to
estimate the variable disqualification probability (i.e., failure
probability), we make the following assumptions.

1) X1 and X2 are two uncertain variables, both of which obey
normal distributions. The reason why we assume a normal
distribution is that there are many algorithms that are based
on the normal distribution; thus, the effectiveness of the
proposed method can be verified. It should be noted that
the normal distribution does not have to be used based on the
use conditions of the proposed method.

2) We assume that the limit state equation with independent
variables X1 and X2 is

Z � X1 − X2. (51)

3) The original sample set is shown in Figure 4, and the number
of samples is one thousand.

We compared the proposed method (QFM estimation
method) with classic, mature and effective methods that have
been previously published, including the Iman method in (Iman

FIGURE 4 | Original samples studied.
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and Conover, 1982), the Stein method in (Stein, 1987), the first-
order reliability method (FORM) in (Sankararaman et al., 2014),
and the mean value first-order second moment (MVFSORM)
method in (Du and Huang, 2008), as references to verify the
proposed method. Considering the need for sampling, the Iman
and Stein methods are applied with step size of 100–5,000. The
simulation results are shown in Figure 5.

The results of different algorithms vary. Compared with those
of other algorithms, the results of the proposedmethod are closest
to the real values. The simulation results are related to the
information that each algorithm considers and the algorithm
design. The usage conditions and input probability information
for the different algorithms are shown in Table 1.

It should be noted that the central moments can be calculated
from the mean, standard deviation, skewness, and kurtosis. We
can also obtain central moments using origin moments. The
mean is an origin moment, and another origin moment (standard
deviation, which is the arithmetic square root of the variance) is
the second central moment.

The mean and standard deviation are the first two moments.
Both MVFSORM and the proposed method do not use a
probability distribution function, so they are not limited by a
certain probability distribution and have high practical value.

More probability information is used when considering four
moments than when considering two moments, so the proposed
method based on four moments is more accurate than the
MVFSORM method based on two moments. Compared with

the Iman, Stein, and FORM methods, the proposed method does
not need to solve the probability distribution function. In
addition, the Iman and Stein methods are only suitable for the
normal distribution, but the proposed method does not have this
limitation. When the probability distribution is unknown, the
proposed method can still determine the reliability or chance
constraint level.

Discussion 1: This case shows how to transform digital features
into unqualified probabilities, and qualified probabilities are used in
the constraint conditions in stochastic programming. The typical
results of PPF calculations are the mean and variance, which are
first-order and second-order moments. However, the above results
indicate that it is not appropriate to rely only on the mean and
variance to estimate unqualified probabilities. Specifically, it is
necessary to use additional central moments from the PPF results
to estimate the probability of constraint satisfaction in stochastic
programming.

Case 2
The main advantage of the proposed method is its computational
efficiency. The computing time depends on both the efficiency of
the algorithm and the hardware configuration of the computer.
The simulations in cases 2 and 3 were performed on a ThinkBook
with an Intel(R) Core (TM) i7-1065G7 CPU @ 1.50 GHz and
15.7 GB of available memory.

POME is used to describe the cumulative distribution
function (CDF) of the ambient temperature, which affects

FIGURE 5 | Failure probability calculated with different algorithms.

TABLE 1 | Input Probability information for the different algorithms.

Algorithm Probability distribution Probability information

Iman Normal mean, standard deviation, correlation coefficients
Stein Normal mean, standard deviation, correlation coefficients
FORM known mean, standard deviation, correlation coefficients
MVFSORM unknown mean, standard deviation
QFM (Proposed) unknown mean, standard deviation skewness, kurtosis
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the PV cell temperature. We calculate the Lagrange multipliers
of the maximum entropy probability density functions from
the knowledge of the four-moment constraints (i.e., the first,
second, third and fourth central sample moments of the values
at a given ambient temperature). Lambda is a vector
containing the resulting Lagrange parameters, and the
lambda vector in this case is [2.4003, -0.0447, 0.0292,
0.0008, -0.0001]. The solar radiation that reaches a PV
array is simulated using a beta distribution. The maximum
likelihood estimates of the parameters of the beta distribution
for solar radiation are α � 1.1112 and β � 2.4690. The
maximum likelihood estimates for the parameters of the
Weibull distribution for wind speed are as follows: scale
parameter � 1.1112 and shape parameter � 2.4690.

As shown in Figures 6–8, the POME, beta and Weibull
distributions are very similar to the empirical distributions, so

the simulated ambient temperature, solar radiation and wind
speed values are generally accurate. We use a Gaussian copula
to model the correlation among the three weather CDFs. The
MCmethod is used for sampling, and the sample size for sets of
weather variables is 10,000.

The IEEE 33-bus distribution system from (Baran and Wu,
1989) is used to demonstrate the proposed method. We assume
that both the PV and WP rated capacities are 2,000 kW, and the
access buses are shown in Figure 9.

Figures 10, 11 cannot be used to verify the appropriateness of
the PEM theory but do verify the suitability of the point PEM
formula and the corresponding programming method in this
paper. The proposed PEM method provides results that can
support subsequent simulation analyses. The MC simulation
takes 266.829 s, and the PEM simulation takes 0.147 s; thus,
the disadvantage of MC is the comparatively longer
computing time.

&& stands for logical AND. It should be noted that the
proposed method refers to PEM&&QFM. In essence, the
proposed method transforms the digital characteristics of
PEMs to other digital characteristics that are suitable for
stochastic programming. The purpose of assessing the
simulation results of MC&&QFM is to verify the accuracy
of the QFM approach and the proposed method. As shown in
Figure 12, the voltage qualification probability of MC&&QFM
is almost the same as that of MC&&Statistics (i.e., direct
statistical qualification probability for the voltage
amplitude), and it can be used as a reference standard. The
voltage qualification probability of PEM&&QFM is close to
that of MC&&Statistics.

As shown in Figure 13, although the PEM result is very
similar to the MC result, there are still some errors associated
with the mean value and the second, third and fourth central
moments of the voltage amplitude. The errors in the voltage
amplitude moments lead to differences in the qualified
probability of the voltage amplitude in the MC&&QFM and
PEM&&QFM cases, as shown in Figure 12.

Discussion 2: We use the maximum entropy principle to
transform the quadratic fourth-order moment of the voltage
amplitude into probability density function (PDF)
information and then solve for the voltage qualification
probability. The most important contribution of this paper
is the novel PPF results, which include the mean loss and the
probability of voltage qualification. These results provide the
basis for the stochastic planning of distribution networks

FIGURE 6 | CDF of the ambient temperature.

FIGURE 7 | CDF of solar radiation.

FIGURE 8 | CDF of wind speed.

FIGURE 9 | An IEEE 33-bus distribution system.
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because traditional PPF results cannot be used directly in
stochastic programming.

Case 3
What we want to verify in this case is the efficiency of achieving
a feasible solution to the objective function and constraint
functions in programming. To verify the effectiveness of the
proposed method, we compare the accuracy of some specific
solutions, as listed in Table 2. We assume that the rated

capacities of PV and WP are the same, and the access buses
are shown in Figure 9.

It should be noted that one hundred percent accuracy is
logically impossible for an efficient approximation solution
algorithm. Stochastic optimal planning allows for certain error
margins, and the error problem in power grid dispatching can
be solved with this relative approach. It can be concluded that
the proposed method supports stochastic programming in
distribution networks. The simulation results using PSO are

FIGURE 10 | Mean value of the elements from bus voltage profiles.

FIGURE 11 | Standard deviation of the elements from bus voltage profiles.

FIGURE 12 | Simulation results for the qualified probability of the voltage amplitude.
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listed in Table 3. Compared with the values in Table 2, the
values in Table 3 are better.

Discussion 3: We consider mean loss in the objective
function in stochastic programming, and the probability of
a constraint meeting a certain confidence threshold is a
programming constraint based on a quadratic fourth-order
moment. Our goal is not to improve the programming
algorithm but to improve the efficiency of estimating the
probabilistic numerical characteristics of objective
functions and constraint functions corresponding to
feasible solutions.

The superiorities of the proposed method can be
summarized as follows. 1) The results of case 1 show that

the proposed QFM method are more precise than other
algorithms, and it is not limited by a certain probability
distribution. 2) The results of case 2 show that the
proposed PEM method spend much less time than MC,
but PEM can achieve accuracy levels equivalent to MC.
The proposed method can save more than 266 s 3) The
results of case 3 show that PPF can be used in uncertainty
planning of distributed renewable energy sources in
distribution networks. It takes only 4,989 s for
optimization solution, and the importance of simplifying
the planning model is verified. Compared with the
traditional programming methods, we improve the
uncertainty planning model rather than the optimization
solver.

CONCLUSION

The mean, variance and probability distribution function are
commonly obtained from PPF calculations. However, the
conventional PPF calculation results cannot be used to
directly solve many actual operation and planning
problems. The PPF results in this paper are central
moments that are used to model objective and constraint
functions in stochastic programming and provide a feasible
way to address uncertainty problems in smart grid planning.

FIGURE 13 | Digital characteristic error of voltage variables.

TABLE 2 | Input Simulation results for the Objective and Constraint functions.

Item Solution 1 Solution 2 Solution 3 Solution 4 Solution 5

fobj YPV (kW) 10,000 10,500 11,000 11,500 12,000
MC (MW) 0.501 0.548 0.598 0.650 0.704
Proposed (MW) 0.503 0.551 0.601 0.653 0.708

α MC 0.836 0.844 0.853 0.866 0.866
Proposed 0.839 0.843 0.847 0.850 0.853

TABLE 3 | Optimum planning results.

Item Value

[YPV
−
, YWP

−] [104 kW, 104 kW]
V-_ 0.95 p.u
α 0.82
Number of particles 20
Number of iterations 10
[num PV, numWP] Buses 8 and 30
[YPV, YWP] [478 kVAr, 935 kVAr]
fobj 0.2425 MW
Solution time 4,989 s
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The essence of uncertain planning is to achieve optimal
economic performance under safety constraints. It is
reasonable to use different statistical machine learning
theories such as PPF, PEM and QFM to obtain probability
values for uncertainty planning of distributed renewable
energy sources.
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