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Wind power forecasting (WPF) is imperative to the control and dispatch of the power grid.
Firstly, an ultra-short-term prediction method based on multilayer bidirectional gated recurrent
unit (Bi-GRU) and fully connected (FC) layer is proposed. The layers of Bi-GRU extract the
temporal feature information of wind power and meteorological data, and the FC layer predicts
wind power by changing dimensions to match the output vector. Furthermore, a transfer
learning (TL) strategy is utilized to establish the predictionmodel of a target wind farmwith fewer
data and less training time based on the source wind farm. The proposed method is validated
on two wind farms located in China and the results prove its superior prediction performance
compared with other approaches.
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INTRODUCTION

The renewable energy problem is the focus of the 21st century (Zheng et al., 2017; Li et al., 2016). The
transformation of the power grid is the key to solving this problem. The new form of the power grid with
renewable energy as the main bulk is the ruling development trend of the future power grid (Li et al., 2021;
Shen et al., 2021a). The Global Wind Energy Development Report 2019 shows that the newly installed
capacity of global wind turbines in 2019 is 60.4 GW (Chen et al., 2021). However, the uncertainty existing
in new energy, such as wind power, is not conducive to the safe and stable operation of the power grid.
Therefore, accurate WPF is beneficial for enhancing system reliability (Shi et al., 2014).

There are three types of WPF methods including the physical method, statistical method, and
artificial intelligence method. The first establishes a physical model that reflects the relationship
between the wind power and numerical weather forecast (NWP) (Zhao et al., 2018), which is difficult
to model and calculate. Yang proposes an expanded sequence-to-sequence (E-Seq2Seq) based data-
driven SCUC expert system for dynamic multiple-sequence mapping samples, which is a pioneer
study for SCUC problems (Yang et al., 2021a). The second (statistical method) is suitable for wind
farms that have been built for a long time because it needs enough historical data. The representative
algorithms of this method are Auto-Regression (AR) (Wu et al., 2014; Shen et al., 2021), Bayesian
approach (Wang et al., 2019a), and Kalman filter (Yang et al., 2019). The final, AI method, such as
support vector machine (Deo et al., 2016), artificial neural network (Wang et al., 2019b), extreme
learning machine (Ali and Prasad, 2019), can deal with the complex nonlinear relationship
between input and output and extract the deep features of input information, which has been
widely used in recent years.

Edited by:
Xun Shen,

Tokyo Institute of Technology, Japan

Reviewed by:
Aihong Tang,

Wuhan University of Technology,
China

Yunyun Xie,
Nanjing University of Science and

Technology, China

*Correspondence:
Yu Li

2877630621@qq.com

Specialty section:
This article was submitted to

Smart Grids,
a section of the journal

Frontiers in Energy Research

Received: 03 November 2021
Accepted: 12 November 2021
Published: 17 December 2021

Citation:
Chen W, Qi W, Li Y, Zhang J, Zhu F,

Xie D, Ru W, Luo G, Song M and
Tang F (2021) Ultra-Short-Term Wind

Power Prediction Based on
Bidirectional Gated Recurrent Unit and

Transfer Learning.
Front. Energy Res. 9:808116.

doi: 10.3389/fenrg.2021.808116

Frontiers in Energy Research | www.frontiersin.org December 2021 | Volume 9 | Article 8081161

BRIEF RESEARCH REPORT
published: 17 December 2021

doi: 10.3389/fenrg.2021.808116

http://crossmark.crossref.org/dialog/?doi=10.3389/fenrg.2021.808116&domain=pdf&date_stamp=2021-12-17
https://www.frontiersin.org/articles/10.3389/fenrg.2021.808116/full
https://www.frontiersin.org/articles/10.3389/fenrg.2021.808116/full
https://www.frontiersin.org/articles/10.3389/fenrg.2021.808116/full
https://www.frontiersin.org/articles/10.3389/fenrg.2021.808116/full
http://creativecommons.org/licenses/by/4.0/
mailto:2877630621@qq.com
https://doi.org/10.3389/fenrg.2021.808116
https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#editorial-board
https://doi.org/10.3389/fenrg.2021.808116


The ultra-short-term prediction of wind power is essentially a
multi-variable time series prediction problem. In recent years,
recurrent neural network (RNN) has developed rapidly. As the
improved versions of RNN, long short-term memory (LSTM)
network and gated recurrent unit (GRU) (Lin and Liu, 2020; Yang
et al., 2021b) can efficiently extract the temporal correlation
characteristics of wind power, and also mine the relationship
between power and weather, which improves the performance of
WPF. But there is a timing delay in actual prediction.

In addition, all deep learning approaches rely on a sufficient
sample of data. However, newly built wind farmsmay not provide
enough data, which makes WPF difficult. However, TL is a new
method that breaks through traditional machine learning and is
widely used in computer vision, text classification, and other
fields (Wang et al., 2020; Shen and Raksincharoensak, 2021a;
Yang et al., 2021; Yang et al., 2019; Shen et al., 2021b). It can finish
pre-training of a model in the source domain with sufficient data
and then transfer the pre-training model to the target domain
after fine-tuning. On the one hand, TL can overcome the problem
of few data, on the other hand, it can reduce the training time
(Zhuang et al., 2020; Zhang et al., 2021). At present, there are few
studies on the applications of TL in WPF.

In order to improve the prediction performance of RNN, the Bi-
GRU method is proposed in this paper to enhance the and capacity
and forecasting accuracy of the model by bidirectionality of the
structure. The Bi-GRU enables the GRU to process the data in two
directions including forward (future) and backward (past).Moreover,
the TL strategy is used to forecast the wind power of newly built wind
farms with few training data. The TL combined with Bi-GRU is used
to ensure the power prediction accuracy and reduce the training time,
which can guarantee model performance and reduce computational
costs at the same time.

The rest of this paper is organized as follows. In The Proposed BI-
GRU Model and Transfer Learning Method, the Bi-GRU model and
transfer learning method are explained. Case studies and discussion
are shown in Case Studies. Conclusion concludes this study by
summarizing the key findings and contributions of this paper.

THE PROPOSED BI-GRU MODEL AND
TRANSFER LEARNING METHOD

The Bi-GRU Prediction Model
RNN is widely used in time series prediction, but it has problems
of gradients vanishing and exploding, and its memory ability for
long series is limited (Liu et al., 2021). As the improved version of
RNN, LSTM, and GRU effectively solve these problems and
determine the sequential information to be forgotten and
remembered through the gating mechanism. The gating
mechanism of GRU is simpler than that of LSTM because it
combines the forget gate and input gate of LSTM and reduces the
computation while ensuring the prediction ability of the neural
network. In addition, Bi-GRU is able to extract long-term
dependencies before and after the current state, which means
that Bi-GRU can extract more temporal features from sequential
data, so Bi-GRU performs better than GRU. The structure
diagram of Bi-GRU is shown in Figure 1.

The GRU cell has only two gates (an update gate zt and a reset
gate rt). The update gate controls the extent to which the state
information at the previous moment is retained into the current
state, and the reset gate determines the extent to which the
current state is combined with the previous information. The
information flow is shown as follows in a GRU cell.

zt � σ(Wzxt + Uzht−1 + bz) (1)

rt � σ(Wrxt + Urht−1 + br) (2)

~ht � tanh(Wxt + U(rtȯht−1)) (3)

ht � ztȯ~ht + (1 − zt)ȯht−1 (4)

Where xt, ht are the input data and current state (also used as the
output of a cell) at time t, respectively. ht-1 is the previous state.
~ht is the candidate state. Wr, Ur, Wz, Uz, W, U, and br, bz
represent weights and bias parameters, respectively. σ, tanh are
activation functions and ȯ denotes an element-wise product. But
in Bi-GRU, the output ht is concatenated by the outputs in two
directions.

�ht � GRU( �ht−1, xt) (5)

h
←
t � GRU(h←t−1, xt) (6)

ht � Wt
�ht + Uth

←
t + bt (7)

Where, �ht, h
←
t represent the outputs in two directions, Wt, Ut,

and bt represent weights and bias parameters, respectively. In
addition, FC neural network is used after Bi-GRU to fit the
learned features to labels, which means achieving prediction by
matching dimensions between inputs and outputs. The Rectified

FIGURE 1 | The frame of Bi-GRU forecasting model based on TL.
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Linear Unit (ReLU) activation function is utilized in the
FC layer.

The Transfer Learning Method
The TL method is a machine learning concept that TL is used to
improve the performance of target tasks on target domains by
transferring the knowledge contained in different but similar
source domains (Qureshi et al., 2017). Usually, the model is pre-
trained in the source domain with sufficient data. Then the pre-
trained model is fine-tuned in the target domain with small data,
which makes full use of the source domain data to improve the
performance of the model on the target domain data. TL
methods can be divided into instance-based approach,
feature-based approach, and parameter-based approach. The
historical data of wind farms with short construction time or
imperfect detection devices may not be enough to support the
training of prediction models. In this paper, the parameter-
based TL approach is used. The pre-training model trained by
wind farms with sufficient data is fine-tuned by the target
domain with insufficient data to accomplish the target tasks
more efficiently. The basic idea of transfer learning can be
expressed as follows.

DSs � {Fs, Ls} (8)

DSt � {Ft, Lt} (9)

Where DSs, DSt represent the data space of the source domain and
target domain, respectively. Fs, Ls are the features of the source
domain and target domain data spaces, respectively. Ft, Lt are the
labels of the source domain and target domain data spaces,
respectively. The tasks of the source domain and target domain
are to find the optimal parameters Ws and Wt, to make that the
predicted values Ps and Pt are as close as possible to the labels Ls and
Lt. TL is to fine-tune the source domainmodel parameterWs tomake
the target domain parameter as close as possible to the optimal target
domain parameter Wt.

Ps � fs(Fs,Ws) (10)

Pt � ft(Ft,Wt) (11)

The prediction framework diagram of the method proposed in
this paper is shown in Figure 1, and the processing flowchart is
shown in Figure 2. The prediction process is mainly divided into two
parts. In the first part, the wind farm power prediction model in the
source domain is established. In the data pre-processing stage, the
original data in the source domain are normalized to eliminate the
scale difference of features and facilitate the use of gradient descent of
loss function. First, the pre-processed data is fed into the three-layer
Bi-GRU neural network. Then the FC layer matches the output
dimension to achieve WPF to get the source-domain prediction
results. The second part is to build the wind farm power prediction
model in the target domain, and the data pre-processing is the same
as the first part. The pre-trained source domain model is loaded and
the parameters in the pre-trained model are transferred to the target
domain as the initial parameters. Using a small amount of target-
domain data to train the network, a fine-tuned target domain
prediction model is obtained.

CASE STUDIES

In order to verify the effectiveness and superiority of the proposed
prediction model and TL method, the experiment is divided into
two parts. The first part compares the Bi-GRU with the AR,
LSTM, and GRU. The second part uses the Bi-GRU prediction
model and TL method to predict the power of wind farms in the
target domain. The programming language used is Python3.8.
The deep learning framework is PyTorch1.8.1.

Data Description
Two wind farms from Zhejiang Province in China are named
ZJFD01 and ZJFD02 respectively. Each wind farm contains
measured active power and meteorological data. The
meteorological data contains wind speed, direction measured
(sine and cosine of wind direction) at the hub, and air density.
The time interval is 15 min. Since the running time of the two
wind farms is different, the amount of historical data recorded is
different. The wind farm ZJFD01 has recorded a large amount of
data (including July 1, 2019–August 30, 2021) with an installed
capacity of 90 MW, which is taken as the source-domain wind
farm. The wind farm ZJFD02 (including January 1, 2021–August

FIGURE 2 | The folw chart of propesed WPF.
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25, 2021) has recorded a small amount of data with an installed
capacity of 200 MW, which is taken as the target-domain wind
farm. The relationship between input and output of samples in
the target domain and source domain in these datasets is similar
because the relationship of wind power and meteorological
variables in different wind farms is semblable. Therefore, data
domains can be positively transferred.

Evaluation Metrics
In order to evaluate the prediction performance of the prediction
model, the root mean square error (RMSE), mean absolute error
(MAE), and accuracy (Cr) are taken as evaluation metrics according
to international standards. They are defined as follows. In addition,
training time is introduced as a new evaluation index in the
experiment of the target-domain wind farm.

RMSE � 1�
n

√

�����������������∑n
i�1
(Preal,i − Ppred,i

Ci
)2

√√
× 100% (12)

MAE � 1
n
∑n
i�1

∣∣∣∣∣∣∣Preal,i − Ppred,i

Ci

∣∣∣∣∣∣∣ × 100% (13)

Cr � 1 − RMSE (14)

Where Preal,i, Ppred,i, and Ci are real output power, predicted
output power, and capability of wind farm respectively. n is the
total number of predicted samples.

The Experiment of Source-Domain Wind
Farm
The source-domain prediction model, the Bi-GRU method, is
established for the ZJFD01 wind farm. In the data pre-processing
stage, the supervised learning dataset is constructed. The output
power of the current time step yt is selected as the label. The
previous four timesteps (xt-1,xt-2, . . . , xt-4) are selected as features.

A total of 70% of the dataset was used as the training set and the
last 30% as the verification set.

For hyperparameters, set input size to 4, hidden size to 8, and the
number of layers to 3. Then, the FC layer is connected to tag
dimension matching, and the number of neuron nodes in the
input layer is 64 (since the output of Bi-GRU is flattened), the
hidden layer is 32, and the output layer is 1. In the model training
stage, mean-squared loss is used as the loss function to measure the
error between predicted power and actual output power, and theAdam
optimization algorithm is used as the optimizer. In order to evaluate the
superiority of the proposed method in wind farm prediction in the
source domain, RMSE, MAE, and Cr are used as evaluation metrics.

The 400 sampling points of the test dataset are taken to verify the
prediction effects of various methods. The power prediction results are
shown in Figure 3. Compared with other methods, the power
prediction curve of Bi-GRU is closer to the actual power output
curve trend. As can be seen from Figure 3, the RMSE and MAE of
the proposed method are significantly lower than those of other
methods, and the accuracy is improved. Compared with LSTM and
GRU,RMSEandMAEare reduced by 4.73 and 3.17% respectively. The
prediction effect of GRU is better than that of LSTM because the same
iteration times are set, but GRU has a simpler structure and fewer
parameters to be optimized, so it has higher accuracy. There are two
reasons why the proposed method is superior: 1) The Bi-GRU can
excavate the relationship between historical meteorological data and
current power data layer by layer through various gating mechanisms,
and can also excavate the local and long-term correlation before and
after the power data series; 2) The characteristics of both the forward
and reverse time sequence of power and meteorological data are taken
into account by the bidirectional mechanism, so it can effectively
improve the accuracy of prediction. As seen from the local
amplification figure, the forecasting curve trend of all methods is
close to the actual power curve, but there are different levels of
phase difference. However, the bidirectional mechanism of Bi-GRU
solved this problem, making the prediction curve more closely fit the

FIGURE 3 | The forecasting results of source-domain wind farm:(A) Foreacsting results; (B) Forecasting error.
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actual power curve, which is the important reason for its better
prediction performance.

The Experiment of Target-Domain Wind
Farm
In order to ensure the prediction accuracy and reduce the training
time, the power prediction of the ZJFD02 wind farm in the target
domain is based on transfer learning. The parameters and structure
of the pre-trained model from ZJFD01 are migrated to the ZJFD02.
The preprocessingmethod of the dataset is the same as that of source
wind farm. In order to explore and verify the advantages of using
transfer learning to predict power, the following cases are compared:

a) The pre-trained model in the source domain is directly
loaded, and denoted as NO_fine-tunning (NO_FT);

b) The pre-trained model in the source domain is loaded and the
parameters in Bi-GRU layers are frozen and the parameters of
the FC layer are fine-tuned with target-domain data, which is
named Fixed_Bi-GRU;

c) The pre-trained model in the source domain is loaded and the
parameters in the FC layer are frozen and the parameters of Bi-
GRU layers are fine-tuned with target-domain data, which is
named Fixed_FC;

d) Redefine a predictionmodel whose structure is the same as that of
the source-domainmodel but whose parameters are not trained at
all. Then train it with target-domain data, which is namedNO_TL.

In addition to RMSE and MAE, training time is added to the
evaluation metrics to measure the improvement of computing
speed caused by TL. Except for case (a), the number of iterations
in other cases is set to 200.

By taking 400 sampling points, the prediction results and
performance of the above cases can be compared, as shown in
Figure 4. From the perspective of prediction accuracy, the
prediction accuracy of case (a) and case (b) is lower than that
of case (c) and case (d). RMSE and MAE of case (c) are 4.705 and
4.607%, respectively, lower than that of case (a), because there are
still differences in the dataset of the source domain and target
domain. If there is no parameter fine-tuning, it will cause a large
prediction error. Case (b) and (c) fixed different parameters of the

network layer, RMSE, andMAEwere reduced by 1.533 and 1.404%
respectively compared with case (b), because the number of three-
layer network parameters of Bi-GRU was much more than that of
FC layer. After fine-tuning in the target domain, case (b) changed
the parameters of themodel to a greater extent than case (b), so it is
closer to the optimal target domain model; the prediction accuracy
of case (c) and case (d) was similar, RMSE is 2.397 and 2.484%,
MAE is 1.295%, and 1.298%, respectively. From the perspective of
time-consuming, cases (b), (c), and (d) are compared. it is obvious
that the training time of case (b) is less than that of (c). Most
parameters of this prediction model are still Bi-GRU layers, so it
saves training time to fine-tune FC layer parameters. The accuracy
of (c) is similar to that of (d), but the training time of (c) is 9.9%
shorter than that of (d). Therefore, using the transfer learning fine-
tuning the pre-trained model can guarantee the prediction
accuracy and save the training time to a certain extent
compared with the training model starting from the beginning.

CONCLUSION

In this paper, a Bi-GRU prediction model based on the transfer
learning method is presented for the ultra-short-term of wind
power. According to the results of case studies, some conclusions
are summedup as follows.Onone hand, the Bi-GRUpredictionmodel
can extract the temporal features of wind power sequential data in two
directions, which learns deeper historical information and realize
higher accuracy of WPF than GRU and LSTM. On the other hand,
the prediction model combined with the TL method saves training
time and reduces the requirement for abundant data. In the future,
more detailed research about how to balance training time and
accuracy of prediction using TL will be completed. Moreover, more
comprehensive evaluation metrics aimed at evaluating the TL method
in WPF will be established (Shen and Raksincharoensak, 2021b).
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