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The integrated energy system is an important strategic direction in the world’s future
energy field, which will become the main carrier form of the energy future of human society
in the next 30–50 years, directly affecting or even determining the future energy strategy
pattern of the world. There are many types of integrated energy system. In the study of
optimal dispatching of energy storage, the integrated energy system is modeled according
to the energy transmission characteristics of the integrated energy system, which mainly
includes the combined cooling, heating and power system and the multi-type energy
storage system containing electricity and heat storage. Then, a two-tier optimal scheduling
model for an integrated energy system with multiple types of energy storage as the core is
established, divided into the day-head scheduling layer and the real-time dispatch layer. At
the day-head scheduling layer, an optimization model has been proposed with the
minimum cost of the optimization goal and the power network, heating network,
cooling network, energy storage operation constraints and carbon constraints as
constraints. Then at the real-time dispatch layer, utilize the fuzzy controller to dispatch
and control the electric storage system and the thermal storage system. Finally, the
verification simulation experiment is carried out in an industrial park. Besides, the energy
efficiency, economy and environmental performance before and after the integrated
energy system connected to the multi-energy storage device are compared and
analyzed, and different scheduling methods are used to compare and prove the
advantages of the scheduling method.

Keywords: multi-energy storage technology, integrated energy system, two-layer scheduling, fuzzy control, energy
dispatch

1 INTRODUCTION

Due to historical development, the energy supply systems of electricity, heat and natural gas in most
countries are independently planned, designed and operated, lacking coordination and control
among each other, resulting in low overall energy utilization efficiency and difficulty in ensuring
energy reliability (Zhang et al., 2021).

As a clean, low-carbon, energy-efficient, safe and reliable energy supply system tomeet the diverse
needs of energy consumers, the integrated energy system has become one of the important measures
taken by many countries in the world to deal with energy issues. The integrated energy system is
mainly composed of a power network (e.g., power supply, gas supply, and cooling/heat network), the
energy exchange link (e.g., CCHP unit, generator, boiler, air conditioner, heat pump), the energy
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storage link (storage, gas storage and heat storage, cold storage),
terminal units and a large number of terminal users (Guerrero
et al., 2013). It breaks the existing mode of independent design
and operation of each energy system and integrates a variety of
energy systems, to realize the overall energy design planning and
optimal operation. Due to the fact that the different resource
conditions and energy needs, a multi-energy complementary
energy system can be built through the coordinated
optimization control of the integrated energy system, to
improve the consumption of renewable energy, promote the
reform of energy structure and achieve the goal of energy
conservation and emission reduction. However, as a variety of
energy sources can interact with each other, the operation of a
single energy system is constrained by its coupling system.
Meanwhile, the coupling equipment can also affect the energy
flow of the energy systems. Therefore, the optimal operation of
IES is considered a non-trivial task that needs to be addressed.

In recent years, the environmental concerns of energy systems
have promoted the development of micro-grid, and the rapid
deployment of micro-grid accelerates the integration of
renewable energy, distributed energy (DERs) and distributed
energy storage systems in modern power systems (Injeti and
Thunuguntla, 2020; Ming et al., 2020). The existing studies (e.g.,
(Huang et al., 2021) have well addressed the optimal control of
the power systems considering the interconnection with the
large-scale renewable sources. Unlike the operational scenarios
of large-scale renewable generations, the high share of renewable
distributed generation (DG) in microgrids reduces operating
costs and carbon dioxide emissions in addition to reducing
reliance on fossil fuels. The recovery and utilization of waste
heat from cogeneration units have improved the comprehensive
utilization efficiency of fuel and significantly improved the
economic feasibility of microgrids (Gu et al., 2014). Although
renewable distributed generation has many benefits, the
intermittency and uncertainty of renewable power generation
pose great challenges to the power balance control and reliable
operation of microgrids. Considering the scheduling of multi-
energy microgrids, the energy flow between distributed energy
sources and the load related to electricity, heat, and cold energy
further aggravates the complexity of operation and control
(Hatziargyriou et al., 2007). Advanced modeling and
scheduling techniques, as well as innovative energy storage
and management systems, are still needed to fully model the
uncertainties and energy flow in multi-energy microgrids. An
energy storage system is the key equipment in the comprehensive
energy system. It plays an important role in the stable operation
and loads transfer of the system. It is of great strategic significance
for ensuring the security of the power grid, increasing the
proportion of renewable energy, improving energy utilization
efficiency and realizing the sustainable development of energy
(Katiraei et al., 2008). To effectively manage real-time energy
storage of integrated energy systems, two key problems need to be
solved: real-time regulation cost assessment and multi-period
coordinated scheduling.

To increase the energy efficiency of IES and increase the
consumption ratio of renewable energy, existing researches
mainly focus on the economic dispatch and optimization

operation of IES by combining renewable energy, energy flow
characteristics and related coupling equipment. Scheduling
generally includes day-ahead scheduling and real-time
scheduling (Yang et al., 2019). Day-ahead scheduling refers to
making short-term generation plans based on load and renewable
generation forecasts. In literature (Piagi and Lasseter, 2006),
based on the regional grid connection system of electro-
thermal joint dispatching, CPLEX optimization software was
used to obtain the optimal output and operation cost of
multiple energy sources within the dispatching cycle. The
authors in (Qadrdan et al., 2015) considered the thermal
dynamic characteristics such as heat pipe transmission time
delay and heat loss in the thermal system, as well as the
flexibility of users’ heating demands, and established the
electric-thermal IES optimal scheduling model. In (Geidl et al.,
2007), the work proposed a multi-objective optimization
scheduling model of IES on gas-electricity interconnection
with electricity to gas and found that the change of natural
gas load has a great impact on power system scheduling, and
thus affects the system economy and pollution emission.
Literature (Kanchev et al., 2011) puts forward a new electric-
gas IES optimal scheduling model considering the demand side
load response and dynamic natural gas flow and obtains the
conclusion that the introduction of response can improve the
economy of IES operation. The study in (Mohamed and Koivo,
2010) proposed an IES response mechanism based on the
comprehensive demand of electric heating load in the park.
The results showed that the application of the comprehensive
demand response improved the flexibility of the thermal power
production of the micro-grid in the park. These models optimize
the charging and discharging modes of energy storage by
scheduling 1 day in advance. Energy storage stores energy in
off-peak hours when the electricity price is low and returns the
energy to the microgrid in peak load hours. The high penetration
of renewable energy in a microgrid brings about great power
fluctuation. Therefore, it is necessary to track these unpredictable
changes in micro-networks through real-time corrective
scheduling. In (Ji et al., 2019) - (Jiang et al., 2013), a number
of solutions of real-time micro-grid scheduling are studied. The
work in (Ji et al., 2019) proposed an energy management
approach for real-time scheduling of an MG based on deep
reinforcement learning considering the uncertainty of the load
demand, renewable energy, and electricity price. In (Abdulgalil
et al., 2019), the stochastic programming technique is applied to
the optimization algorithm of micro-grid online power
generation scheduling. In (Jiang et al., 2013), an agent-based
energy management technology is developed, which calculates
the cost of the storage system according to the accumulative
charging cost of the storage system. However, these methods
cannot accurately evaluate the economic benefits of energy
storage systems.

As the one-step real-time scheduling method cannot deal with
the economic efficiency of energy storage in multiple periods, a
two-layer scheduling model is proposed that consists of a day-
ahead scheduling layer and a real-time scheduling layer. In
(Mahmoodi et al., 2015), day-ahead scheduling formulates
economic power generation schemes based on forecast data,
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and prediction errors are processed by real-time scheduling. The
goal of real-time scheduling is to minimize the cost of power
regulation and make the real-time scheduling follow the
scheduling scheme as much as possible. In (Zhang et al.,
2017), in day-ahead scheduling, real-time unbalanced power is
mainly matched by energy storage. Energy storage, as an explicit
cost and as a function of charge and discharge power (Vasilj et al.,
2019), is widely considered in microgrids. In fact, since the energy
storage operations are coupled over multiple periods, it cannot be
directly used to judge the economic efficiency of energy storage
charge and discharge in real-time. In (Paatero and Lund, 2007),
from the perspective of real-time operation, two hidden costs of
energy storage, namely opportunity cost of discharge and
marginal charge cost, are proposed and modeled, to improve
the coordination efficiency between energy storage and
controllable generator, and a two-layer model of real-time
operation of the microgrid is proposed. In (Brekken et al.,
2011), a comprehensive day-ahead heating and electric power
dispatching model for residential micro-grid is proposed, which
considered the economic factors, power supply safety, quality and
technical factors and consumer preference under the condition of
power market opening. The day-ahead scheduling model is
supplemented by the real-time Economic Model Predictive
Control (MPC) model, which is used for the scheduling results
of subsequent control 1 day in advance. However, in these efforts,
there has been no study of multiple sources of energy and
electricity, heating and cooling loads.

The main technical contributions can be summarized as
follows:

A two-tier scheduling optimization model for integrated
energy systems based on energy storage is proposed to deal
with the uncertainty of wind and photovoltaic power
generation and energy requirements for electricity, heating and
cooling.

The developed energy management model consists of a
prospective scheduling layer and a real-time scheduling layer.
The former optimizes the controllable generator and energy
storage system to balance the predicted load, wind power and
photovoltaic power generation. The latter is based on the
comparison between the actual and predicted values of load
and generation after solving the advanced scheduling problem,
and the real-time scheduling of electrical and thermal energy
storage is carried out by using fuzzy control. This solution
effectively combines the power flow and heat transfer equation
to model the complex energy flow among power, heating and
cooling energy and load. The distributed energy combinations
studied include wind turbines, photovoltaic power generation,
cell storage devices, gas-fired boilers, heat storage tanks,
cogeneration devices, electric freezers and absorption freezers.

The heat storage value in the regenerator is transferred from
long-term scheduling to real-time control. Since storage usually
presents periodic patterns on its designed time scale, the
significantly lower time scale cannot capture these longer
phenomena. The combination of scheduling and real-time

FIGURE 1 | Illustration of the integrated energy system model.
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control can be coordinated to address the energy management
challenge.

The reminder of the paper is organized as follows: Section 2
Outlines the proposed physical model of an integrated energy
system. Section 3 introduces the two-layer scheduling
optimization model, including day-ahead scheduling and real-
time scheduling. Section 4 carries on the simulation research.
Finally, Section 5 provides the conclusive remarks.

2 IES SYSTEM MODEL

The integrated energy system model is shown in Figure 1. The
load demand is formed by the electrical loads, heating loads and
cooling loads, where the electrical loads are delivered by the wind
turbines, photovoltaic, CHP and battery storage units, the heating
loads are supplied by the gas-fired boilers, CHP and thermal
storage units, the cooling loads are provided by the electric
chillers and absorption chillers. In addition to this, the battery
and thermal storage units also have the function of storing electric
energy and heat energy during times of extra power production.

1) Power and Heat Output

Considering the complicated dynamic processes of the CHP
units (Teleke et al., 2010), we design a simple CHPmodel without

crossover and reheat, which is completely represented by the
produced power Pchp and heat Hchp, with the following
dynamics:

η ×Hchp,in � (Pchp +Hchp) (1)

dPchp

dt
� (Pctr − Pchp)

Tchp
(2)

where Hchp.in is the CHP heat input, η is the efficiency of the
energy conversation, Pctr is the control single which adjusts the
CHP power Pchp and heat Hchp output with the time
constant Tchp.

2) Electrical Energy Storage System

Given the relatively mature battery technology and its
advantages of low cost, large capacity, and long-term power
supply, it is chosen to be the energy storage unit (Teleke et al.,
2010). In consideration of the extremely short time scale of the
battery charging/discharging processes, it is generally believed
that battery dynamics is instantaneous, therefore a sufficient
model of the battery is provided by Equation 3. To monitor
the charging and discharging process of the battery, the state of
charge (SOC) of the battery is utilized to reflect its remaining
energy, with the specific model at time t shown in Eq. 4 (charging
state) and Eq. 5 (discharging state).

FIGURE 2 | Integrated energy system energy optimal dispatch.
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dE
dt

� Pes (3)

SOCe(t) � SOCe(t0) × (1 − ωe) −
ηc × ∫t

t0
Pes
c (t)dt

Ebat
(4)

SOCe(t) � SOCe(t0) × (1 − ωe) −
∫t

t0
Pes
d (t)dt

ηd × Ebat
(5)

Where Pes
c and Pes

d denote the battery charge and discharge
power respectively, ω is the automatic discharge loss rate of the
battery, Ebat is the rated capacity of the battery, ηc and ηd
represent the charging and discharging efficiency of the battery,
respectively.

3) Thermal Energy Storage System

The thermal energy storage system is mainly realized in the
form of water storage, which can store temporary excess thermal
energy, realize load peak and valley filling, reduce boiler capacity
configuration, and improve energy utilization and energy supply
security (Demirören et al., 2006). The dynamics of the selected
heat storage model are described by (Eq. 6), and it utilizes the
stored energy from boilers and CHP (Hchp) to supply the heat for
water and residential heating.

dTm

dt
� Tout − Tm

Rm × Cm
+ k1 × (Hchp +Hgb) − k2 × (Hw +Hr) (6)

where Tm is the temperature of the heat conservation medium,
Tout is the outside air temperature, Rm and Cm are the thermal
resistance and capacitance of the heat storage respectively; Hgb

denote the heat provided by the gas-boiler; kn is the energy
conversion coefficient for different processes, process n; Hw and
Hr represent the heat extracted for water and building heating,
respectively.

3 OPTIMIZATION MODEL

In this work, the proposed two-layer energy management
solution for IES is illustrated in Figure 2. It consists of two
stages as follows: the day-ahead scheduling and the real-time
dispatch. In the first stage, the day-ahead scheduling in the upper
level is a stochastic optimal control problem. Based on the
predicted cooling, heating and power load, photovoltaic power
generation and wind power generation, considering the system
dynamics and the uncertainty of prediction, it optimizes the CHP,
boilers, energy storage, thermal storage and electric/absorption
chillers to determine the submitted power spectrum. In the
second stage, the real-time dispatch is a decision-making
problem, considering the available actual values of load and
power generation and the specified CHP power production. In
the low layer, the energy storage and thermal storage are adjusted
with the fuzzy control to apply for real-time dispatch.

3.1 Day-Ahead Scheduling
The day-ahead scheduling aims to solve the CHP-ICE
commitment problem of the IES in multiple periods, to

determine the status of the CHP-ICE. In the energy
scheduling process, the energy storage system cooperates with
renewable energy and user energy requirements to achieve
optimal energy scheduling in both space and time dimensions.
Considering reliability, economy and environmental protection,
under the premise of ensuring the reliability of energy supply,
achieve the purpose of reducing energy costs and carbon
emissions by minimizing the purchase of electricity from the
grid and the consumption of the fuel with the increased
consumption of renewable energy.

3.1.1 Objectives
The objective function is formulated as (Eq. 7), which accounts
for the fuel costs fh

fuel of the CHPs and gas boilers, the start-up
costs fg

st of the distributed energy resources, the energy purchase
cost fgrid, low-storage and high-distribution arbitrage cost
of the electric energy storage system fes and the hidden
expansion costs fsre of the distribution network and the cost
of the unsupplied load. And the fuel costs are given by (Eq. 8),
the start-up cost is described by (Eq. 9), the energy purchase
is determined by (Eq. 10) and the Equation 12 tells the
calculation of the hidden expansion cost, which considers the
impact of the cost reduction of the distribution network
expansion under the action of the energy storage system on
the model economy.

minf � ∑T1

t�1
⎛⎝∑

h

fh
fuel,i(t) × Δt1 +∑

g1

fg1
st,i(t)⎞⎠

+∑T2

t�1
⎛⎝fgrid(t) × Δt2 + fes(t) +∑

g2

fg2
st (t)⎞⎠ − fsre (7)

fh
fuel(t) � Ch

fuel ×Hh,in(t) (8)

fgk
st (t) � Cgk

st × Bgk
st (t) (9)

fgrid(t) � λ(t) × Pgrid(t) (10)

fes(t) � λ(t) × (Pes
c (t) − Pes

d (t)) (11)

fsre � cD × Psre (12)

where h denotes a collection of fuel-using units, h ∈ (CHP, gas-
boiler), g represents a set of the distributed energy resources and
the storage technologies, g ∈ (CHP, gas-boiler, absorption chiller,
electrical chiller, electric storage, heating storage), T1 and T2 is the
number of the scheduled interval of the heat load and electric load
supply respectively, Δt1 and Δt2 is the length of the respective
intervals,Hh,in

i is the input of the unit hi,Ch
fuel,i is the fuel cost of hi,

nh and ng are the number of the unit h and g respectively, Cg
st,i

means the start-up cost of the resource gi, B
g
st,i is a start-up binary

variable of gi, λ(t) is the electrical price at time t, Pgrid(t) is the
power bought/sold on the market, cD is the annualized cost of
distribution network expansion, Psre is the reduction in the peak
annual load of the system, that is, the difference between the
maximum annual load of the system with or without an energy
storage system.

3.1.2 Constraints
Multiple operating constraints are considered in this model to
minimize the system cost while ensuring the reliability of the
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energy supply and meeting the carbon emission target. All these
constraints are as follows:

1) Electrical network constraints: The electrical network
constraints are composed of the electrical balance
constraints (Eq. 13), and CHP operating constraints (Eq.
15)–(Eq. 16). Constraint (Eq. 13) ensures that the power
demand, namely electrical loads Pel, is balanced by the power
supply from the power bought from the grid, output power of
CHP, PVs Ppv and WTs Pwt battery charging/discharging
power, consumption of the electric chiller Hec and power
losses Ploss. And constraint (Eq. 13) is applied for all
transmission lines in the grid (∀m ∈ F). In addition,
constraint (Eq. 15) ensures that the CHP is in the operable
area, that is, the fuel feed rate and the heat-to-electricity ratio
are within the allowable range (Turton and Moura, 2008).

Pgrid(t) + ∑
g∈[chp,pv,wt]

Pg(t) + Pes
d (t) � Pel(t) + Hec(t)

COPec
+ Pes

c (t)

(13)

Pgrid(t) � Pgrid+(t) − Pgrid−(t) (14)

Hchp(t)≤ ε × Pchp(t) (15)

η ×Hchp,in ≤Pchp(t) +Hchp(t)≤ η × �H
chp,in (16)

where COPec is the conversion efficiency of the electric chiller, G,
D and θ denote electricity generation, electricity demand and
voltage angle at each bus, ε means the maximum ratio of heat to
electricity for CHP.

2) Heating network constraints: The heating network constraints
contain the heat balance constraint (Eq. 17) and heat piping
capacity constraint (Eq. 18). The constraints (Eq. 17) enforce
the power balance between the heat supply and demand,
accounting for the boiler heat Hgb, CHPs heat output,
thermal storage charging/discharging heat Htes

c /Htes
d ,

heating loads Hhl, absorption chiller consumption Hac and
heat losses Hloss.

∑
h∈[chp,gb]

Hh(t) +Htes
d (t) � Hhl(t) + Hac(t)

COPac
+Hloss(t) +Htes

c (t)

(17)

0≤ hp≤ hp (18)

where COPac is the conversion efficiency of the electric chiller, hp
represents the heat flow within the pipe.

3) Cooling network constraints: The cooling network constraints
are about the cooling power balance constraint (Eq. 19) and

FIGURE 3 | The day ahead electric load, heating load, cooling load, generation, WT, and prices forecasting.
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the operating temperature constraint (Eq. 20). The constraint
(Eq. 19) guarantees the power balance between the cooling
power supply and demand, consisting of the output of the
absorption chillers, the electric chillers and the cooling load
Hl. And only when the exhaust heat temperature Tac

ex is higher
than the thresholdTac

ex , the absorption chiller starts to operate.

∑
h∈[ac,ec]

Hh(t) � Hcl(t) (19)

Tac
ex ≥ Tac

ex (20)

4) Storage system constraints: The storage system constraints
consist of the electrical storage operating constraints and the
thermal storage operating constraints, covering the capacity
boundary limit (Eq. 21) and charge-discharge rate limit of the
storage units (Eq. 22).

Es ≤Es ≤ �E
s (21)

Hes
c ≤ �H

es
c ,H

es
d ≤ �H

es
d Pes

c ≤ �P
es
c , P

es
d ≤ �P

es
d (22)

where s means the storage units, s ∈ [es, tes], Es is the energy
stored in the storage technology considering self-discharge losses.

5) Carbon constraint: Considering that the actual overall carbon
emissions should not exceed the prescribed amount,
constraint (Eq. 23) restricts the annual carbon emissions
(Clerc and Kennedy, 2002). And the regulated amount is
obtained by multiplying the specified total carbon emission
standard CO2 and the annual energy consumption which
consists of the heat and electricity industry.

∑T
t�1
⎛⎝∑

g

ecg × Pg(t) + ecgr × Pgrid(t)⎞⎠≤CO2 ×∑T
t�1
(H(t)

+ Pheat(t)) (23)

where g refers to the set of all distributed energy resources,
g ∈ [chp, gb, pv, wt, ac, ec], ecg represents the emissions rate of
gth DER technology, CO2 is the overall carbon target, Pheat means
the heat-driven electricity load.

3.2 Real-Time Dispatch
In real-time dispatch, due to the relatively short prediction
period, random parameters can be approximated as a scene,
and the problem becomes deterministic. In consideration of the
power errors between the actual and predicted variety of load and
output of photovoltaic and wind turbines, the real-time dispatch
aims to utilize the electric storage and thermal storages to
perform a corrective dispatch according to the day-ahead
scheduling results, to minimize the purchase electricity from
grid, satisfy the real demand for the electrical/heating/cooling
load and guarantee the basic reliability of energy supply.

In the lower layer, the fuzzy controller is proposed for the IES,
which is divided into two steps: the fuzzy control of the thermal
storage system and the fuzzy control of the electrical storage
system based on the previous step. In the first step, the designed
fuzzy controller samples the state of the thermal storage system

SOCt and the error of the heating load ΔHl and cooling load
ΔHcl, i.e. vSOCt , vΔHl and vΔHcl , and then the membership function
is utilized to fuzzy the sampling variables to vector ~VSOCt , ~VΔHl

and ~VΔHcl which will be put into the inference machine of the
thermal storage units operations next. And the energy dispatch
strategies of the thermal storage system are obtained with the
defuzzy process and the TES operating constraints. In addition,
the cooling load provided by the absorption chiller can be
validated through the heat balance constraint. In the second
step, the sampling objects are the electric storage system SOCe,
the real-time price of the electricity market λ and the total
electrical forecasting error ΔPerr which consists of the error of
the electric load, PV, PW and electric chiller consumption. And
the energy dispatch strategies of the electric storage system will be
inferred through the fuzzy process, inference process and defuzzy
process based on the expert experiences.

3.2.1 TES Fuzzy Decision Controller Design
In this work, the proposed fuzzy controller for TES is composed
of the fuzzy process, inference process and defuzzy process
(Bouleimen and Lecocq, 2003).

1) Membership Function and Fuzzy Vectors

The role of membership function (MF) is to quantitatively
describe the “fuzziness” of fuzzy sets, so it occupies an important
position in fuzzy control. It can be determined by fuzzy statistical
method, expert experience method, relative comparison method
and neural network method (Jin et al., 2005). And for different
ranges of input values, the membership function can be roughly
divided into three categories: Z function, S function and Π
function, such as the drop semi Cauchy distribution function
(Eq. 24), the rise semi Cauchy distribution function (Eq. 25) and
the symmetric normal distribution function (Eq. 26) correspond
to the cases where the input value in the Universe is small, large
and in the middle value respectively.

μ(x) �
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 0≤x≤x0l

1

1 + (x − x0l

bl
)2cl

x> x0l (24)

μ(x) �
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 x>x0h

1

1 + (x0h − x

bh
)2ch

0≤x≤x0h (25)

μ(x) � e−k×(x−a)
2

(26)

where xol and xoh denote the inflection point position of the
membership function curve, k, bl and bh determine the width of
the function curve, cl and ch control the slope of the curve, α
regulates both the slope and the middle point of the curve.

It is wildly known that during the actual deployment process,
under the premise of satisfying the completeness of fuzzy control,
the fewer the number of fuzzy segmentation of language variables,
the fewer the number of fuzzy rules, the lower the complexity of
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implementation, and the higher the efficiency of the decision-
making process. In this work, the input variables SOCt, ΔHl

and ΔHcl and the output variable ΔHtes have fuzzy
subsets F(ΔHtes) � {NBΔHtes , NSΔHtes , ZOΔHtes , PSΔHtes , PBΔHtes },
F(SOT) � {LSOT,MSOT,HSOT}, F(ΔHhl) � {NBΔHhl , NSΔHhl ,
ZOΔHhl , PSΔHhl , PBΔHhl}, F(ΔHcl) � {LΔHcl ,MΔHcl , HΔHcl } with
their respective membership functions μF(SOCt), μF(ΔHl), μF(ΔHcl)
and μF(ΔHtes).

Given any sampling time, the explicit inputs SOCt, ΔHl and
ΔHcl should be firstly normalized into values applicable to MF,
and then be fuzzed into ~VSOCt , ~VΔHl and ~VΔHcl through
membership function, as illustrated in Eq. 27, Eq. 28, and Eq. 29.

~VΔHhl � [mΔHhl

NB , mΔHhl

NS , mΔHhl

ZO ,mΔHhl

PS , mΔHhl

PB ] (27)

~VSOT � [mSOT
L ,mSOT

M ,mSOT
H ] (28)

~VΔHcl � [mΔHcl

L , mΔHcl

M ,mΔHcl

H ] (29)

2) Fuzzy Inferences

In this paper, an improved inference is proposed for the fuzzy
decision controller with the export control rules and the fuzzy
inference result U can be obtained from the Eq. 30, Eq. 31.

μU � μ ~V · μR � μ ~V1
+μ ~V2

+ . . .+μ ~Vn
· μR (30)

μR � ∪ μRi
(i � 1, 2, . . . , m) (31)

where n is the number of input vectors, μ ~V denotes the current
state of the system, μR represents the total fuzzy implication
relation which is acquired by the parallel computing of the
implications of each fuzzy rule μRi, m is the number of the
export control rules.

For the TES fuzzy decision system, the fuzzy control rule
base is established with M expert control rules, and the rules
are a set of language sentences based on IF-THEN sentences
which can be described as: “If SOCt is A

�
, ΔHl is B

�
and ΔHcl is C

�

, then the operating state of the TES Utes is D
�
.“, where A

�
, B
�
, C
�

and D
�
are the subsets of the sampling variable and the inferred

solution, i.e.:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

�A ∈ {NBΔHhl , NSΔHhl , ZOΔHhl , PSΔHhl , PBΔHhl}
�B ∈ {LSOT,MSOT,HSOT}
�C ∈ {LΔHcl ,MΔHcl , HΔHcl }

�D ∈ {NBΔHtes , NSΔHtes , ZOΔHtes , PSΔHtes , PBΔHtes }
(32)

Based on (Eq. 30), the inference result μUtes can be
calculated by:

FIGURE 4 | Control surface of the TES system operations.
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μUtes
� μ ~V+μR � μ ~VSOCt

+μ ~VΔHl
+μ ~VΔHl

· μRtes
(33)

And the fuzzy implications of each rule μRi can be described by
(3.28) with the Descartes product operation:

μRi
� μ�A+μ�B+μ�C+μ�D (34)

And given the sampling variables, the current state of the system
can be further expressed as:

μ ~V � ~VΔHhl+ ~VSOT+ ~VΔHcl

� [mΔHhl

NB , mΔHhl

NS , mΔHhl

ZO ,mΔHhl

PS , mΔHhl

PB ]+[mSOT
L ,mSOT

M ,mSOT
H ]T

+[mΔHcl

L , mΔHcl

M ,mΔHcl

H ]
� ⎡⎢⎢⎢⎢⎢⎢⎢⎣m

ΔHhl

L ∧ mSOT
L ∧ mΔHcl

L / mΔHhl

PB ∧ mSOT
L ∧ mΔHcl

L

« 1 «
mΔHhl

NB ∧ mSOT
H ∧ mΔHcl

H / mΔHhl

PB ∧ mSOT
H ∧ mΔHcl

H

⎤⎥⎥⎥⎥⎥⎥⎥⎦
9×5
(35)

3) Defuzzification

The Utes is converted to the final output of the controller
through the defuzzification process which is similar but opposite

to the process of fuzzification, that is, the fuzzy degree of the
inference output is converted into the output dispatch signal. At
present, a variety of defuzzification methods are available, such as
area defuzzification method, center defuzzification method,
weighted average defuzzification (Zoulias and Lymberopoulos,
2008). In the case where multiple rules have been asserted, the
weighted average method is utilized for clarification, as shown in
(Eq. 36). The control quantity can be output to the TES after scale
transformation as (Eq. 37).

utes �
∫
u
μUtes

du

∫
u
du

(36)

ΔHtes � ΔHtes + Δ �H
tes

2
+ Δ �H

tes − ΔHtes

�utes − utes

× (utes − �utes + utes

2
)
(37)

4) Establishment of Fuzzy Control General Table

Considering the real-time requirements of the control
system, the design stage of the fuzzy controller is usually
separated, and the corresponding fuzzy control summary

TABLE 1 | Integrated energy system parameters.

Item Rated capacity (MW) Operating cost ($/MWh) CO2 emission (kg/MWh) Engineering efficiency —

Photovoltaic 1.2 40 58.4 Power factor 0.95
Wind turbine 2 17 27.6 Power factor 0.95
Baterry storage 0.5 20 — Charging efficiency 0.95
— — — — Maximum charge and discharge rate 0.2
CHP 5 145 184 Power generation efficiency 0.3
— — — — Heat-to-electricity ratio 1.48
Gas boiler 2 100 226 Heat release efficiency 0.8
Thermal storage 0.8 40 - Thermal storage efficiency 1
— — — — Heat release efficiency 1
— — — — Maximum heat storage and release rate 0.5
Electric chiller 2.6 40 — Energy efficiency ratio 2.0
Absorption chiller 1.7 30 — Energy efficiency ratio 1.2

TABLE 2 | Rules of TES system operations.(Utes)

ΔHcl ΔHl — — — — — — — — —

— NB — NS — ZO — PS — PB —

NB SOCt ΔHtes SOCt ΔHtes SOCt ΔHtes SOCt ΔHtes SOCt ΔHtes

— L NB L NB L NB L NS L ZO
— M NB M NB M NS M NS M PS
— H NS H NS H NS H ZO H PS

ZO SOCt ΔHtes SOCt ΔHtes SOCt ΔHtes SOCt ΔHtes SOCt ΔHtes

— L NB L NS L ZO L PS L PS
— M NB M NS M ZO M PS M PB
— H NS H NS H ZO H PS H PB

PB SOCt ΔHtes SOCt ΔHtes SOCt ΔHtes SOCt ΔHtes SOCt ΔHtes

— L NS L ZO L PS L PS L PS
— M NS M PS M PS M PB M PB
— H ZO H PS H PB H PB H PB
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table is established in an offline manner, which can be
expressed in the form of a graph (Zhang et al., 2014).

3.2.2 ESS Fuzzy Decision Controller Design
For the ESS fuzzy decision control, it is in some way analogous to
the TES fuzzy decision controller design consisting of the fuzzy
process, inference process and defuzzy process.

In the fuzzy process, the input variables are composed of the
electric storage unit state SOCe, the real-time price of the electricity
market λ and the total electrical forecasting error ΔPerr. And the
total electrical forecasting error includes the error of the electric load
ΔPerr

L , PV ΔPerr
Pv , PW ΔPerr

WT and electric chiller consumption ΔPerr
ch

as shown in (Eq. 38). The adjustment of the electric chiller
consumption ΔPerr

ec depends on the change in the absorption

TABLE 3 | Rules of ESS system operations.(Uess)

λ ΔPerr — — — — — — — — —

— NB — NS — ZO — PS — PB —

L SOCe ΔPess SOCe ΔPess SOCe ΔPess SOCe ΔPess SOCe ΔPess

— L NB L NB L NB L NS L ZO
— M NB M NS M NS M ZO M ZO
— H NS H NS H NS H PS H PS

M SOCe ΔPess SOCe ΔPess SOCe ΔPess SOCe ΔPess SOCe ΔPess

— L NB L NS L ZO L PS L PS
— M NB M NS M ZO M PS M PB
— H NS H NS H ZO H PS H PB

H SOCe ΔPess SOCe ΔPess SOCe ΔPess SOCe ΔPess SOCe ΔPess

— L NS L NS L ZO L PS L PS
— M ZO M ZO M ZO M PS M PB
— H PS H PS H PS H PB H PB

FIGURE 5 | Membership functions of variables.
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chiller consumptionΔHerr
ac determined by the result of the TES fuzzy

control with the heating and cooling power balance constraints in
(Eq. 39, Eq. 40).

ΔPerr � ΔPerr
L + ΔPerr

ec − ΔPerr
Pv − ΔPerr

WT (38)

COPec × ΔPerr
ec +Hec +Hac + COPac × ΔHerr

ac � Hcl (39)

ΔHerr
ac + ΔHl � ΔHtes (40)

The input variable SOCe, λ and ΔPerr and the output variable
ΔPess have fuzzy subsets F(ΔPess) � {NBΔPess ,NSΔPess ,
ZOΔPess , PSΔPess , PBΔPess }, F(SOCe) � {LSOCe ,MSOCe ,HSOCe },
F(ΔPerr) � {NBΔPerr ,NSΔPerr , ZOΔPerr , PSΔPerr , PBΔPerr }, F(λ) �
{Lλ,Mλ,Hλ} respectively with their respective membership
functions μF(SOCe), μF(λ), μF(ΔPerr) and μF(ΔHess). For any sampling
time, it is indispensable to normalize the explicit inputs SOCe, λ and
ΔPerr into values applicable to MF which are shortly fuzzed into
~VSOCe , ~Vλ and VΔPerr through MF, as illustrated in Eqs 41–43.

~VΔPerr � [mΔPerr

NB , mΔPerr

NS , mΔPerr

ZO , mΔPerr

PS , mΔPerr

PB ] (41)

~Vλ � [mλ
L, m

λ
M,m

λ
H] (42)

~VSOCe � [mSOCe

L , mSOCe

M ,mSOCe

H ] (43)

In the fuzzy inferences process, the EES fuzzy control rule base
is set up with N expert control rules, and the total fuzzy
implications μRess

is set like the TES’s. And the inference result
μUees can be calculated by:

μUess
� μ ~V+μR � μ ~VSOCe

+μ ~Vλ
+μ ~VΔPerr

· μRess
(44)

μ ~V � ~VΔPerr+ ~Vλ+ ~VSOCe

� [mΔPerr

NB , mΔPerr

NS , mΔPerr

ZO , mΔPerr

PS , mΔPerr

PB ]+[mλ
L, m

λ
M,m

λ
H]T

+[mΔPerr

L , mΔPerr

M ,mΔPerr

H ]
�� ⎡⎢⎢⎢⎢⎢⎢⎣ mΔPerr

NB ∧ mλ
L ∧ mSOCe

L / mΔPerr

PB ∧ mλ
L ∧ mSOCe

L

« 1 «
mΔPerr

NB ∧ mλ
H ∧ mSOCe

H / mΔPerr

PB ∧ mλ
H ∧ mSOCe

H

⎤⎥⎥⎥⎥⎥⎥⎦
9×5
(45)

In the defuzzification process, the weighted average method to
defuzzify is utilized to obtain the output Uess. And the,

uess �
∫
u
μUess

du

∫
u
du

(46)

ΔPtes � ΔPess + Δ�P
ess

2
+ Δ�P

ess − ΔPess

�uess − uess

× (uess − �uess + uess

2
) (47)

4 CASE STUDY

In this section, small-scale terminal integrated energy systems such as
microgrids are selected as the simulation verification object to
evaluate and verify the effectiveness of the proposed two-layer model.

4.1 Simulation Setup
The studied microgrid system includes CHP, gas boilers,
distributed renewable energy represented by photovoltaics and
wind turbines, electric storage and thermal energy storage,

absorption refrigerator and electric refrigerator, whose
parameters are shown in Table 1. In addition, there are four
internal combustion engines in the integrated energy system with
the minimum load rate of 0.3, the rated power capacity of a single
internal combustion engine is 125kW, the operation and
maintenance cost is 7.8$/MWh; the electric energy storage
device adopts the lithium iron phosphate battery model, and
the self-discharge rate is 0.04, the state of charge is 0.2–0.9; the
heat storage tank is selected as the thermal energy storage device,
the self-heat release rate is 0.1, the upper limit of the energy
storage level is 0.9, and the lower limit of the energy storage level
is 0.2. The CO2 emission coefficient of the electricity purchased
from the large power grid is 889$/MWh, and the fuel price of
CHP and boiler is 0.0569$/kWh.

The power generation of PV and wind, the demand and pricing
profiles are obtained from1,2,3. In this study, the curves of the
forecasting data are illustrated in Figure 3 on a typical winter day,
consisting of the day-ahead power load, heat load and cooling load,
PV and WT generation obtained by the time series forecasting
method and the electricity price equal to the expected price.
Among them, the electric load, photovoltaic and wind are
predicted by the improved genetic algorithm neural network
model, which not only classifies the local weather and
environment but also considers the factors affecting solar and
wind power generation, to optimize the error and adjust the
parameters. To ensure the accuracy of prediction, heating load
and cooling load are indirectly predicted through physical
forecasting models. For instance, heating load is predicted by an
equivalent thermal parameter model in the case of determining the
comfortable range of indoor temperature, grasping the outdoor
temperature of the day through weather forecast, and utilizing the
coupling relationship between temperature difference and heating
load are used. The electricity price is to predict the specific expected
electricity value at each forecast time point through the time series
method, and the current price is estimated by combining the
previous price and the history of external factors including
electricity and weather.

In this paper, the design and implementation of fuzzy
decision controllers are constructed as follows to realize the
proposed energy dispatch solution. For the TES fuzzy design
controller, the state of the thermal storage system SOCt and the
error of the cooling load ΔHcl are chosen as the input variables
to be fuzzed into three fuzzy set elements respectively while
the error of the heating load ΔHl is fuzzed with five fuzzy
set elements. For the ESS fuzzy design controller, the total
electrical forecasting error ΔPerr as the input variable is fuzzed
into five fuzzy set elements while the state of the electric
storage system SOCe and the real-time price of the
electricity market λ is fuzzed into three fuzzy set elements
respectively. To design the controller, the first step is to exam

1Electricity price and demand, AEMO (Online). Available: http://www.aemo.com.
au/Electricity/Data/Price-and-Demand
2The California Energy Almanac (Online). Available: http://energyalmanac.ca.gov/
renewables/solar/pv.html
3Wind power (Online). Available: http://www.thewindpower.net/
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the membership function of the variables represented in
Figure 4 which can effectively achieve the balance between
dynamic response and steady-state performance during the
operation of the microgrid.

The design of control rules is important for the performance of
fuzzy decision-making schemes. Based on the design presented in
Section 3, the principles of energy dispatch are described as
follows:

1) Considering different time scales, TES fuzzy control is once an
hour, and ESS fuzzy control is once every 15 min.

2) When the output of the CHP and the gas boiler meet the
thermal load demand, the excess energy is absorbed by the heat
storage; when the CHP and the boiler meet the thermal load
demand and the surplus is significant, if the cooling load deficit
is significant, give priority to supplying absorption chillers,
otherwise, the heat storage Prioritize energy absorption.

3) When the CHP and boiler cannot meet the heat load
demand, if the cooling load surplus is significant, the
lack of heat load is obtained by reducing the input of the
absorption chiller, otherwise, the lack of heat load is first
provided by the heat storage; when the CHP and boiler
cannot When the thermal load demand is met and the
shortage is obvious the thermal storage releases energy;

4) When CHP, PV andWTmeet the demand of electric load and
electric refrigerator, the excess energy is absorbed by electric
storage; when CHP, PV and WT meet the demand of electric
load and electric refrigerator and the surplus is significant, if
the real-time electricity price is lower If it is high, it will be sold
to the grid first, otherwise the excess energy will be absorbed
by the electricity storage first;

5) When CHP, PV andWT cannot meet the demand of electric
load and electric refrigerator, the electric storage releases
energy; when CHP, PV and WT cannot meet the demand of
electric load and electric refrigerator and the shortage is
high if the real-time electricity price is higher if it is low, it
will give priority to purchasing from the grid, otherwise it
will give priority to the release of energy from electric
storage;

6) When the remaining energy of the energy storage is low, even
if the energy supply is insufficient, the energy storage will not
discharge; when the energy storage state is high, even if the
energy supply is excessive, the energy storage will not charge;
this can effectively prevent overcharging of the energy storage
or over-discharge.

The above principles aim to maximize economic efficiency
and the penetration rate of renewable energy. The control rules of
all scheduling principles (case #1∼#6) are shown in Table 2 and

FIGURE 6 | Control surface of the ESS system operations.
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Table 3 respectively with their control surfaces shown in Figure 5
and Figure 6.

4.2 Numerical Experiments and
Performance Analysis
According to the scheduling strategy in this paper, the
simulation scheduling results are shown in Figures 7, 8, 9.
In winter, the heat load and electric load are mainly
concentrated at night, which is the opposite of the time
when renewable energy sources concentrate on providing
electric power during the day. However, the energy storage
system can transfer energy in two dimensions, space-time and
space, so the excess energy is stored first and then released
when users need it, thereby increasing the consumption rate of
renewable energy.

The electric load is provided by a mixture of wind turbines,
photovoltaic generators, CHP, battery units and large grids, while
the power demand is composed of the main electric load and the
energy consumed by the electric refrigerator. The optimized
dispatch results are shown in Figure 7. In winter, the number
of hours during the day is significantly reduced, resulting in a
reduction in photovoltaic power generation, which is offset by
greater wind power generation throughout the day. At night
when the real-time electricity price is at a valley value, wind
resources are abundant, the output power of the gas generator in
the CHP is small, and the electrical load is mainly provided by the

power purchase from the grid through wind power generation
and the system. At this time, the real-time electricity price is low.
When the wind energy output cannot meet the demand, the
system first purchases surplus electric energy from the grid for
power supply, and stores the surplus electric energy in the electric
storage device. In the daytime, the electricity price is at the level
and peak stage, the output power of gas generators is relatively
large, and the power load of the system is mainly provided by
CHP, photovoltaic and wind power output. The peaks of grid
electricity prices appear from 9 to 12 am and from 6 to 9 pm, so
the electric energy storage system mainly releases energy in these
two time periods to meet user needs. In the period from 9 am to
12 o’clock, the grid electricity price reaches its peak, but the user’s
electrical load demand is not high, so the system sells part of the
stored electricity to the large grid to achieve low storage and high
power arbitrage. In the period from 6 to 9 in the afternoon, the
grid electricity price reaches its peak and the electricity demand
also reaches the maximum. Due to the limitation of the rated
discharge power, the energy storage system can only release a
limited amount of electrical energy per unit time, which cannot
fully meet the current user’s needs. Demand, so users still need to
buy electricity from the large grid.

The heat load is provided by the waste heat generated by the
gas boiler and the CHP system. The heat demand mainly includes
the heat load and the heat load consumption required for the
energy supply of the absorption chiller. The optimal scheduling of
the heat power is shown in Figure 8. The heat recovery of

FIGURE 7 | Diagram of optimized dispatching results of electric power.
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cogeneration is related to the power distribution and heating
method of the integrated energy system. The heat demand in
winter is much higher than in summer, and the combined heat
and power system and boilers operate all day to meet the high
demand for heat. At night, the heat load demand is very large,
mainly provided by the boiler, the gas generator plays an auxiliary
role, and the thermal energy storage system releases the stored
energy to play a regulatory role. During the day, the heat load of
the system is mainly provided by gas generators, and gas boilers
play an auxiliary role. If there are surplus energy, the thermal
energy storage system converts and stores energy. Between two
o’clock and five o’clock in the afternoon, the heat load demand is
small, and the thermal energy storage system absorbs energy for
storage. From five to eight in the evening, as the temperature
decreases, the heat load demand reaches a peak, and the thermal
energy storage system continues to release energy to ensure a
reliable supply of thermal energy. In the whole process, the effect
of peak shaving and valley filling of the thermal energy storage
system is more obvious.

The cooling load is mainly provided by electric refrigerators
and absorption refrigerators, and the optimal scheduling results
are shown in Figure 9. Generally speaking, considering that the
energy efficiency ratio of electric refrigerators is much greater
than that of absorption refrigerators if the electric refrigerators

can provide the total load, the absorption refrigerators will be
turned off and the energy consumption will be zero. Otherwise,
the unsatisfied cooling load will be provided by the absorption
chiller. Compared with summer, the refrigeration demand on
cloudy days in winter is significantly lower, so only electric
refrigerators can meet the refrigeration requirements, without
the need for absorption chillers.

4.3 Performance Comparison
In this section, to illustrate the importance of multiple types of energy
storage technology in an integrated energy system, it is compared
with a multi-energy microgrid without energy storage. At the same
time, to illustrate the effectiveness of the two-tier scheduling model
proposed in this chapter, it is comparedwith the other two scheduling
methods commonly used in the existing literature.

4.3.1 Comparative Analysis of the Performance of the
Integrated Energy System With or Without the Energy
Storage Device
For energy systems, energy efficiency, economy and environmental
protection are significant evaluation indicators. Therefore, for the
above-mentioned integrated energy system, the performance of
the stripped energy storage device is compared and analyzed in the
same environment.

FIGURE 8 | Diagram of optimization scheduling results of thermal power.
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Here, the energy utilization efficiency is calculated based on the
consumption rate of renewable energy, and the ratio of the
consumption of renewable energy to the total output of renewable
energy is utilized as the energy utilization efficiency index; the
economic index only considers the operation and maintenance
cost of the integrated energy system, which mainly includes the
cost of purchasing electricity from the large power grid and the
operation and maintenance cost of the system. The environmental
protection index is to consider the carbon dioxide emissions caused
by the operation of the system,mainly considering the carbon dioxide
emissions caused by the power purchase of the large grid and the fuel
consumption of the cogeneration system. The comparison results can
be seen in Table 4.

It can be observed that the integrated energy system connected
to the energy storage device has a better economy and
environmental protection, and its renewable energy
consumption rate has also been improved. Compared with the
system without energy storage, the integrated energy system with
an energy storage device can store the excess energy when the

energy is abundant and supply it when needed later, which greatly
improves the energy consumption rate; therefore, it reduces the
cost of purchasing electricity from the large grid during the
operation of the system, and can even sell it to the grid when
the electricity price is high when the price of energy storage
electricity is low, which has better economic efficiency; the power
supply of the large grid is mainly thermal power generation and
carbon emissions. The energy storage system increases the
consumption rate of renewable energy on the one hand, and
on the other hand reduces the purchase of electricity from the
large power grid, which greatly reduces carbon emissions.

4.3.2 Comparative Analysis of Optimization
Scheduling Methods
To intuitively reflect the advantages of the proposed two-tier
scheduling model, two common scheduling methods are selected
for comparison. The first comparison method is day-ahead
scheduling. Based on a multi-objective optimal scheduling
model, the forecast data is used to obtain the best output and

TABLE 4 | Performance comparison of integrated energy systems before and after access to multiple types of energy storage.

Energy storage system Renewable energy consumption
rate (%)

System operation and
maintenance costs ($)

Carbon emission (tCO2)

With 91 1704 340
Without 78 1876 385

FIGURE 9 | The result of optimal scheduling of cold power.
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operating cost of multiple energy sources within the scheduling
period. The second comparison method is real-time scheduling,
which uses the fuzzy control method to schedule the energy
storage system based on real-time data. The simulation result is
shown in Figure 10.

It is shown that the method proposed outperforms method 1
and comparison method 2, and has lower operating costs. For
instance, when the root mean square error of load forecasting is
10%, the total operating cost of the two-tier optimization model is
$1,726, which is lower than the total operating cost of
Comparative Method 1 and Method 2 with $1772 and $1745,
respectively. As the load forecasting error increases, the economic
benefits of this method become more and more significant.

5 CONCLUSIVE REMARKS

This paper proposes a two-tier scheduling optimizationmodel for
an integrated energy system based on energy storage to deal with
the uncertainty of wind power and photovoltaic power generation
and the energy demand for electricity, heating and cooling. The
model consists of a forward-looking dispatch layer and a real-
time dispatch layer and considers the different time scales of
electric storage and thermal storage. The upper-level advanced
dispatch optimizes the CHP and energy storage system to balance
the predicted load, wind power and photovoltaic power. The
lower-level real-time dispatch uses fuzzy control to dispatch
electric energy storage and thermal energy storage in a real-
time fashion based on the comparison of actual load and
predicted power generation. To verify the effectiveness of the
proposed scheduling model, a case study was carried out based on
amicrogrid test system. It is confirmed that the proposed solution
can fully utilize the flexibility of renewable energy and energy

storage system to adjust the peak load of the system while
ensuring the balance of energy supply and demand of the
system, optimize the period of renewable energy utilization,
and effectively reduce the energy cost of users, improve the
energy utilization efficiency.

The scheduling scheme proposed in this work provides a feasible
solution for realizing a low-cost and low-carbon integrated energy
system. On this basis, future research directions and challenges are
proposed. The energy storage system scheduling strategy adopted in
this paper relies on real-time electricity prices, but the coupling
relationship between real-time electricity prices and demand-side
response is not considered, and it is only used as a lever to regulate the
scheduling of energy storage systems. The proposed solution still
needs to be further investigated to promote its performance. A
number of research directions are considered worth further
research effort. The future work can study real-time electricity
prices based on this article, adding dynamic real-time electricity
prices. With the continuous development of the integrated energy
system, pilot projects can be established to apply the above simulation
results in actual scenarios, and combine actual operating conditions
to further improve the model. In addition, considering the rise of
flexible loads, e.g., smart home appliances and electric vehicles,
reasonable control of demand-side response is required to retain
the social and economic benefits brought by the balance of supply
and demand and also meet the maximization of users’ energy
efficiency and minimization of costs.
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