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Wireless Sensor Networks (WSNs) have recently become crucial in monitoring operations.
The development of a Data Fusion Algorithm for radioactive source localization utilizing
WSN based on the Particle Filter (PF) technique is presented. The localization of an
unknown-intensity point radioactive source using sensor nodes measured intensities in
Count per Minute (CPM) is considered. The surveillance area is covered by several sensors
(radiation detectors) n. Instead of using four sensors, as described in previous research,
two consecutive sensors are used in sequence (S1, S2), (S2, S3). . .. . ., (Sn-1, Sn) till
reaching the last sensor available Sn. Apollonius circle calculated range guides a particle
filter for estimating the source location using actual measurements. Compared with other
approaches such as the Iterative Pruning Clustering algorithm, more accurate estimates in
terms of the error between the estimated source position and ground truth are obtained.
The comparison is conducted using the same real measurements data. The Particle Filter
based algorithm is implemented in a Xilinx FPGA chip. The architecture is a two sequential
steps implementation, where particle generation, weight calculation, and normalization are
carried out in parallel during the first step, followed by a sequential or parallelized
resampling in the second step. This architecture targets a balance between hardware
resources and speed of operation. The future work plan includes security-related studies
and complete WSN implementation using μC/FPGA devices.
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1 INTRODUCTION

Motivating this work is the rush of Mid-east countries towards peaceful uses of atomic energy,
impacting the national environmental situation. Since radioactive material monitoring becomes very
important especially in the emerging nuclear regions, it is necessary to build instruments and systems
to deal with radioactive material detection and tracking. Wireless Sensor Networks (WSNs) and μC/
FPGA are proposed to implement these systems.

The problem of monitoring and searching for threats that involve radioactive materials is highly
challenging because of the high variance in background radiation, the presence of non-harmful sources,
and the possible shielding of harmful sources. We study in this paper a collection of algorithms and
analyses that center around the problem of radiation detection with a distributed sensor network. Liu
(2010) investigated the essential characteristics of a radiation sensor network focused on the tradeoffs
between false positive rate, valid positive rate, and time to detect one or more radiation sources in a
large area. She carried out mathematical and simulation evaluations of crucial system factors like sensor
nodes and sensor position. Zhang (2012) proposed a statistical method based on the likelihood ratio test
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(conditional test statistic), accessed by the likelihood ratio statistic.
Other researchers have addressed the problem of radiation source
localization using different approaches. The geometric difference
triangulation method is presented in (Wu et al., 2014) to estimate
source location by solving a system of nonlinear equations for three
measurement sensors. The Ratio of Square Distance (ROSD)
method introduced in (Chin et al., 2010), presents a closed-
form solution that can solve the imaginary root problem when
dealing with more than 3 sensors. Various methods based on
maximum likelihood estimation (MLE) (Gunatilaka et al., 2007)
have been proposed. Henry E. Baidoo-Williams (Baidoo-Williams,
2016) used a non-concave maximum likelihood-based profit
function to ensure a unique global maximizer. Cordone (2019)
used linear regression (LR) to estimate the source and background
intensities and then used these estimates to initialize the intensity
parameter search for MLE.

Nageswara S. V. Rao et al. (Rao et al., 2008) proposed two
localization methods: A mean of estimators (MoE) method and a
mean of measurements (MoM) method that computed the mean
of the measurements and showed from simulation results that
MoE outperforms MoM. Chase Qishi Wu et al. (Wu et al., 2019)
presented three localization-based detection approaches, namely:
Source-attractor Radiation Detection (SRD), Triangulation-based
Radiation Source Detection (TriRSD), and Ratio of Square
Distance-based Radiation Source Detection (ROSD-RSD).
Bayesian algorithms that compute an a posteriori probability
distribution based on a given prior distribution and likelihood
values calculated from measurements are illustrated in (Dalal and
Han, 2010; Jarman et al., 2011; Liu et al., 2011; Rao et al., 2015;
Tandon et al., 2016). Mobile sensor networks, which study real-time
challenges for moving sources are studied (Rao et al., 2015). N. Rao
et al. (Rao et al., 2015) suggested a Particle Filter algorithm, where it
has been used in a border monitoring scenario. A geostatistical
interpolation method that uses the given measurements to estimate
positions where data were not collected based on Poisson kriging is
presented (Zhao et al., 2019). Fragkos et al. (2020) developed a fusion
algorithm based on an analytical procedure for five sensors. This
analytical method did not consider the geometrical form factors of
the sensors and the radiation attenuation of themediumbetween the
source and the sensors, which contributed to lower localization
accuracy. The localization algorithms, which are based on machine
learning techniques, such as Artificial Neural Networks (ANN) and
Boosted Decision Trees (BDT) are also investigated (Kyriakis and
Karafasoulis, 2020). J.-C. Y. Chin et al. (Chin et al., 2008) claimed an
accurate localization method under noise and measurement errors.

This paper develops a robust data fusion and parameter
estimation method for radioactive source localization based
on the Particle Filter algorithm. The presented Particle Filter
based algorithm is implemented in a Xilinx FPGA chip. Sensor
nodes, as well as base stations, can be implemented using μC/
FPGA chips. The proposed approach is evaluated and
compared with other techniques reported in (Chin et al.,
2008).

This paper is organized as follows. In Section 2, a brief review
of the most common fusion-based localization approaches is
presented. Then, Section 3 demonstrates the proposed
algorithm and its flow. Next, in Section 4, the experimental

setup and the obtained results are discussed. Finally, an FPGA
implementation of the proposed localization algorithm to speed
up the localization process is presented in Section 5, followed by
the conclusion.

2 REVIEW OF APPROACHES FOR
RADIOACTIVE SOURCE LOCALIZATION

In (Chin et al., 2010; Liu, 2010), a summary, classification, and
drawbacks of methods used for localization problems are
reported. The following summarizes previous work in fusion
of data collected from sensor network approaches for radioactive
source localization.

2.1 Data Fusion From Multiple Sensors
Data collected at more than one sensor can be combined or
considered separately. The former is often referred to as the “data
fusion” step. Algorithms without data fusion make decisions
based on readings from a single detector only and thus require
no sensor-to-sensor or sensor-to-server communication. On the
other hand, algorithms that fuse sensor data require the data to be
transferred to one or a few centralized servers (base stations) for
processing, creating more complexity in system architecture and
introducing higher costs. Therefore, it is essential to understand
and quantify the benefits of sensor data fusion when designing a
radiation sensor network. For example, if the independent
analysis is almost as good as algorithms with data fusion,
communication between sensors can be simplified.

Data fusion is undoubtedly advantageous for discovering and
recognizing a source, but it is unclear how much if at all, it
improves detection. While simply integrating data (e.g., summing
all data without filtering) improves signal strength, it also
introduces noise, lowering SNR. The combined SNR may be
lower than considering SNR from each sensor individually. For
example, view a grid of widely-spaced sensors and a weak static
source near one detector. The detector closest to the source will
have a high SNR, whereas the other sensors receive mostly noise.
Combining the data blindly from all four sensors will always
decrease the overall SNR.More quantifying the benefits from data
fusion can be found in (Chin et al., 2010; Liu, 2010).

2.2 Localization Approaches
In a noise- and error-free situation, determining the location of a
radioactive source problem can be solved in closed form
employing four ideal sensors and the Apollonius circle (Chin
et al., 2008). When uncertainties and noise like background
radiation are considered, more sensors are required to give
correct results, especially for extremely low source intensities.
In real-world scenarios, noise and measurement errors are
unavoidable. Hence, the fusion of measurements from n
sensors, n > 3, is necessary to increase the solution’s reliability.

2.2.1 Maximum Likelihood Estimator Method
The Maximum Likelihood Estimator (MLE) method
constructs a maximum likelihood estimator and solves it
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with optimization techniques. It considers a uniform
background whose strength has been measured as a priory,
and the remaining unknown variables to be estimated are the
source strength µ and source position X � (x, y). The discrete
Poisson mass function is used as a radiation sensing model.
MLE searches over a solution space of both the source strength
and position, such that the difference between the predicted
measurements according to the sensing model and the actual
measurements by the n sensors is minimized. The method can
converge on local minima, which leads to the detection of
phantom sources.

2.2.2 Mean of Estimators Method
The mean of estimators (MoE) localization method (Rao et al.,
2008) produces estimated results by linearly combining each
subset of three sensors. The MoE method computes the fused
estimate and the candidate estimates’ mean. The advantage of
the MoE method is that it has linear time complexity and
generally runs much faster than MLE. However, the
fundamental flaw of MoE is that it isn’t specifically
designed to eliminate phantom estimations during the
fusion process. Phantom estimations can harm localization
accuracy, especially if they appear to be generated by robust
(and thus presumably accurate) sensor readings. As a result,
when a significant portion of the candidate estimates is
phantom estimates, this approach can provide substantial
localization errors.

2.2.3 Iterative Pruning (ITP) Clustering Algorithm
The approach is divided into two parts, Clustering, and fusion
(Chin et al., 2008). Clustering (Quality Threshold (QT)
clustering) is used to find the smallest region in the

surveillance area that contains a majority if not all, candidate
estimates that are not phantom estimates. Fusion is used to
compute a weighted centroid of the candidate estimates in the
cluster found above as the fused estimate. After each iteration, the
candidate estimates input into the technique are pruned
iteratively until only the region with the most estimates
remains. When the number of estimates left is less than N and
the region’s area is less than d × d, the Algorithm stops. TheN and
d parameters limit the maximum number of estimates in the
remaining region and the smallest region’s maximum size (in
terms of area). The fused estimation is calculated from the
weighted center of the remaining estimations. As the number
of sensors increases, the candidate estimates increase as O (n3),
where n is the number of sensors.

2.2.4 Bayesian Algorithms
Probabilistic representations account for uncertainty in the
source location resulting from uncertainties in detector
responses and the potential for non-unique solutions. A
Bayesian approach improves previous likelihood methods for
source localization by incorporating all available information to
help constrain solutions. Bayesian algorithms generally give good
results when the prior estimates of unknown parameters are
accurate. However, they give wrong results when the preliminary
estimates are poor and when the signal data is too small to
overcome the poor prior forecast. A. Liu et al. (Liu et al., 2011)
present a heuristic that combines classical parametric statistical
algorithms (K-Sigma Algorithm) with Bayesian algorithms
(Kalman filter) to deal with this problem. However, this
heuristic could suffer from incorrect estimations from the
parametric algorithm emphasized by the Bayes algorithm.
Moreover, Bayes algorithm complexity increases exponentially
with the number of sources.

2.2.5 AI Approach
G. Cordone (Cordone, 2019) presents a method to perform the
MLE localization without prior knowledge of the background
radiation intensity. It estimates the source and background
intensities using linear regression (LR) and then uses these
estimates to initialize the intensity parameter search for MLE.
This method is tested using single-resolution, multi-resolution,
and multi-resolution with grid expansion MLE algorithms, and
performance is compared to MLE algorithms that don’t use the
LR initialization. It is reported that using the LR estimates to
initialize the intensity parameter search caused a marginal
increase in both localization error and computation time for
the tested algorithms. The technique is only beneficial in the case
of unknown background intensity. The localization algorithms,
which are based on machine learning techniques, such as Multi-
Layer Perceptron Artificial Neural Networks (MLP) and Boosted
Decision Trees (BDT) (Kyriakis and Karafasoulis, 2020), are also
investigated. Using Cs-137 source of 180 micro-Curie (μCi), a
localization accuracy of 15 and 10 cm in horizontal and vertical
source coordinates respectively within an area of 5 m × 2.8 m
covered by a sensor network consisting of five sensors has been
achieved.

FIGURE 1 | Apollonius circle.

FIGURE 2 | The interior bisector PP1 and the exterior bisector is PP2.
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3 PROPOSED LOCALIZATION APPROACH

In this section, a data fusion method for radioactive source
localization based on Particle Filter algorithm is developed.
Apollonius circle calculated range of candidate source
positions from every pair of two consecutive sensors of the
n-sensor network is used to guide a Particle Filter for
estimating the source location. The radius of the Apollonius
circle is used in the particle filter likelihood function to
converge to a source position estimate.

3.1 Problem Formulation
The localization of a point radiation source of unknown strength
Au expressed in the unit of micro-Curie (μCi) called the source
rate will be considered. The source is located at an unknown
location (xu, yu). The source gives a radiation intensity of

I(p) � I(x, y) � Au × E × 2.22 × 106

(xu − x)2 + (yu − y)2 (1)

(expressed in counts per minute or CPM) when measured by a
sensor at point p � (x, y), where E is an efficiency constant unique
to the sensor. The radiation count induced by the source and
observed at the sensor i per unit time is a Poisson random variable
with parameter λ � I(xi, yi), not accounting for the background
radiation B(x, y) (Rao et al., 2008) denoting the background
radiation strength at (x, y) expressed in CPM, called the
background rate. The radiation count measurement (due to the
background radiation) at a sensor i located at (xi, yi) is given by the
Poisson random variable with parameter B(xi, yi). For comparison
purposes, the radiation model, actual measurements, and
calibration process (Rao et al., 2008) are followed.

3.2 Apollonius Circle
Apollonius Circle describes the locus of point p, which has a
fixed distance from point A equal multiple of its distance from
another fixed point B. If the m:n equals one, the locus is the
perpendicular bisector of segment AB. If m ≠ n, then it is a circle
(Kim, 2021).

FIGURE 3 | The flow of the Algorithm. (A) Iteration 1, S1 and S2 (B) Iteration 2, S2 and S3 (C) Iteration 3, S3 and S4 (D) Iteration 4, S4 and S5.
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In Figure 1, AP:BP � m:n. When the point P moves, keeping
this ratio, the locus of p is a Circle, which is called the circle of
Apollonius. This circle connects A and B’s interior and exterior
division points (the interior bisector PP1 and the exterior bisector
PP2 in Figure 2).

3.3 Particle Filter
Particle filter is a sequential Monte-Carlo approach used to
estimate the dynamic state parameters of nonlinear and/or
non-Gaussian systems (Fox et al., 1999; Marimon et al., 2007).
The essential idea is to approximate the probability density
functions (PDFs) of the state of a dynamic model by random
samples (particles) with associated weights, then propagating

them across iterations based on a probabilistic model of the
state update and the measurements (Arulampalam et al., 2002).

J. Cook et al. (Cook et al., 2020) proved the theoretical
convergence of the estimate to the state posterior probability
density function of Particle Filter. So, weak convergence
in radioactive source localization applications is not a
problem.

A. Kyriakis and K. Karafasoulis (Kyriakis and Karafasoulis,
2020) pointed that Particle Filter algorithm complexity
increases exponentially with the number of sources.
Therefore, the next section of this paper presents a H/W
implementation of the proposed Particle Filter to speed up
the processing that can help deal with this situation and real-
time scenarios.

3.4 Proposed Algorithm
The Particle Filter Range Search algorithm works as follows.
Initially, the 1,000 particles are evenly distributed, i.e., the initial
state of the source is entirely unknown. Then, it converges to a
source position estimation after using the radius of the
Apollonius circle in the particle filter likelihood function.
Figure 3 illustrates the flow of the proposed Algorithm. First,
two consecutive sensors (e.g., S1 and S2) readings are used to
obtain a candidate position for the radioactive source. Next,
two points (p1, p2) on an Apollonius circle are calculated.
Then the radius of the circle r calculated according to Eq. 2
is used in the likelihood function of the particle filter. Finally,
a probability is assigned to each particle according to the
standard Gaussian formula, and their weights are calculated as
in Eq. 3.

r �
�����������������
(xs − x)2 + (ys − y)2√

(2)

Where xs and ys are positions of the sensors in the environment.

TABLE 1 | Sensors Coordinates used in 0.911 μCi Cs-137 Source Experiments
and Actual measurements.

Sensor no X Y Detector efficiency Actual

1 36.52 29.89 0.002414 19.7025
2 27.45 29.70 0.002078 37.0099
3 26.13 40.46 0.003103 25.3450
4 18.53 37.08 0.002414 21.0433
5 10.11 41.57 0.002078 21.1236
6 32.00 12.00 0.003103 38.3307
7 0.00 0.00 0.002414 15.3083
8 5.24 21.09 0.002078 32.3821
9 3.13 15.77 0.003103 32.8900
10 38.19 16.33 0.002414 19.5326
11 4.43 0.47 0.002078 19.9144
12 14.65 5.60 0.003103 40.3292
13 19.46 7.10 0.002414 35.0893
14 4.64 35.28 0.002078 22.1469
15 36.15 0.00 0.003103 24.3019
16 23.65 7.67 0.002414 34.5478
17 0.81 7.77 0.002078 23.1495
18 42.68 24.00 0.003103 25.8622

FIGURE 4 | Matlab Experiment Setup (Sensor and radiation source placements).
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w(q/rm) � 1
σ

���
2π

√ e
−1
2 (r∧−rm

σ )2

(3)

Where rm is the range measurement (Apollonius)
q � [x, y] is the state vector
r̂ is the range estimate from the particle to the sensor
and σ: is the standard deviation from the PDF for that range

measurement.

A pool of candidate particle positions is calculated, and an
estimated source position is plotted as shown in Figure 3A. For the
2nd round, the next consecutive sensor (S3) reading with the
previous sensor reading (S2) is used to form another Apollonius
circle, as shown in Figure 3B. Finally, the particles are resampled
from the previous round’s Apollonius circle perimeter particle
pool. Figures 3C,D show the following rounds, whichwill continue
till utilizing all 18 sensors.

The pseudo-code of the proposed algorithm can be stated as
follows.

ALGORITHM 1 | Algorithm Range Search PF Source Localizer.
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4 RESULTS AND DISCUSSION OF THE
PROPOSED ALGORITHM S/W
IMPLEMENTATION
As we stated above, real measurements data from (Rao et al.,
2008) is used to derive our experiment. The surveillance area is
50 × 50 cm, and the number of sensors distributed over this
region is 18. The position of these sensors is shown in Table 1. A
Cs-137 radiation point source emits Gamma-ray of intensity Au �
0.911 μCi and their position in the area (Xs,Ys) � (19.09,19.09). We
consider that the distance measurements are in centimeters (cm).
Matlab experimental setup for sensor and radiation source
placements is depicted in Figure 4.

Table 2 shows the error in estimated position values from one
run of the proposed algorithm implemented Matlab program.
Figure 5 shows that the error decreases when we observe readings
from more sensors. However, it is not smooth monotonically
reducing due to the random nature of the particle filter.
Compared with ref. (Chin et al., 2008), superior results are
achieved when the number of sensors is increased, as shown
in Table 3 and Figure 6.

Table 3 shows recorded error obtained from ref. (Chin et al.,
2008). in the first column (four methods). The second column
reports the values obtained from our Algorithm while using ref.
(Chin et al., 2008). average of actual measured data and the last
column represents values calculated using model data when the
source is out of the area surrounded by the sensors [source is
located at (40,10)]. The last case is unattained by all other
approaches [RoSD (ratios of square distances) and log-space
DTOA (time difference of arrival)] (Chin et al., 2008).
Figure 6 depicts these results graphically.

The proposed algorithm outperforms the Iterative Pruning
Clustering algorithm when using just four sensors and above. For
sensor count less than four, the results of our Algorithm and reference
three sensor treatment are comparable (not shown in the figure).
From Figure 6, the Algorithm run with 6 sensors achieved the best
tradeoff between the number of sensors and an estimated position
error of 2%, 18 times less than the competitor (ITP) approach.
Therefore, compared with other techniques, superior performance
of the guided Particle Filter approach, in terms of localization error, is
achieved. At the same time, adding 2 more sensors is not costly. Also,
the proposed algorithm can localize a source, even when the area
surrounded by the sensors does not contain that source.

Optimizing sensor placement can be implemented by
maximizing a detection function F (Liu et al., 2011), defined
as the sum of true positives over the whole area while keeping the
false positive rate constant using a known source strength.

FIGURE 5 | Error in Estimated Position values with the number of sensors.

TABLE 2 | Error of one run (not averaged).

X Y Error

17.08 27.58 8.7256
19.06 27.78 8.6941
24.03 29.52 11.5392
23.07 28.70 10.3974
19.63 22.19 3.1476
18.30 19.26 0.8098
18.80 19.01 0.3007
18.72 18.93 0.4026
18.11 20.28 1.5414
18.15 19.99 1.3023
18.16 19.40 0.9781
18.10 20.23 1.5113
18.14 20.06 1.3591
18.24 19.89 1.1700
18.06 20.62 1.8476
17.91 19.91 1.4376
17.91 19.91 1.4364
17.91 19.91 1.4364
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5 FPGA IMPLEMENTATION OF PARTICLE
FILTER BASED RANGE SEARCH
LOCALIZATION ALGORITHM
To speed up the proposed Algorithm, an FPGA implementation
of particle filter based range search localization algorithm
is introduced. Figure 7 shows the Sampling Importance
Resampling Filter (SIRF). SIRF performs the particle
generation and weight calculation for every input sample.

After M particles pass, the weight normalization, outputting,
and resample are carried out.

5.1 Proposed Architecture
The proposed architecture, shown in Figure 8, uses 2MxP
dual-port FIFO to store the particles, where M is the number
of particles and p is a two-component state vector, given by (x, y)
to represent the X-position and Y-position. Two registers files
are used: The first Mxw register file stores the particle weights

TABLE 3 | Recorded error comparison between ref. (Chin et al., 2008). and the proposed Algorithm.

Sensor no Chin et al. (2008) Proposed algorithm error
(actual avg. used)

Proposed algorithm error
at (40,10) source

position (model data
used)

MoE/R ITP QT MoE

1 — — — — 8.73 18.25
2 — — — — 8.69 17.44
3 — — — — 11.54 23.27
4 21.80 20.00 17.91 17.84 10.40 24.73
5 22.00 19.00 18.49 17.60 3.15 17.11
6 19.40 14.70 13.83 11.48 0.81 11.88
7 18.05 11.55 10.33 7.90 0.30 5.28
8 19.00 8.55 8.77 5.84 0.40 6.76
9 15.70 6.84 6.84 4.55 1.54 5.64
10 14.40 6.70 6.70 4.33 1.30 5.20
11 13.50 6.13 6.13 3.69 0.98 6.72
12 12.15 4.84 4.84 2.98 1.51 4.84
13 11.40 4.26 4.26 2.55 1.36 5.02
14 9.74 4.12 4.12 2.62 1.17 3.74
15 9.23 4.26 4.26 2.55 1.85 3.34
16 8.94 3.83 3.83 2.70 1.44 2.18
17 8.87 3.83 3.83 2.55 1.44 1.73
18 8.14 3.83 3.83 2.48 1.44 1.73

FIGURE 6 |Comparison of Error in Estimated Position values related to the number of sensors between the proposed Algorithm and ref. (Chin et al., 2008). results.
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where w represents the length of weight bits. The second Mxn
register file keeps the replication factor for each particle (M �
2n), where n is the replication number. Figure 8 illustrates the
data flow through processing stages of the proposed
radioactive source localization H/W architecture. The
operations of this PF H/W architecture can be summarized
as follows.

1) In sample engine, the particles are generated from samples
drawn using the random number generator (Mahmoud et al.,
2016). Then, in each moving step, all particles are drifted by
the same amount. The generated particles are stored in a
FIFO for routing when it has a replication value. As all
particles are generated, they can be used for weight
calculation.

2) In the weight calculation engine, initially, N particles are
spread over the xy plane within the predetermined
boundaries where the probability of each particle is (1/N).
When the first particle rout is finished, the observation (rm)
will be enabled and a probability is assigned to each generated
particle according to a developed linearized function of the
likelihood (instead of the conventional exponential function
as explained in section 5.1.2).

3) In the output stage, to calculate the mean source position Xo

and Yo, we need to calculate:

Xo � ∑M
i�1
xi × wi/∑M

i�1wi
yo � ∑M

i�1
yi × wi/∑M

i�1wi

The straightforward implementation of the output calculation
is accomplished by employing two accumulators to sum each of x
and y values for all particles, which is thenmultiplied by its weight
and multiplied by the inverse value of the total weight.

4) After sampling the total number of particles is done, the
resample process starts and gives a replication factor for each

particle according to its weight using one of the resampling
methods. The basic idea of resampling is to eliminate small-
sized particles and concentrate on particles with large weights.
The resampling process calculates sequentially the replication
factor for each particle for the next instant. The resample
calculates one replication factor for every clock cycle.

5.1.1 Sample Unit
Figure 9 shows a block diagram of the sampling unit. The
sampling unit contains two random generators implemented
using Hybrid Cellular Automata (CA) CA 150 and CA 90
rules (Abd el-hamid, 2008). The used CA consists of N
alternating cells, which change their states according to rules
90 and 150. The Random Number Generator (RNG) uses XOR
logic, implemented in VHDL, to calculate the next state of an
indicated cell in the array.

The sample engine generates noise values added or subtracted
to the particle state vector elements, stored in register Particle S,
before saving it back to the FIFO for the next instant.

5.1.2 Weight Calculations
Our likelihood function was designed as a linear function for
hardware simplification. Considering the complexity of the
hardware implementation of the square root and the
exponential function, we need to find the magnitude of a two-
dimensional vector quickly without using a square root function.
A common approximation takes the following form:

|r| � αmax(Δx,Δy) + βmin(Δx,Δy)
Where α� 0.94 and β� 0.39.

In hardware, we calculate the maximum term as (1-0.062) and
the minimum term as (0.25 + 0.125), which is a good
approximation. By using simple linear approximations, we may
reduce theweighted function computations. Figure 10 compares the

FIGURE 7 | Sampling Importance resampling filter (SIRF).
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FIGURE 8 | SIRF Localizer processor architecture.

FIGURE 9 | Sampling unit. (A) The sample of x values (B) The sample of y values.
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FIGURE 10 | (A) Simplified function for the weight calculations. (B) Estimated value by a simplified process of the particle weight.

FIGURE 11 | Exponential function (A) MatLab implementation (B) Schematic (C) Simulation.
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FPGA implemented weighting function with the true exponential
function. Matlab simulation results indicate that this approximation
does not affect the performance of the localizer. The exponential
function also can be used as a lookup table when the maximum and
minimum value are known. Figure 11A shows its implementation
in MatLab. Figures 11B,C shows the schematic and simulation of
VHDL implemented exponential function using fixed-point
representation.

To reduce the H/W resources requirements, all variables are
used in fixed-point representation form. The average standard

deviation of measurements of ref. (Abd el-Hamid, 2015) is scaled
and used in the implementation.

5.2 Residual Resampling Algorithm
In Residual Resampling (RR), resampling is performed where the
number of replications of a specific particle is determined in one
loop by truncating the product of the number of particles, and the
simple truncation may result in a total number of replicated
particles less than M. In general, R � ∑r (m) may not be equal to
M. For solving this problem, for example, if the sum of all

FIGURE 12 | A simulation run that illustrates the operation of the localizer with RSR.

FIGURE 13 | The execution time comparison (A) The eight parallel resampling loops give the replication factors at one clock cycle. (B) One loop (sequential) RSR
replicates factors after M clock cycles for M � 8.
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replicated particles is less than, M the hardware must decide
which particles to replicate additionally so that the total number
of particles is constant.

In the RR algorithm, for M input and N output (resampled)
particles, the summation of all particles replication factors are less
than the input particlesM (N <M). The difference between input
and output is obtained using the mechanism (Abd El-Halym
et al., 2012), in which we added this remainder number to the
replication factor of the highest weight particle.

The replication of each particle is calculated as follows:

Ri � ⎛⎜⎝wi p
M∑M
1 wi

⎞⎟⎠ (4)

The simple structure of the resampling is executed by
employing the lookup Table, which is used to calculate the
inverse value of the weight summation, which lies between 1
and 64, then multiply this value by M. Accordingly, the number
D � (M/∑M

1 wi) is calculated. The replication factor Ri � (wipD)
where i � 1, 2, 3 . . ..M values are calculated and stored in the
replication factor memory.

5.2.1 Residual Systematic Resampling Algorithm
Systematic resampling (SR) is the most commonly used since it
is the fastest resampling algorithm for computer simulations
(Bolic et al., 2005). But it takes two loops of m iterations. In
Residual Systematic Resampling (RSR), the updated uniform
random number is formed differently, which allows for only
one iteration loop and processing time independent of the
distribution of the weights at the input (Bolic, 2004).

The RSR algorithm draws the uniform random number U(0)
� ΔU(0) in the same way of SR but updates it by ΔU(m) �
ΔU(m−1) + i(m)M − w(m)n. The uniform number is updated
depending on the previous uniform number ΔU (m−1),
calculated and then used as the initial uniform random
number for the next particle. When trying to calculate ΔU
(m), this uniform number is updated regarding the current
weight. For these reasons, the RSR must be implemented
sequentially and cannot be implemented in parallel. So, this
resample approach is implemented in the proposed sequential
architecture.

Figure 12 shows a simulation run illustrating the localizer using
RSR and shows the time between every successive estimation values.

TABLE 4 | The resources utilization for the implemented architecture of Sequential and parallel resampling on xc5vlx50t-3-ff1136 chip.

Logic utilization Sequential Two loop Four loop Eight loop Available

Number of slice registers 1,381 1,386 1,396 1,416 28,800
Number of slice LUTs 3,019 3,818 5,446 9,525 28,800
Number of fully used LUT-FF pairs 753 1,010 1,271 1,275 3,647
Number of bonded IOBs 46 46 46 46 480
Number of block RAM/FIFO 1 1 1 1 60
Number of BUFG/BUFGCTRLs 3 3 3 3 32
Number of DSP48Es 1 2 4 7 48
Number of slice registers 1,381 1,386 1,396 1,416 28800

FIGURE 14 | The timing diagram for the SIRF evaluation.
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The Sequential resampling engine can be redesigned to work in
parallel using several scenarios of parallel execution units, as shown
in Figure 13. Considering data dependencies, this can be achieved
by splitting the resampling process into multiple concurrent loops.
When we use M loops, we consume the resources of the H/W
implementation. The figure demonstrates the speed gain from
using eight parallel resampling loops over a single loop.

5.3 The Resources Utilization
The architecture is captured using VHDL and synthesized on a
Xilinx Virtex 5 FPGA chip. Finally, the design is verified using
ModelSim simulator. Table 4 summarizes the total resources
utilization of the implemented architectures.

The proposed architecture uses two memory arrays: oneMxW
to store the weights of the particles whereW equals to 8 bits used
in our fixed-point representation and the other Mxn memory to
store the replication factor whereM � 2n FIFO is implemented as
a circular queue, where data can be stored and retrieved (in the
order of its entry only) and thus has a read pointer and a write
pointer. A synchronous FIFO uses the same clock for reading and
writing. Moreover, total memory requirements for this
architecture are: one dual-port FIFO of 2M words to store the
particles vectors of width equals 24 bits.

5.4 Analysis of Execution Time
The timing diagram of our proposed architecture operations is
shown in Figure 14. Ti is the initial latency in particle generation,
which equals two clock cycles. Therefore, the total cycle time
required is TSIRF � (TW + Tres + αM) Tclk. The particle
generation and computation weight operations can be
overlapped in sequence such that TW is the startup latency of
the weight calculation unit, which is equal to one clock.
Therefore, the total latency cycles are three. Tres is the
resampling time equal to M + 1 clock periods (one clock to
add the M-N to the highest weight replication factor). In the
routing of the particles, the value of α lies between 1 and 2 and
depends on the replication factors of the particles. The best value
α is 1, where every clock routs one particle such that the total
routing time isM. The worst-case takes place when the firstM−1
particles have zero replication factors. Only the last stored particle
in the FIFO has a replication factor that equalsM in this case; the
FIFO needs to read M−1 particles first, till FIFO reaches the
particle numberM. Then the sampling, weighting, and the output
calculations are started and repeated for those particle M times.

For all other cases (when a considerable number of the particles
have non-zero replication factors), the value of α is slightly more
than one.

From the timing summary, the total time consumed for SIRF
with RSR is 28.958 ns (maximum frequency: 34.533 MHz) using
Xilinx FPGA chip xc5vlx50t with speed grade: -3.

Several architectures are implemented and compared to
explain the tradeoff between speed up and resource utilization.
The design occupies a small part of the targeted Xilinx chip. So,
smaller and more affordable chips (e.g., Xilinx Zynq-7010) will be
sufficient.

6 CONCLUSION

A proposed radioactive source localization algorithm is presented.
Apollonius circle calculated range guides a Particle Filter for
estimating the source location using actual measurements. The
proposed algorithm outperforms the Iterative Pruning Clustering
algorithm when using just four sensors and above. For sensor counts
less than four, the results of the two algorithms are comparable.
Furthermore, the proposed algorithm can localize a source, even
when the area surrounded by the sensors does not contain that
source. This case is unattained by all other approaches. A H/W
implementation of this particle filter in a Xilinx FPGA chip is also
presented. Several implementation architectures are evaluated. The
selected architecture targets a balance between hardware resources
and speeds up accomplished. The future work plan includes security-
related studies and complete WSN implementation using μC/FPGA
devices.
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