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To achieve the goal of carbon peak and carbon neutrality, the integration of diversified
renewable energy will be the principal feature of the planning framework of the smart grid,
and the planning direction and focus of power systems would shift to the network
transmittability and flexibility enhancement. This paper presents an infrastructure
investment demand assessment model based on multi-level analysis method for the
renewable-dominated power system planning. First, for the load side, the composite
capacity ratio is used to assess the capacity demand of power transformation
infrastructure for satisfying the load growth. Then, the renewable energy permeability is
adopted as the basis to assess the extensional transmittability capacity for the integration
of high renewables. Furthermore, the capacity demand of flexible transmission lines for
power grid flexibility enhancement is also estimated. Finally, the amount of unit investment
for source-network-load infrastructure capacities can be predicted based on the least
square generation adjunctive network and support vector machine (LSGAN-SVM)
algorithm. The performance of the proposed model has been tested and
benchmarked on a practical-sized power system to verify its effectiveness and feasibility.

Keywords: renewable energy, power system planning, investment demand, composite capacity-load ratio, least
square generation adjunctive network

INTRODUCTION

Promoting a high proportion of renewable energy into the power system will become an important
technical prerequisite for low-carbon development and energy transition (Tor et al., 2010; Xu et al.,
2020). As one of the decisive factors of future power system network framework, accurate assessment
of investment demand of the power system will provide technical support for high quality
development of the power system. In order to adapt to a high proportion of renewable energy
access systemwhich is confronted by the lack of network transmittability and flexibility (Huang et al.,
2021), existing assessment methods need to be improved accordingly. In this paper, the network
transmittability and flexibility enhancement are brought into the scope of assessment for renewable-
dominated power system planning.

Widely used assessment methods for investment demand can be divided into two categories,
namely, time series prediction method (Li et al., 2019) and neural network prediction (Ma et al.,
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2020) method. Through the unit root test and Johansen
cointegration test, the long-term equilibrium relationship
model between power grid investment demand and maximum
power load is presented, and the error correction model is further
proposed to improve the short-term forecasting accuracy (Goude
et al., 2014). Since the development trend of investment demand
of power system planning is related to many influencing factors
and has the possibility of abrupt change (Yang et al., 2016; Liu
et al., 2017), the forecasting results will have a large deviation
when the forecasting model is constructed only from the
perspective of time and combined with the maximum power
load. Therefore, the accuracy of time series prediction model in
predicting investment demand of a power system needs to be
improved. At present, there is a lot of research on investment
demand assessment of power systems using the neural network
prediction method (Ma et al., 2020). By using the analytic
hierarchy process (AHP) which screens the key influential
factors of investment demand of power system (Zhao et al.,
2021) to forecast the trend of each factor, the investment
demand is evaluated combined with the weight of each factor.
Since the structure of the neural network has a great influence on
the forecasting accuracy, the complex mapping relationship
between each index and investment demand cannot be
obtained, and the assessment results cannot be quantitatively
analyzed when a certain parameter changes, so that the accuracy
of the neural network prediction method to predict the
investment demand of the power system needs to be further
discussed. In general, the existing measurement methods of the
investment demand only take the power transmission and
transformation infrastructure as the principal target, and the
investment to solve the problems that threaten the safe and
stable operation of the power system has not become the core
component of the assessment scope (Li et al., 2021). Besides, these
measurement methods lack an accurate quantitative database,
and the complex mapping relationship of key factors within the
power system planning framework is ignored, making the results
of the assessment unreliable (Zhang et al., 2021; Li et al., 2018).

In this paper, a multi-level investment demand assessment
model is designed for renewable-dominated power system
planning which satisfies the growth of load and enhances
network transmittability and flexibility. The key contributions
of this study are twofold:

1) A multi-level investment demand assessment model for
renewable-dominated power system planning is presented. The
power transformation infrastructure, network transmittability,
and flexibility enhancement are taken as the principal entities of
investment demand. The model quantifies the mapping
relationship among infrastructure indexes of power system
hierarchically and effectively, which is adapted to renewable-
dominated power system.

2) A forecasting model of the amount of unit investment for
source-network-load infrastructure capacity based on least
square generation adjunctive network and support vector
machine (LSGAN-SVM) algorithm is proposed. The historical
data of infrastructure investment of each investment entity is used
to enhance the generalization of the input samples. The
extensional sample and the key influencing factors are input

into the SVM algorithm to provide a reliable database for
assessing investment demand.

MODELING OF MULTI-LEVEL
INVESTMENT DEMAND ASSESSMENT
Assessment Sub-model for Power
Transformation Infrastructure
Investment Demand for Power Transformation
Infrastructure
Considering the annual load growth, the infrastructure
investment for load-side is mainly concentrated in the
construction of 500 kV substations, 220 kV substations, 110 kV
substations, and 10 kV distribution transformers, so the
assessment sub-model for the amount of infrastructure
investment for load-side is as follows:

CI
i � cIi · ΔSIi (1)

where CI
i is the amount of infrastructure investment of i kV

substations or distribution transformers; ΔSIi is the transformer
capacity variation; cIi is the amount of unit investment for load-
side infrastructure capacity; i indicates the voltage level,
i ∈ {10, 110, 220, 500}.

The transformer capacity for 500, 220, and 110 kV substations
are calculated on an annual basis, which are obtained by
multiplying the maximum load of the corresponding voltage
level by the composite capacity-load ratio, and it is formulated
as follows:

ΔSIi � Pi · Rb,i − S0 i (2)

where Pi is the maximum load of i kV substations during the
planning period; Rb,i is the composite capacity-load ratio of i kV;
S0 i is the existing transformer capacity of i kV; i ∈ {110, 220, 500}

Generally, the 10 kV transformers are distribution
transformers and there is no concept of the composite
capacity-load ratio. Therefore, the transformation capacity of
110 kV and the transformation capacity ratio are used to
calculate the capacity variation of 10 kV distribution
transformers, and it is assessed as follows:

ΔSI10 �
SI110
ψ110/10

− SI0 10 (3)

where SI110 is the transformer planning capacity of 110 kV
substations; ψ110/10 is the ratio of the transformer capacity
between the 110 and 10 kV. Considering the influence of the
load coincidence factor, the ideal value of ψ110/10 is 0.84; S

I
0 10 is

the existing transformer capacity of 10 kV.

Composite Capacity-Load Ratio
The capacity-load ratio (CLR) is a macro technical indicator
reflecting the power source capacity in power system planning.
The CLR within a reasonable range can sufficiently
accommodate the load growth under a certain reliability level
while maintaining a reasonable investment level. The CLR is
formulated as follows:
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RS,i � ∑Se,i,k
Pmax ,i

(4)

where RS,i is CLR; Pmax ,i is the maximum load; Se,i,k is the
transformer capacity in substation k; i indicates the voltage
level, i ∈ {110, 220, 500}.

In reality, the power grid may have the problem of
unbalanced power source capacity and load distribution
among substations, the transformer capacity of
substations at the same voltage level is reasonable.
However, the load rate of some substations is too high,
even heavy load operation. In this case, CLR cannot
reflect the severe shortage of power supply in some areas,
thus the load ratio of individual substations is referenced and
formulated as follows:

Fk � Sreal,k
SN,k

(5)

where Fk is the load ratio of substation; Sreal,k is the real
transformer capacity of the substation k; SN,k is the
transformer rated capacity in substation k.

Due to the differences in reasonable CLR and degree of
substations overload at different voltage levels under different
load growth rates, the composite CLR is obtained by reasonably
assigning the weights of CLR and load ratios, and is formulated as
follows:

Rb,i � βi · RS,i + (1 − βi) ·∑O
k�1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
Wi,j∑O
k�1Wi,j

· ϕi

Fmax ,i,j · cosφi,j

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (6)

where Fmax ,i,k is the maximum load rate of an individual
substation in the planning area; cosφi is the power factor of
i kV corresponding to the maximum load (in engineering
practice, cosφ � 0.9); βi is the weight of CLR (for the
region with balanced load distribution, the weight of CLR
can be taken as 0.6; for the region where the overall power
source capacity is sufficient but local areas are seriously
deficient, the weight of CLR can be taken as 0.4); Wi,j is the
transmission power of the kth heavy load substation; O is the
total number of heavy load substations; ϕi is a coefficient,
which reflects the insufficient power source capacity of an
individual overloaded substation to the value of the composite
CLR, and ϕi ∈ ( �

2
√

,
�
3

√ ); i indicates the voltage level,
i ∈ {110, 220, 500}.

Assessment Sub-Model for Network
Transmittability Enhancement
Considering that a high proportion of renewable energy is
connected to the renewable-dominated power system, the
infrastructure investment demand of transmittability
enhancement is necessary, and it is assessed as follows:

CII
i � cIIi ·∑M

j�1
ΔLII

i,j (7)

M � PRES

PIRES,i
(8)

PRES � αi · Pi

1 − σ i
(9)

where CII
i is the infrastructure investment demand of

transmittability enhancement; cIIi is the amount of unit length
investment; ΔLIIi,j is the length variation of transmittability
enhancement infrastructure of jth renewable energy source
(RES); αi is renewable energy permeability of i kV; M is the
number of RESs; σ i is loss factor; PRES is the sum of capacity of
renewable energy source; PIRES,i is the average amount of capacity
of individual renewable energy source; i indicates the voltage
level, and i ∈ {10, 110, 220, 500}.

Assessment Sub-model for Network
Flexibility Enhancement
Due to the proportion of renewable energy in the system is
increasing, the problems of operating efficiency and safety
performance caused by insufficient system flexibility need to
be improved urgently (Xiong et al., 2020). Flexible
transmission infrastructure can quickly adjust line parameters
and reduce the network congestion and transmission losses. The
investment demand of flexible transmission infrastructure is
assessed as follows (De Oliveira et al., 2000):

CIII
i � CIII

PS,i + CIII
SC,i (11)

CIII
PS,i � cIIIPS,i ·∑E

u�1
QLine,i,u (12)

CIII
SC,i �

cIIISC,i
PB

·∑F
v�1
[τv ·XLine,v · (fv)2] (13)

where CIII
PS,i is the investment demand of the phase shifter; CIII

SC,i is
the investment demand of the series compensator; cIIIPS,i is the
amount of unit line capacity investment for the phase shifter; E is
the number of lines for installing the phase shifter; QLine,i,u is the
reactive capacity of the uth transmission line; cIIISC,i is the amount
of unit line capacity investment for the series compensator; PB is
the base power (100MVA); F is the number of lines for installing
the series compensator; τv is the compensation degree of
impedance; XLine,v is the vth real line impedance; fv is the
thermal limit of the vth transmission line; i indicates the
voltage level, and i ∈ {10, 110, 220, 500}.

Forecasting Model of the Amount of Unit
Investment for Infrastructure Capacity
Considering the data bases of cIi , c

II
i , c

III
PS,i, and cIIISC,i for each

voltage level are scarce, it is difficult to obtain the data
characteristics. This paper uses the LSGAN to enhance data
generalization and mine reliable extension sets. The principle
of this algorithm is as follows:

Noise data is input into generating network and generated
data is obtained. The generated data and real data serve as the
input of discriminant network. The output of discriminant
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network is the probability that the input data belongs to real data.
Then, the least square loss function is calculated according to the
probability, and the parameters of the networks can be updated
by using the back propagation algorithm. Generative network and
discriminant network establish dynamic game, both approach the
optimal state in iterative training, and the generative model can
produce reliable generated data.

The amount of unit investment for source-network-load
infrastructure capacity is affected by a small number of key
factors, such as the time difference of forming production
capacity, the scope of infrastructure investment, the difference
of investment intensity, the proportion of new expansion
projects, equipment purchases cost, and installation cost.
Therefore, this paper uses the SVM algorithm which avoids
the over-fitting problem when dealing with small data
prediction to predict the investment of unit infrastructure
capacity to enhance the prediction accuracy. The forecasting
model of the amount of unit investment for source-network-
load infrastructure capacity based on LSGAN-SVM is presented
in Figure 1.

Multi-Level Investment Demand
Assessment Model
The investment demand of renewable-dominated power
system includes the investment in power transformation
infrastructure for satisfying the growth of load, network
transmittability, and flexibility enhancement, therefore, the
multi-level infrastructure investment demand assessment
model is as follows:

C � ∑CI
i +∑CII

i +∑CIII
i (14)

where C is the amount of infrastructure investment demand
during the planning period; CI

i is the investment demand for i kV
power transformation infrastructure; CII

i is the investment
demand for network transmittability enhancement; CIII

i is the
investment demand for network flexibility enhancement; i
indicates the voltage level, and i ∈ {10, 110, 220, 500}.

OVERALL MODEL PROCESS

The multi-level investment demand assessment model can be
divided into three modules. First, the multi-level investment
demand assessment model for renewable-dominated power
system planning is constructed. Then, all parameters are
calculated and input to modules. Finally, the investment
demand for power transformation infrastructure, network
transmittability, and flexibility enhancement are assessed
hierarchically. The overall assessment procedure of the model
is presented in Figure 2.

CASE STUDIES

Experimental Data and Settings
In this section, a renewable-dominated power system investment
demand issue in a certain province is presented. Taking 2021 as
an example, according to the annual load growth rate of 500 kV,
220 kV, and 110 kV voltage levels in 2021, the CLRs are selected
as 1.7, 1.8, and 2.0, respectively. The ratio of the transformation
capacity between 110 kV and 10 kV is 0.84. Renewable energy
permeability of 500, 220, 110, and 10 kV are 0.5, 0.5, 0.4, and 0.6,

FIGURE 1 | Forecasting model of the amount of unit investment for infrastructure capacity.
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respectively. The degree of series compensation are 0.3, 0.2, 0.2,
and 0.4, respectively.

Results Analysis Based on Comparing with
Existing Model
In order to reflect the higher accuracy of the multi-level
investment demand assessment model proposed in this paper,
it is compared with the existing power system investment
demand assessment model. The existing model of the first

type adopts the time series prediction method, which does not
need to establish a causal relationship in modeling and can be
modeled only with historical data. Basically, the future
development can be predicted by referring to the past change
trend of the power system investment demand. The existing
second model adopts the neural network prediction method,
which takes macroeconomic, power demand, grid size, grid
benefit, and other influential factors of power system
investment demand as well as historical data of investment
demand as input, mining data characteristics and forecasting

FIGURE 2 | Multi-level investment demand assessment model process for power system.

Frontiers in Energy Research | www.frontiersin.org January 2022 | Volume 9 | Article 8075905

Li et al. Multi-Level Investment Demand Assessment

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


power system investment demand. The following are referred to
as model I and model II, respectively.

Three models are, respectively, used to assess the investment
demand of the province from 2012 to 2021, and the results are
analyzed as follows. Taking 2021 as an example, based on the
multi-level investment demand assessment model, the
assessment results of the provincial power system in 2021 is
shown in Table 1. The following are referred to as model III.

Based on the two existing models, the investment demand
assessment results of the province’s power system from 2012 to
2021 are shown in Figure 3, including comparison of the
assessment results of the three models.

Based on the existing model I and II, the investment demand
assessment results in 2021 are 21.861 B¥ and 22.782 B¥,
respectively. The total investment of actual infrastructure in
the province in 2021 is 20.899 B¥. The relative error of the
assessment result of the existing model Ⅰ and model Ⅱ are 7.5
and 7.9%, respectively. The relative error of the evaluation result
of the model proposed in this paper is 1.7%. Meanwhile, in
Figure 3D, comparing the relative error curves of the assessment
results of the three models from 2012 to 2021, the model
proposed in this paper is more accurate.

CONCLUSION

In this paper, first, annual load growth rate and load ratio are
selected to calculate the transformer capacity variation.
Considering the reasonable ratio of renewable energy
permeability and loss factor, calculate the extensional
transmittability capacity. Then, the capacity demand of
flexible transmission lines for power grid flexibility
enhancement is also estimated. In view of various key
influencing factors, combined with the historical data, the
amount of unit investment for source-network-load
infrastructure capacities are forecasted based on the
LSGAN-SVM forecasting model. Finally, the investment
demand of each voltage level for renewable-dominated
power system is assessed by the multi-level investment
demand assessment model. The results of case studies
show that, compared with the existing assessment

TABLE 1 | The assessment results based on multi-level investment demand
assessment model

Voltage
level (kV) Results

10 110 220 500

ΔSI
i (MVA) 5912 3012 6,732 4010

ΔLIIi,j (km) 3069 2054 4356 2,404

cIi (K¥/MVA) 1578 667 545 412

cIIi (K¥/km) 235 269 186 103

cIIIPS,i (K¥/MVAR) 67 70 72 80

cIIISC,i (K¥/MVAR) 642 680 716 823

CI
i (K¥) 9,329,136 2,009,004 3,668,940 1,652,120

CII
i (K¥) 279,342 178,160 438,253 284,911

CIII
i (K¥) 248,304 158,130 2,403,324 252,630

C (B¥) 20,902

FIGURE 3 | Input parameters and comparative results of three assessment models.
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methods, the multi-level investment demand assessment
model for renewable-dominated power system clarifies the
complex and fuzzy mapping relationship of various
investment demands, which verify its effectiveness and
feasibility.
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